

Lecture 6 Recap: Reductions

Mika Göös

School of Computer and Communication Sciences

Lecture 6 Recap

Reductions

Informally

Reducibility Use knowledge about complexity of one language to reason about the complexity of other in an **easy** way

Reduction Way to show that to solve one problem (A), it is sufficient to solve another problem (B)

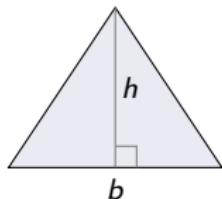
A reduces to B...

- ▶ Many examples (e.g. calculate area of rectangle reduces to calculate its width and height)
- ▶ Reductions quantify **relative** hardness of problems
 - ▶ If problem B is **easy** then problem A is **easy** too
 - ▶ If problem A is **hard** then problem B is **hard** too

A reduction f from triangle to rectangle area

Triangle-Area =

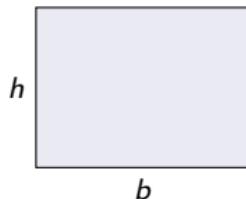
$$\{\langle h, b, t \rangle \in \{0, 1\}^* \mid h * b/2 \geq t\}$$



In language if area
is at least t

Rectangle-Area =

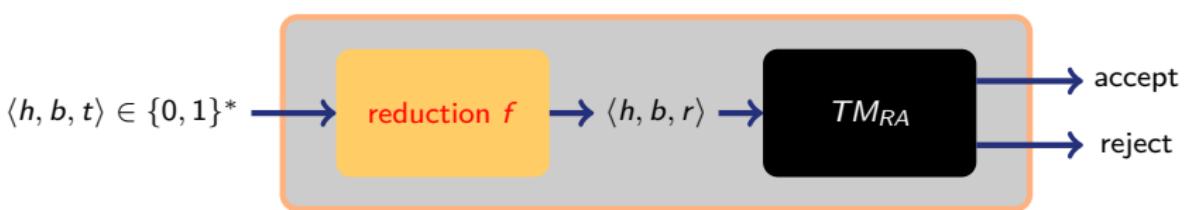
$$\{\langle h, b, r \rangle \in \{0, 1\}^* \mid h * b \geq r\}$$



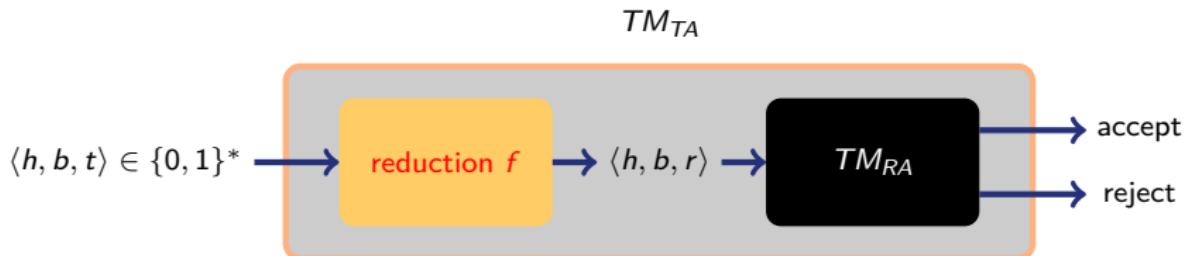
In language if area
is at least r

Suppose we have a Turing machine TM_{RA} for deciding Rectangle-Area. How can we use it form a decider TM_{TA} for Triangle-Area?

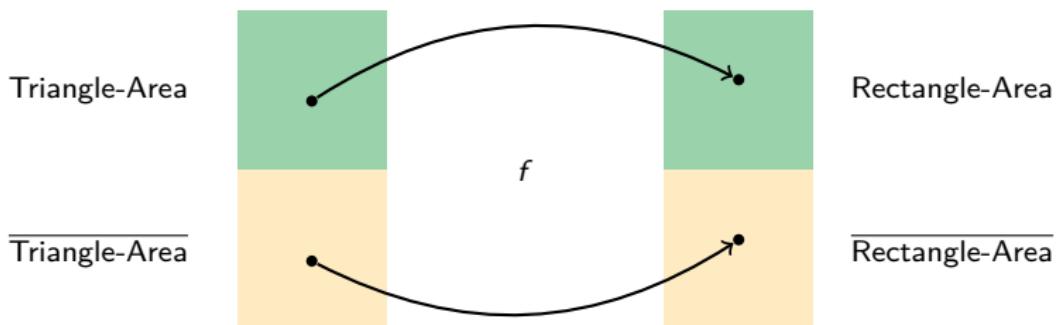
TM_{TA}



A reduction f from triangle to rectangle area



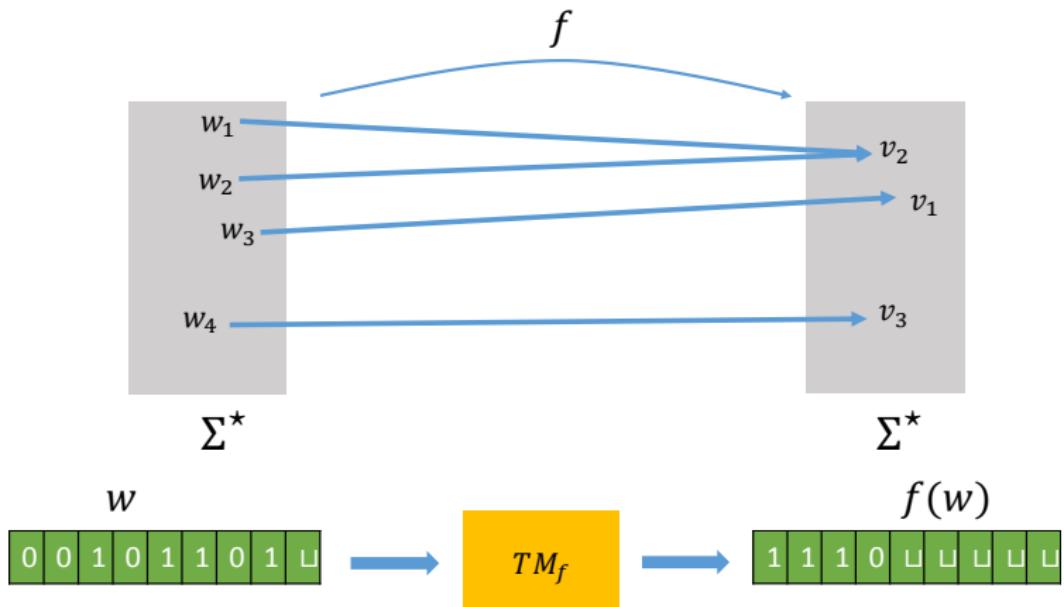
Define $f(\langle h, b, t \rangle) = \langle h, b, 2t \rangle$. Then



- ▶ f does not use the knowledge whether input is in language or not
- ▶ f can be computed with a TM

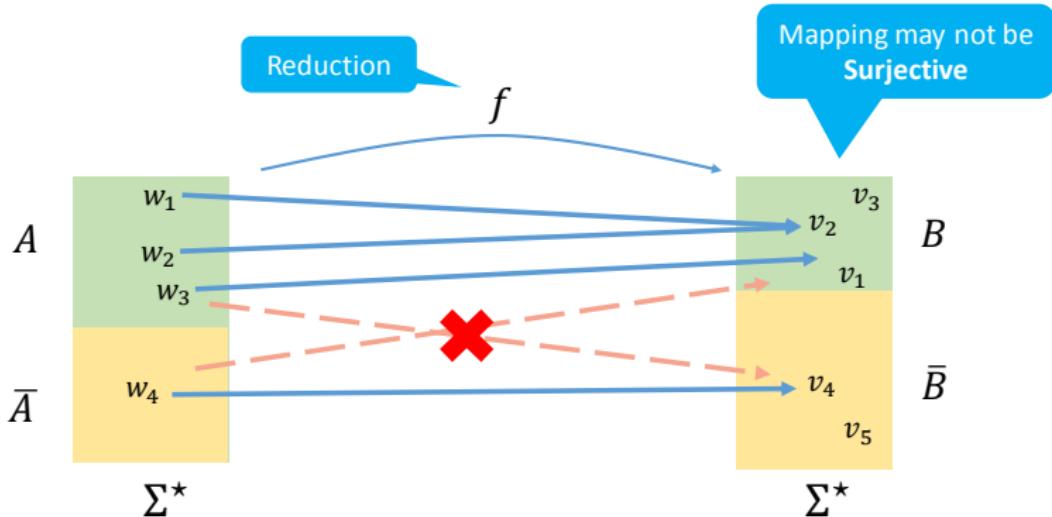
Mapping Reductions

Reductions Part 1: Computability



Definition: A function $f : \Sigma^* \rightarrow \Sigma^*$ is a *computable function* if some TM M , on **every** input w halts with **just** $f(w)$ on its tape

Reductions Part 2: Correctness



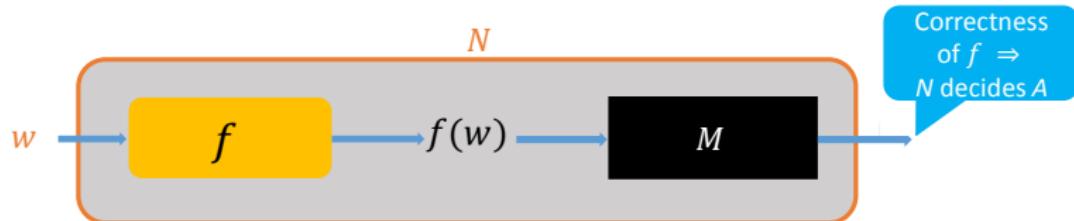
Definition: Language A is **mapping reducible** to language B , written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, such that for **every** $w \in \Sigma^*$:

$$w \in A \Leftrightarrow f(w) \in B$$

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Proof:

- ▶ Assume that M is a decider for B and f is a reduction from A to B
- ▶ Let N be a TM as follows:



- ▶ $N =$ “On input w :
 - 1 Compute $f(w)$
 - 2 Run M on input $f(w)$ and output whatever M outputs”

Computability of $f \Rightarrow$
 N is a decider

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable

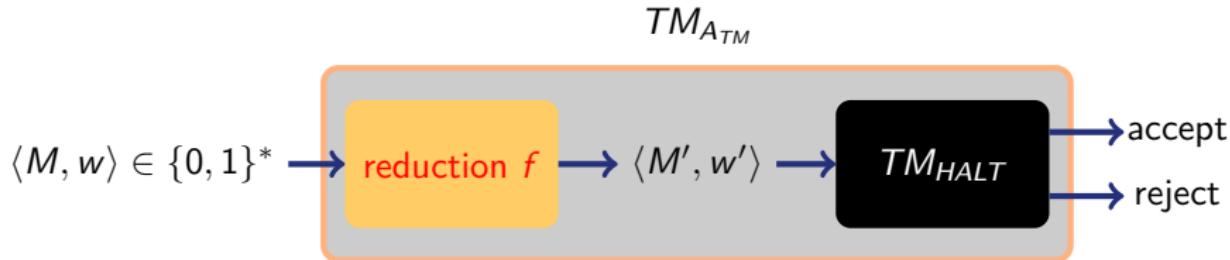
Examples of Reductions

$$HALT_{TM} = \{\langle M, w \rangle \mid M \text{ halts on } w\}$$

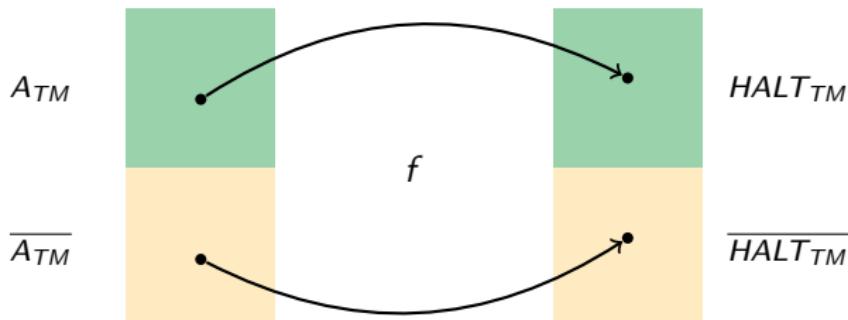
$$A_{TM} = \{\langle M, w \rangle \mid M \text{ accepts } w\}$$

Theorem: $A_{TM} \leq_m HALT_{TM}$

Proof idea:



Define **computable** f such that



Theorem: $A_{TM} \leq_m HALT_{TM}$ ($\Rightarrow HALT_{TM}$ is undecidable)

- ▶ Let us define a function f as follows
- ▶ Given an input $x = \langle M, w \rangle$, return $f(x) = \langle M', w \rangle$, where
- ▶ M' = “On input y :
 - 1 Run M on w ;
 - 2 If M rejects w , enter infinite loop. Otherwise, accept y ”
- ▶ Check that f is computable

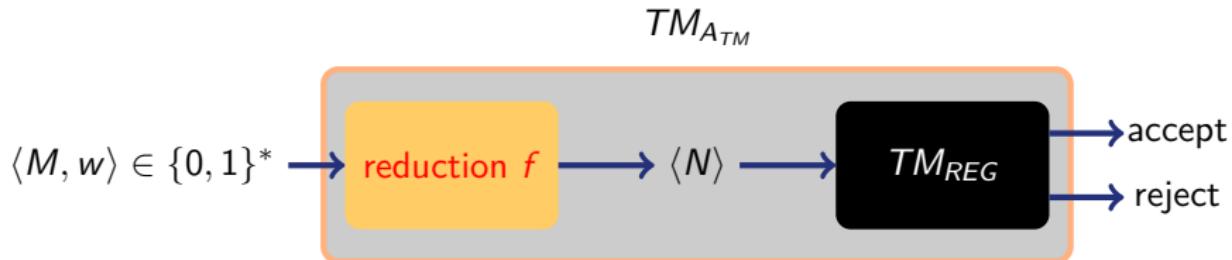
f has to write down the code of M' only.
It does not run M' !
(M' might loop for some inputs.)

- ▶ \Rightarrow If $\langle M, w \rangle \in A_{TM}$ then M' halts on w .
Thus, $\langle M', w \rangle \in HALT_{TM}$
- ▶ \Leftarrow If $\langle M, w \rangle \notin A_{TM}$ then either (1) will never halt or M rejects w and (2) will ensure no halting. Thus, $\langle M', w \rangle \notin HALT_{TM}$

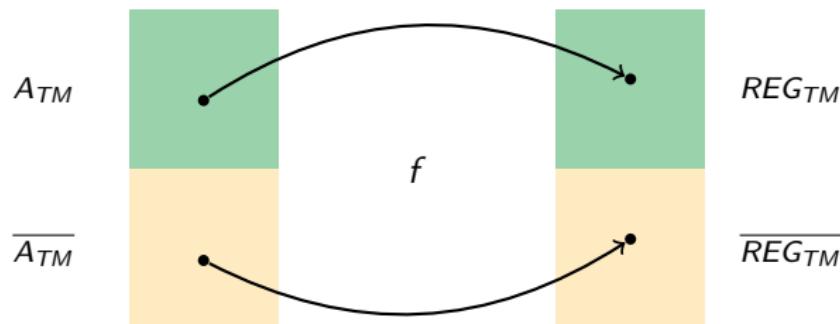
$$REG_{TM} = \{\langle N \rangle \mid L(N) \text{ is a regular language}\}$$

Theorem: REG_{TM} is undecidable

Proof idea: reduction from A_{TM}



Define **computable** f such that

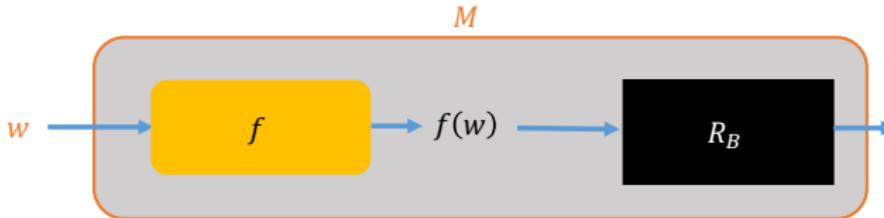


Theorem: $A_{TM} \leq_m REG_{TM}$ ($\Rightarrow REG_{TM}$ is undecidable)

- ▶ Let us define a function f as follows
- ▶ Given an input $x = \langle M, w \rangle$, return $f(x) = \langle M' \rangle$, where
- ▶ M' = “On input y :
 - 1 if $y \in B = \{0^n 1^n : n \geq 0\}$, then accept y
 - 2 Run M on w , and accept y iff M accepts w ”
- ▶ Check that f is computable

- ▶ \Rightarrow If $\langle M, w \rangle \in A_{TM}$ then M' accepts all inputs.
Thus, $L(M') = \{0, 1\}^*$ is regular — $\langle M' \rangle \in REG_{TM}$
- ▶ \Leftarrow If $\langle M, w \rangle \notin A_{TM}$ then M does not accept w .
Thus $L(M') = B$ is non-regular — $\langle M' \rangle \notin REG_{TM}$

Theorem: If $A \leq_m B$ and B is recognizable then A is recognizable



$$\begin{array}{c} \text{Definition} \\ \text{of } M \\ \hline M \text{ accepts } w \end{array} \Leftrightarrow \begin{array}{c} R_B \text{ accepts } f(w) \\ \hline R_B \text{ is a} \\ \text{recognizer} \\ \text{for } B \end{array} \Leftrightarrow \begin{array}{c} f(w) \in B \\ \hline A \leq_m B \end{array} \Leftrightarrow \begin{array}{c} w \in A \end{array}$$

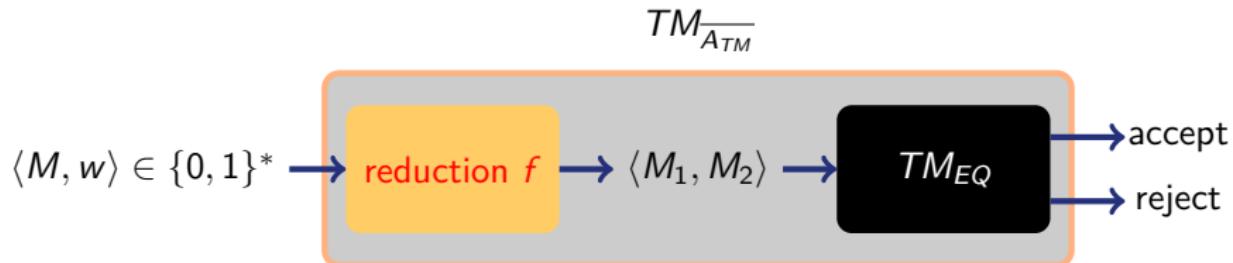
⇒ M is a recognizer for A

Corollary: If $A \leq_m B$ and A is unrecognizable then B is unrecognizable

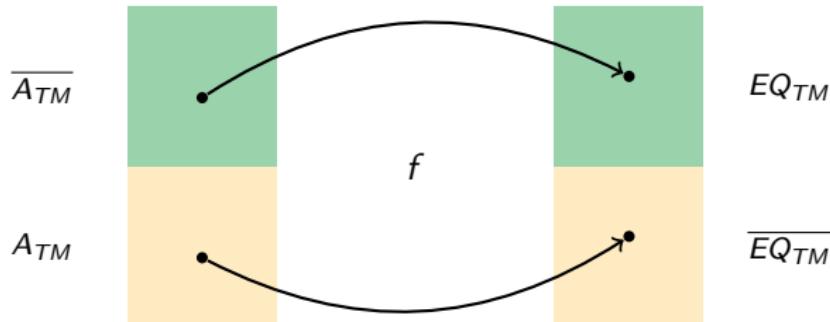
$$EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs s.t. } L(M_1) = L(M_2)\}$$

Theorem: EQ_{TM} is unrecognizable

Proof idea: reduction from $\overline{A_{TM}}$



Define **computable** f such that



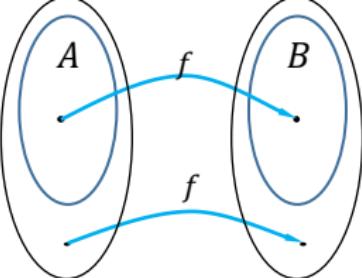
$$EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs s.t. } L(M_1) = L(M_2)\}$$

Theorem: $\overline{A_{TM}} \leq_m EQ_{TM}$ ($\Rightarrow EQ_{TM}$ is unrecognizable)

- ▶ Let us define a function f as follows
- ▶ Given an input $x = \langle M, w \rangle$, return $f(x) = \langle M_1, M_2 \rangle$, where
- ▶ $M_1 =$ “On input y :
 - 1 Run M on w (ignore the input y)
 - 2 If M accepts then accept, else enter an infinite loop
- ▶ $M_2 =$ “On input y :
 - 1 Reject y

- ▶ \Rightarrow If $\langle M, w \rangle \in \overline{A_{TM}}$ then M_1 loops on all inputs.
Thus, $L(M_1) = \emptyset = L(M_2) \mid \langle M_1, M_2 \rangle \in EQ_{TM}$
- ▶ \Leftarrow If $\langle M, w \rangle \notin \overline{A_{TM}}$ then M accepts w and hence M_1 accepts every string. Thus $L(M_1) = \Sigma^* \neq \emptyset = L(M_2) \mid \langle M_1, M_2 \rangle \notin EQ_{TM}$

Summary of Reductions



Definition: A function $f : \Sigma^* \rightarrow \Sigma^*$ is a *computable function* if some TM M , on **every** input w halts with **just** $f(w)$ on its tape

Definition: Language A is **mapping reducible** to language B , written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, such that for **every** $w \in \Sigma^*$:

$$w \in A \Leftrightarrow f(w) \in B$$

f is called a **reduction** of A to B

Theorem: If $A \leq_m B$ and B is decidable (recognizable), then A is decidable (recognizable)

Corollary: If $A \leq_m B$ and A is undecidable (unrecognizable) then B is undecidable (unrecognizable)