
Solutions

Answer 3.1

(a) The ollowing SQL saemens creae he corresponding relaons.

CREATE TABLE Proessors (pro_ssn CHAR(10),

name CHAR(64),

age INTEGER,

rank INTEGER,

speciality CHAR(64),

PRIMARY KEY (pro ssn))

CREATE TABLE Depts (dno INTEGER,

dname CHAR(64),

ofce CHAR(10),

pro_ssn CHAR(10) NOT NULL,

PRIMARY KEY (dno),

FOREIGN KEY (pro_ssn) REFERENCES Proessors

(pro_ssn))

CREATE TABLE Work_Dept (dno INTEGER,

pro_ssn CHAR(10),

pc_time INTEGER,

PRIMARY KEY (dno, pro_ssn),

FOREIGN KEY (pro_ssn) REFERENCES

Proessors (pro_ssn),

FOREIGN KEY (dno) REFERENCES Depts)

Observe ha we would need check consrains or asserons in SQL o enorce he rule ha

Proessors work in a leas one deparmen.

CREATE TABLE Project(pid INTEGER,

sponsor CHAR(32),

start date DATE,

end date DATE,

budget FLOAT,

pro_ssn CHAR(10) NOT NULL,

PRIMARY KEY (pid),

FOREIGN KEY (pro_ssn) REFERENCES Proessors

(pro_ssn))

CREATE TABLE Graduates(grad_ssn CHAR(10),

-- needed by the Advisor relationship

senior_ssn CHAR(10) NOT NULL,

age INTEGER,

name CHAR(64),

deg_prog CHAR(32),

major INTEGER NOT NULL,

PRIMARY KEY (grad_ssn),

-- needed by the Major relationship

FOREIGN KEY (major) REFERENCES Depts (dno),

-- needed by the Advisor relationship

FOREIGN KEY (senior_ssn) REFERENCES Graduates

(grad_ssn)

)

Noe ha he Major able is no necessary since each Graduae has only one major and so

his can be an aribue in he Graduaes able. Same applies or he Advisor able.

CREATE TABLE Work_In (pid INTEGER,

pro ssn CHAR(10),

PRIMARY KEY (pid, pro_ssn),

FOREIGN KEY (pro_ssn) REFERENCES Proessors

(pro_ssn),

FOREIGN KEY (pid) REFERENCES Project (pid))

Observe ha we canno enorce he parcipaon consrain or Projecs in he Work_In

able wihou check consrains or asserons in SQL.

CREATE TABLE Supervises (pro_ssn CHAR(10) NOT NULL,

grad_ssn CHAR(10),

pid INTEGER,

PRIMARY KEY (grad_ssn, pid),

FOREIGN KEY (pro_ssn) REFERENCES Proessors

(pro_ssn),

FOREIGN KEY (grad_ssn) REFERENCES Graduates

(grad_ssn),

FOREIGN KEY (pid) REFERENCES Projects (pid))

Noe ha we do no need an explici able or he Work Proj relaon since every

me a Graduae works on a Projec, he or she mus have a Supervisor.

(b)

Rows o he Proessors able:

"P1", "Marc Johnson", 48, 50, "Daabases"

"P2", "Anna Pacson", 45, 50, "Communicaons"

"P3", "Paul Lonson", 44, 45, "Smar homes"

Rows o he Deps able:

1, "Compuer Science", "CAMPUS1", "P1"

2, "Elecrical Engineering", "CAMPUS2", "P2"

3, "Archiecure", "CAMPUS3", "P3"

Rows o he Work_Dep able:

1, "P1", 50

2, "P1", 25

3, "P1", 25

2, "P2", 100

3, "P3", 100

Rows o he Projec able:

1, "NSF", "01/01/2015", "01/01/2020", 800000, "P1"

Rows o he Graduaes able:

"S1", "S1", 30, "John Marcson", "Posdoc", 1

Rows o he Work_In able:

None

Rows o he Supervises able:

"P1", "S1", 1

Answer 3.2

The saemens o creae ables corresponding o eny ses Docor, Pharmacy, and Pharm

co are sraightorward and omied. The oher required ables can be creaed as ollows:
CREATE TABLE Pri_Phy_Patient (ssn CHAR(11),

name CHAR(20),
age INTEGER,
address CHAR(20),
phy_ssn CHAR(11) NOT NULL,
PRIMARY KEY (ssn),
FOREIGN KEY (phy_ssn)REFERENCES Doctor
(phy_ssn))

CREATE TABLE Prescription (ssn CHAR(11),
phy_ssn CHAR(11),

date CHAR(11),
quantity INTEGER,
trade_name CHAR(20),
pharm_id CHAR(11),

PRIMARY KEY (ssn, phy_ssn, trade_name, pharm_id),
FOREIGN KEY (ssn) REFERENCES Patient (ssn),
FOREIGN KEY (phy_ssn) REFERENCES Doctor

(phy_ssn),
FOREIGN KEY (trade_name, pharm_id) Reerences

Make_Drug (trade_name, pharm_id))
CREATE TABLE Make_Drug (trade_name CHAR(20),

Pharm_id CHAR(11),
Formula CHAR(100),
PRIMARY KEY (trade_name, pharm_id),
FOREIGN KEY (pharm_id) REFERENCES Pharm_co

(pharm_id) ON DELETE CASCADE)
CREATE TABLE Sell (price INTEGER,

name CHAR(10),
trade_name CHAR(10),
pharm_id CHAR(11),

PRIMARY KEY (name, trade_name, pharm_id),
FOREIGN KEY (name) REFERENCES Pharmacy (name),
FOREIGN KEY (trade_name, pharm_id) REFERENCES
Make_Drug(trade_name, pharm_id))

CREATE TABLE Contract (name CHAR(20),
pharm_id CHAR(11),
start_date CHAR(11),
end_date CHAR(11),
text CHAR(10000),
supervisor CHAR(20),
PRIMARY KEY (name, pharm_id),
FOREIGN KEY (name) REFERENCES Pharmacy (name),

FOREIGN KEY (pharm_id) REFERENCES Pharm_co

(pharm_id))

Answer 3.3 No. In his case, he index is unclusered, each qualiying daa enry could

conain an rid ha poins o a disnc daa page, leading o as many daa page I/Os as he

number o daa enries ha mach he range query. In his siuaon, using index is acually

worse han le scan.

Answer 3.4

a. Each page is 4KB=4096 byes. I has 96 byes omeadaa, so i has 4096-96 space

or uples and i can hold 4000/200=20 uples. Since we have 40 * 400 = 16000

books, in oal we need 16000/20=800 pages.

b. Each PAX page is organized as minipages wih he ollowing characeriscs: BookID:

20*8=160 byes, auhor: 20*64=1280 byes, le: 20*100=2000 byes, genre:

20*4=80 byes, year: 20*8=160 byes and price: 20*16=320 byes.

Since he page has a header o 48 byes and a ooer o 48 byes, he 4KB o a PAX

page have he ollowing oses:

0 byes Header

48 (0+48) byes BookID

208 (48+160) byes auhor

1488 (208+1280) byes le

3488 (1488+2000) byes genre

3568 (3488+80) byes year

3728 (3568+160) byes price

4048 (3728+320) byes Fooer

1s subpage (0-1024) Header (0-48)

BookID (48-208)

Auhor (208-1488)

2nd subpage (1024-2048) Auhor (208-1488)

Tile (1488-3488)

3rd subpage (2048-3072) Tile (1488-3488)

4h subpage (3072-4096) Tile (1488-3488)

Genre (3488-3568)

Year (3568-3728)

Price (3728-4048)

Fooer (4048-4096)

Accessing BookID requires he 1s subpage, auhor requires 1s and 2nd subpage,

le requires 2nd, 3rd and 4h subpage and genre, year and price require 4h

subpage.

c. Noe ha each page conains 20 records, so he record wih BookId=512, would

exis in 26h page (as he 12h record: 25*20 + 12). Since BookID is he primary key,

he resul conains one row. However, as we need o reassemble he whole row, we

need o read all he relevan subpages (recall ha he uni o ranser or ash is he

1KB subpage), which would be he 1s, 3rd, and 4h page. Specically, we have o

ideny he subpage where he 12h record can be locaed. For he 12h record, he

inormaon peraining o BookId would sar a: 48 + 11* 8 = 136 h bye (1s

subpage), Auhor would sar a: 208 + 11*64 = 912 h bye (1s subpage), Tile would

sar a: 1488 + 11*100 = 2588h bye (3rd subpage), Genre, Year, Price would be

presen in he 4h subpage. Thus, we need o access 3 subpages * 1KB = 3KB.

d. Since he number o books published each year over he period o 40 years is

consan, we need o access he daa abou he las 10 years only, i.e., we need he

inormaon rom he quarer o he able: 800/4 = 200 pages. As we need only he

price aribues, i is enough o read he ourh subpage only. In oal, we need o

access 200 * 1 KB = 200KB. Noe ha he year aribue will be jus read once, o

ideny he rs record wih year = 2004, afer ha every record will qualiy or he

predicae in he query.

e. Since he number o books published each year over he period o 40 years is

consan, we need o access he daa abou he las 20 years only, hal o he able:

800/2 = 400 pages. As we need he auhor and le aribues, we need o access all

4 subpages, i.e., we need o read he whole pages. In oal, we need o read 400 * 4

KB = 1600KB. Noe ha he year aribue will be jus read once, o ideny he rs

record wih year = 1994, afer ha every record will qualiy or he predicae in he

query.

Answer 3.5

The main conclusion abou he ve le organizaons is ha all ve have heir own

advanages and disadvanages. No one le organizaon is uniormly superior in all

siuaons. The choice o appropriae srucures or a given daa se can have a signican

impac upon perormance. An unordered le is bes i only ull le scans are desired. A hash

indexed le is bes i he mos common operaon is an equaliy selecon. A sored le is

bes i range selecons are desired and he daa is sac; a clusered B+ ree is bes i range

selecons are imporan and he daa is dynamic. An unclusered B+ ree index is useul or

selecons over small ranges, especially i we need o cluser on anoher search key o

suppor some common query.

a. Using hese elds as he search key, we would choose a sored le organizaon

or a clusered B+ ree depending on wheher he daa is sac or no.

b. Heap le would be he bes  in his siuaon.

c. Using his parcular eld as he search key, choosing a hash indexed le would

be he bes.

