Lecture 6 Recap: Reductions
Mika Goos

E PF L School of Computer and Communication Sciences

Lecture 6 Recap

L ecture 6 Recap

Reducibility Use knowledge about complexity of one language to reason
about the complexity of other in an easy way

Reduction Way to show that to solve one problem (A), it is sufficient to
solve another problem (B)

A reduces to B. ..

» Many examples (e.g. calculate area of rectangle reduces to calculate its
width and height)
» Reductions quantify relative hardness of problems

> If problem B is easy then problem A is easy too
> If problem A is hard then problem B is hard too

Triangle-Area = Rectangle-Area =
{(h,b,t) € {0,1}* | hx b/2 > t} {(h,b,ry € {0,1}* | hx b > r}

In language if area h In language if area
is at least t is at least r

b b

Suppose we have a Turing machine TMgya for deciding Rectangle-Area. How can we
use it form a decider TMy,4 for Triangle-Area?

TMTa

accept

(h,b,t) € {0,1}* === reduction f == (h,b,r)

reject

TM1a

accept

(h,b,t) € {0,1}* === reduction f = (h,b,r)

reject

Define f({h, b, t)) = (h, b,2t). Then

Triangle-Area /—\‘ Rectangle-Area
Triangle-Area \/’. Rectangle-Area

f does not use the knowledge whether input is in language or not

f can be computed with a TM

Mapping Reductions

Reductions Part 1: Computability

f
/_\
* *

w f(w)
CORCEECEY — | | — EEEEE

Definition: A function f : ¥* — ¥* is a computable function if some
TM M, on every input w halts with just f(w) on its tape

L ecture 6 Recap

Reductions Part 2: Correctness

Mapping may not be
Surjective

A " 172173 B
wy _'41]1
WBN‘N\ ””

/”’ \‘s\b
n Wy > Vs B
Vs
> >

Definition: Language A is mapping reducible to language B, written
A <,, B, if there is a computable function f : ¥* — ¥*, such that for
every w € ¥*:

weAsf(w)eB

L ecture 6 Recap

Theorem: If A <,, B and B is decidable, then A is decidable

Proof:
» Assume that M is a decided for B and f is a reduction from A to B
> Let N be a TM as follows:

Correctness
of f =
N decides A

N

w f fw)

u . . Computability of f =
> =

Compute f(w)
Run M on input f(w) and output whatever M outputs”

Corollary: If A <,, B and A is undecidable, then B is undecidable

Examples of Reductions

L ecture 6 Recap

HALT1p = {(M,w) | M halts on w}
Arm = {{(M,w) | M accepts w}

Theorem: Aty <,, HALT 1y

Proof idea:
TMary,

accept
(M,w) € {0,1}* = reduction f —> (M’, w’) —)m:: :
reject

Define computable f such that

A . /\‘ AL TTM

f'

A ™ \/ FAL TTM

Theorem: Ary <., HALT1m (= HALT 1y is undecidable)

> Let us define a function f as follows

> Given an input x = (M, w), return f(x) = (M’, w), where

f has to write down the code of M’ only.

> MI :“On input y It does not run M'!

(M" might loop for some inputs.)
Run M on w;

If M rejects w, enter infinite loop. Otherwise, accept y"

» Check that f is computable

» = If (M,w) € Arp then M’ halts on w.
Thus, (M',w) € HALT 1y

» < If (M, w) ¢ Arn then either (1) will never halt or M rejects w
and (2) will ensure no halting. Thus, (M', w) ¢ HALT 1

REGty = {(N) | L(N) is a regular language}

Theorem: REGT), is undecidable

Proof idea: reduction from Aty

accept

(M, w) € {0,1}* = reduction f > (N) :
reject

Define computable f such that

) o /_\' REC .
A ™ _/‘ REG ™

Theorem: Ary <, REGtym (= REGty is undecidable)

> Let us define a function f as follows
> Given an input x = (M, w), return f(x) = (M), where

» M’ ="On inputy :

if y € B=4{0"1": n> 0}, then accept y
Run M on w, and accept y iff M accepts w”

» Check that f is computable

» = If (M,w) € Ay then M’ accepts all inputs.
Thus, L(M') ={0,1}* is regular — (M') € REGTpm

> < If (M,w) ¢ Aty then M does not accept w.
Thus L(M’) = B is non-regular — (M’) ¢ REGT

Theorem: If A <,, B and B is recognizable then A is recognizable

M

Rpisa
recognizer

Definition
of M
for B

M acceptsw & Rpaccepts f(w) & f(w)eB & wEA

= M is arecognizer for A

Corollary: If A <,, B and A is unrecognizable then B is unrecognizable

EQrv = {<M1, M2> | My, My are TMs s.t. L(Ml) = L(Mz)}

Theorem: EQr) is unrecognizable

Proof idea: reduction from A1y
TM

Arm

accept
(M,w) € {0,1}* = reduction f —> (M, M) .
reject

Define computable f such that

. — /\' EQ .

f

A ™ _/ EQ ™

EQTM = {<M1, M2> | Ml, M, are TMs s.t. L(Ml) = L(Mg)}

Theorem: Ary <, EQrm (= EQ7u is unrecognizable)
» Let us define a function f as foliows

> Given an input x = (M, w), return f(x) = (My, M,), where

» M; ="On input y :

Run M on w (ignore the input y)

If M accepts then accept, else enter an infinite loop
> ="On input y :

Reject y
> If (M, w) € Aty then Mj loops on all inputs.

ThUS L(Ml) == (Mg) —_— <M1, M2> € EQrm

>

If (M, w) ¢ Aty then M accepts w and hence M; accepts every
s

strlng Thu (1) =% 20 = L(Mp) — (M, M>) ¢ EQrm

Definition: A function f : ¥* — ¥* is a computable function
if some TM M, on every input w halts with just f(w) on its tape

Definition: Language A is mapping reducible to language B, written A <,, B, if
there is a computable function f : X* — X *, such that for every w € X*:

weAsf(w)eB

f is called a reduction of A to B

Theorem: If A <,, B and B is decidable (recognizable), then A is decidable
(recognizable)

Corollary: If A <,, B and A is undecidable (unrecognizable) then B is undecidable
(unrecognizable)

