
Week 9 Exercises:
Query Processing with Relational

Operations (part 2)​
Solutions

Answer 14.1 The answer to each question is given below.

1.​ Hybrid hash join improves performance by comparing the first hash buckets during
the partitioning phase rather than saving it for the probing phase. This saves us the
cost of writing and reading the first partition to disk.

2.​ Hash join provides good performance for equality joins, and can be tuned to require
very few extra disk accesses beyond a one-time scan (provided enough memory is
available). However, hash join is sensitive to data skew and it is not applicable for
non-equality joins.
Sort-merge join is less sensitive to data skew. Sort-merge also leaves the results
sorted which is often desired. Sort-merge join has extra costs when you have to use
external sorting (there is not enough memory to do the sort in-memory).
Block nested loops join works for theta joins.

3.​ If the join condition is not equality, you can use sort-merge join, index nested loops
(if you have a range style index such as a B+ tree index or ISAM index), or block
nested loops join. Hash joining works best for equality joins and is not suitable
otherwise.

Answer 14.4 Let M = 1000 be the number of pages in R, N = 200 be the number of pages in S,
and B = 52 be the number of buffer pages available.

1.​ Basic idea is to read each page of the outer relation, and for each page scan the
inner relation for matching tuples. Total cost would be

 𝑝𝑎𝑔𝑒𝑠𝑖𝑛𝑜𝑢𝑡𝑒𝑟 + 𝑝𝑎𝑔𝑒𝑠𝑖𝑛𝑜𝑢𝑡𝑒𝑟 ∗ 𝑝𝑎𝑔𝑒𝑠𝑖𝑛𝑖𝑛𝑛𝑒𝑟()
which is minimized by having the smaller relation be the outer relation.

 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 𝑁 + 𝑁 ∗ 𝑀() = 200, 200
The minimum number of buffer pages for this cost is 3.

2.​ This time we read the outer relation in blocks, and for each block scan the inner
relation for matching tuples. So the outer relation is still read once, but the inner
relation is scanned only once for each outer block, of which there are

. ⌈ 𝑝𝑎𝑔𝑒𝑠𝑖𝑛𝑜𝑢𝑡𝑒𝑟
𝐵−2 ⌉ = ⌈ 200

50 ⌉ = 4

 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 𝑁 + 𝑀 ∗ ⌈ 𝑁
𝐵−2 ⌉ = 4, 200

If the number of buffer pages is less than 52, the number of scans of the inner

would be more than 4 since . The minimum number of buffer pages ⌈ 200
49 ⌉ = 5

for this cost is therefore 52.

3.​ The cost of Hash Join is if where f is a ’fudge factor’ 3 ∗ 𝑀 + 𝑁() 𝐵 > 𝑓 ∗ 𝑁
used to capture the small increase in size involved in building a hash table, and N

is the number of pages in the smaller relation, S. Since , we can assume 𝑁 ≈ 14

that this condition is met. We will also assume uniform partitioning from our
hash function.

 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 3 ∗ 𝑀 + 𝑁() = 3, 600
Without knowing f we can only approximate the minimum number of buffer
pages required.

4.​ The optimal cost would be achieved if each relation was only read once. We
could do such a join by storing the entire smaller relation in memory, reading in
the larger relation page-by-page, and for each tuple in the larger relation we
search the smaller relation (which exists entirely in memory) for matching tuples.
The buffer pool would have to hold the entire smaller relation, one page for
reading in the larger relation, and one page to serve as an output buffer.

 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 𝑀 + 𝑁 = 1, 200
The minimum number of buffer pages for this cost is N + 1 + 1 = 202.

5.​ Any tuple in R can match at most one tuple in S because S.b is the primary key
(which means the S.b field contains no duplicates). So the maximum number of
tuples in the result is equal to the number of tuples in R, which is 10,000.
The size of a tuple in the result could be as large as the size of an R tuple plus the
size of an S tuple (minus the size of the shared attribute). This may allow only 5
tuples to be stored on a page. Storing 10,000 tuples at 5 per page would require
2000 pages in the result.

Answer 14.5.

1.​ Block Nested Loops Join:

 Having R as an outer relation:

 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 𝑅 + 𝑆 ∗ ⌈ 𝑅
𝐵−2 ⌉ = 1000 + 100 ∗ ⌈ 1000

12−2 ⌉ = 11, 000
 Having S as an outer relation:

 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 𝑆 + 𝑅 ∗ ⌈ 𝑆
𝐵−2 ⌉ = 100 + 1000 ∗ ⌈ 100

12−2 ⌉ = 10, 100
Therefore, we choose the option with the lower cost (having S as an outer
relation).

2.​ Hash Join:

 Partitioning phase: 2 * (R + S) = 2 * (1000 + 100) =2200

 Probing (matching) phase: (R + S) = 1100

 Total IO cost = 3300 IOs.

3.​ Sort-Merge Join ​

Sort R: # of passes = 1+ ⎡logB-1⎡R/B⎤⎤ ; Cost = 2 * R * (# of passes);

Cost = 2 * 1000 * (1+ ⎡log11⎡1000/12⎤⎤) = 6000 IOs.

Sort S: # of passes = 1+ ⎡logB-1⎡S/B⎤⎤ ; Cost = 2 * S * (# of passes);

Cost = 2 * 100 * (1+ ⎡log11⎡100/12⎤⎤) = 400 IOs.

Merge: R + S = 1000 + 100 = 1100 IOs.

Total IO cost 6000 + 400 + 1100 = 7500$ IOs.

	Week 9 Exercises:
	Query Processing with Relational Operations (part 2)​Solutions

