Solutions

Answer 3.1

(a) The following SQL statements create the corresponding relations.
CREATE TABLE Professors (prof ssn CHAR(10),
name CHAR(64),
age INTEGER,
rank INTEGER,
speciality CHAR(64),
PRIMARY KEY (prof ssn))

CREATE TABLE Depts (dno INTEGER,
dname CHAR(64),
office CHAR(10),
prof ssn CHAR(10) NOT NULL,
PRIMARY KEY (dno),
FOREIGN KEY (prof ssn) REFERENCES Professors
(prof_ssn))
CREATE TABLE Work_Dept (dno INTEGER,
prof_ssn CHAR(10),
pc_time INTEGER,
PRIMARY KEY (dno, prof_ssn),
FOREIGN KEY (prof ssn) REFERENCES
Professors (prof_ssn),
FOREIGN KEY (dno) REFERENCES Depts)
Observe that we would need check constraints or assertions in SQL to enforce the rule that

Professors work in at least one department.
CREATE TABLE Project(pid INTEGER,
sponsor CHAR(32),
start date DATE,
end date DATE,
budget FLOAT,
prof ssn CHAR(10) NOT NULL,
PRIMARY KEY (pid),
FOREIGN KEY (prof ssn) REFERENCES Professors
(prof_ssn))
CREATE TABLE Graduates(grad_ssn CHAR(10),
-- needed by the Advisor relationship
senior_ssn CHAR(10) NOT NULL,
age INTEGER,
name CHAR(64),
deg_prog CHAR(32),
major INTEGER NOT NULL,
PRIMARY KEY (grad_ssn),
-- needed by the Major relationship
FOREIGN KEY (major) REFERENCES Depts (dno),
-- needed by the Advisor relationship

FOREIGN KEY (senior_ssn) REFERENCES Graduates
(grad_ssn)

)

Note that the Major table is not necessary since each Graduate has only one major and so

this can be an attribute in the Graduates table. Same applies for the Advisor table.
CREATE TABLE Work_In (pid INTEGER,
prof ssn CHAR(10),
PRIMARY KEY (pid, prof ssn),
FOREIGN KEY (prof ssn) REFERENCES Professors
(prof_ssn),
FOREIGN KEY (pid) REFERENCES Project (pid))

Observe that we cannot enforce the participation constraint for Projects in the Work_In

table without check constraints or assertions in SQL.
CREATE TABLE Supervises (prof ssn CHAR(10) NOT NULL,
grad_ssn CHAR(10),
pid INTEGER,
PRIMARY KEY (grad_ssn, pid),
FOREIGN KEY (prof ssn) REFERENCES Professors
(prof_ssn),
FOREIGN KEY (grad_ssn) REFERENCES Graduates
(grad_ssn),
FOREIGN KEY (pid) REFERENCES Projects (pid))

Note that we do not need an explicit table for the Work Proj relation since every
time a Graduate works on a Project, he or she must have a Supervisor.

(b)

Rows of the Professors table:

"P1", "Marc Johnson", 48, 50, "Databases"
"P2", "Anna Pacson", 45, 50, "Communications"
"P3", "Paul Lonson", 44, 45, "Smart homes"

Rows of the Depts table:

1, "Computer Science", "CAMPUS1", "P1"

2, "Electrical Engineering", "CAMPUS2", "P2"
3, "Architecture”, "CAMPUS3", "P3"

Rows of the Work_Dept table:
1, "P1", 50

2,"P1", 25

3,"P1", 25

2,"P2", 100

3, "P3", 100

Rows of the Project table:
1, "NSF", "01/01/2015", "01/01/2020", 800000, "P1"

Rows of the Graduates table:

"S1", "S1", 30, "John Marcson", "Postdoc", 1

Rows of the Work_In table:
None

Rows of the Supervises table:
IIP1II’ llslll’ 1

Answer 3.2

The statements to create tables corresponding to entity sets Doctor, Pharmacy, and Pharm

co are straightforward and omitted. The other required tables can be created as follows:
CREATE TABLE Pri_Phy_Patient (ssn CHAR(11),

name CHAR(20),

age INTEGER,

address CHAR(20),

phy ssn CHAR(11) NOT NULL,

PRIMARY KEY (ssn),

FOREIGN KEY (phy_ssn)REFERENCES Doctor

(phy_ssn))
CREATE TABLE Prescription (ssn CHAR(11),

phy ssn CHAR(11),

date CHAR(11),

quantity INTEGER,

trade_name CHAR(20),

pharm_id CHAR(11),

PRIMARY KEY (ssn, phy_ssn, trade_name, pharm_id),
FOREIGN KEY (ssn) REFERENCES Patient (ssn),
FOREIGN KEY (phy_ssn) REFERENCES Doctor
(phy_ssn),
FOREIGN KEY (trade_name, pharm_id) References
Make Drug (trade_name, pharm_id))
CREATE TABLE Make Drug (trade_name CHAR(20),
Pharm_id CHAR(11),
Formula CHAR(100),
PRIMARY KEY (trade_name, pharm_id),
FOREIGN KEY (pharm_id) REFERENCES Pharm_co
(pharm_id) ON DELETE CASCADE)
CREATE TABLE Sell (price INTEGER,
name CHAR(10),
trade_name CHAR(10),
pharm_id CHAR(11),
PRIMARY KEY (name, trade_name, pharm_id),
FOREIGN KEY (name) REFERENCES Pharmacy (name),
FOREIGN KEY (trade_name, pharm_id) REFERENCES
Make Drug(trade_name, pharm_id))
CREATE TABLE Contract (name CHAR(20),
pharm_id CHAR(11),
start date CHAR(11),
end_date CHAR(11),
text CHAR(10000),
supervisor CHAR(20),
PRIMARY KEY (name, pharm_id),
FOREIGN KEY (name) REFERENCES Pharmacy (name),

FOREIGN KEY (pharm_id) REFERENCES Pharm co
(pharm_id))

Answer 3.3 No. In this case, the index is unclustered, each qualifying data entry could

contain an rid that points to a distinct data page, leading to as many data page 1/0s as the

number of data entries that match the range query. In this situation, using index is actually

worse than file scan.

Answer 3.4

a.

Each page is 4KB=4096 bytes. It has 96 bytes of metadata, so it has 4096-96 space
for tuples and it can hold 4000/200=20 tuples. Since we have 40 * 400 = 16000
books, in total we need 16000/20=800 pages.

Each PAX page is organized as minipages with the following characteristics: BookID:
20*8=160 bytes, author: 20*64=1280 bytes, title: 20* 100=2000 bytes, genre:
20*4=80 bytes, year: 20*8=160 bytes and price: 20*16=320 bytes.

Since the page has a header of 48 bytes and a footer of 48 bytes, the 4KB of a PAX
page have the following offsets:

0 bytes Header

48 (0+48) bytes BookID

208 (48+160) bytes author

1488 (208+1280) bytes title

3488 (1488+2000) bytes genre

3568 (3488+80) bytes year

3728 (3568+160) bytes price

4048 (3728+320) bytes Footer

1* subpage (0-1024) Header (0-48)
BookID (48-208)
Author (208-1488)

2" subpage (1024-2048) Author (208-1488)
Title (1488-3488)

3" subpage (2048-3072) Title (1488-3488)

4™ subpage (3072-4096) Title (1488-3488)

Genre (3488-3568)
Year (3568-3728)
Price (3728-4048)
Footer (4048-4096)

Accessing BookID requires the 1st subpage, author requires 1st and 2nd subpage,
title requires 2nd, 3rd and 4th subpage and genre, year and price require 4th
subpage.

Note that each page contains 20 records, so the record with Bookld=512, would
exist in 26™ page (as the 12" record: 25*20 + 12). Since BookID is the primary key,
the result contains one row. However, as we need to reassemble the whole row, we
need to read all the relevant subpages (recall that the unit of transfer for flash is the
1KB subpage), which would be the 1%, 3", and 4" page. Specifically, we have to
identify the subpage where the 12" record can be located. For the 12" record, the
information pertaining to Bookld would start at: 48 + 11* 8 = 136" byte (1*
subpage), Author would start at: 208 + 11*64 = 912" byte (1 subpage), Title would
start at: 1488 + 11*100 = 2588™ byte (3" subpage), Genre, Year, Price would be
present in the 4™ subpage. Thus, we need to access 3 subpages * 1KB = 3KB.

d. Since the number of books published each year over the period of 40 years is
constant, we need to access the data about the last 10 years only, i.e., we need the
information from the quarter of the table: 800/4 = 200 pages. As we need only the
price attributes, it is enough to read the fourth subpage only. In total, we need to
access 200 * 1 KB = 200KB. Note that the year attribute will be just read once, to
identify the first record with year = 2004, after that every record will qualify for the
predicate in the query.

e. Since the number of books published each year over the period of 40 years is
constant, we need to access the data about the last 20 years only, half of the table:
800/2 = 400 pages. As we need the author and title attributes, we need to access all
4 subpages, i.e., we need to read the whole pages. In total, we need to read 400 * 4
KB = 1600KB. Note that the year attribute will be just read once, to identify the first
record with year = 1994, after that every record will qualify for the predicate in the
query.

Answer 3.5

The main conclusion about the five file organizations is that all five have their own
advantages and disadvantages. No one file organization is uniformly superior in all
situations. The choice of appropriate structures for a given data set can have a significant
impact upon performance. An unordered file is best if only full file scans are desired. A hash
indexed file is best if the most common operation is an equality selection. A sorted file is
best if range selections are desired and the data is static; a clustered B+ tree is best if range
selections are important and the data is dynamic. An unclustered B+ tree index is useful for
selections over small ranges, especially if we need to cluster on another search key to
support some common query.

a. Using these fields as the search key, we would choose a sorted file organization
or a clustered B+ tree depending on whether the data is static or not.

b. Heap file would be the best fit in this situation.

c. Using this particular field as the search key, choosing a hash indexed file would
be the best.

