
Lecture 9: NP-completeness, Reductions

Mika Göös

School of Computer and Communication Sciences

Lecture 9

Recap: NP

Lecture 9

The class NP

Definition: A verifier for a language A is a TM V , where

A = {w | ∃C s.t. V accepts 〈w ,C〉} .

A polynomial time verifier runs in polynomial time in |w|.

Definition: NP is the class of languages with polynomial time verifiers

Lecture 9

Non-deterministic Turing Machines

Recall: In a Turing machine, δ : (Q × Γ) −→ Q × Γ× {L,R}.

In a Nondeterministic Turing Machine (NTM),

δ : (Q × Γ) −→ P(Q × Γ× {L,R})

(several possible transitions for a given state and tape symbol)

Definition: A nondeterministic decider for language L is an NTM N
such that for each x ∈ Σ∗, every computation of N on x halts, and
moreover,
I If x ∈ L, then some computation of N on x accepts.
I If x < L, then every computation of N on x rejects.

An NTM is a polynomial time NTM if the running time its longest
computation on x is polynomial in |x|.

Lecture 9

Nondeterministic deciders ⇐⇒ Verifiers

Theorem: For any language L ⊆ Σ∗,

L has a nondeterministic poly-time decider ⇐⇒ L has a poly-time verifier.

Proof Sketch (⇐=):

Let V be the verifier. NTM N on input x does the following:

1 Write a certificate C nondeterministically.

2 Run V on 〈x ,C〉.

Proof Sketch (=⇒):

Let N be the nondeterministic decider. Verifier V on 〈x ,C〉 computes:
I Simulate N on x , choosing transitions given by C .

V accepts 〈x ,C〉 iff C is the accepting path of N on x .

Lecture 9

Non-deterministic Polynomial-time

Theorem: For any language L ⊆ Σ∗,

L has a nondeterministic poly-time decider ⇐⇒ L has a poly-time verifier.

Definition: NP is the class of languages which have poly-time nonde-
terministic deciders, or equivalently, have poly-time verifiers.

Definition:

NTIME(t(n)) = {L : L has a nondeterministic O(t(n)) time decider}

Then

NP =
∞⋃

k=1
NTIME(nk) .

∴ SAT, GI, INDSET are all in NP.

Lecture 9

NP-completeness

Lecture 9

Poly-time Reductions (1): Poly-time ComputabilityReductions Part 1: Computability

0 0 1 0 1 1 0 1 ⊔ 1 1 1 0 ⊔ ⊔ ⊔ ⊔ ⊔

𝑤
𝑇𝑀𝑓

𝑓(𝑤)

𝑓

Σ⋆ Σ⋆

𝑤1
𝑤2

𝑤3
𝑣1

𝑣2

𝑣3𝑤4 𝑣3𝑤4

Definition: A function 𝑓: Σ⋆ → Σ⋆ is a computable function if some
TM 𝑀, on every input 𝑤 halts with just 𝑓(𝑤) on its tape

Definition: A function f : Σ∗ → Σ∗ is a polynomial time computable
function if some poly-time TM M, on every input w halts with just f (w)
on its tape.

Lecture 9

Poly-time Reductions (2): CorrectnessReductions Part 2: Correctness

Definition: Language 𝐴 is mapping reducible to language 𝐵, written
𝑨 ≤𝒎 𝑩, if there is a computable function 𝑓: Σ⋆ → Σ⋆, such that for
every 𝑤 ∈ Σ⋆:

𝒘 ∈ 𝑨⟺ 𝒇 𝒘 ∈ 𝑩

Σ⋆ Σ⋆

𝑓

𝑤1
𝑤2
𝑤3

𝑣1

𝑣2

𝑣3

𝐴

𝑤4ഥ𝐴

𝐵

ത𝐵𝑣4𝑤4

Reduction
Mapping may not be

Surjective

𝑣3

𝑣5

Definition: Language A is poly-time mapping reducible to language
B, written A ≤P B, if there is a poly-time computable function
f : Σ∗ → Σ∗, such that for every w ∈ Σ∗:

w ∈ A⇔ f (w) ∈ B

Lecture 9

NP-completeness

Definition: A language L is said to be NP-complete if
I L is in NP.
I For every language L′ in NP, L′ ≤P L.

Observe: If one NP-complete language has a polynomial time decider,
then every language in NP has a polynomial time decider, i.e. P = NP.

The Cook–Levin Theorem: SAT is NP-complete.

To show L is NP-complete:
I [NP membership] Give a poly-time verifier for L.
I [NP hardness] Show C ≤P L for some NP-complete language C

(not the other way around)

Lecture 9

Big picture

Lecture 9

Takehome message

Lecture 9

3SAT is NP-complete

kSAT = {〈ϕ〉 : ϕ is satisfiable and each clause of ϕ contains ≤ k literals}

Verifier for 3SAT: Just use the verifier for SAT.

Claim: SAT ≤P 3SAT

Reduction: Given ϕ,
I While ϕ contains a clause K = (`1 ∨ `2 ∨ `3 ∨ · · · ∨ `m) with > 3

literals

Replace K with the following two clauses
K1 = (`1 ∨ `2 ∨ z)

K2 = (z ∨ `3 ∨ · · · ∨ `m)


Preserves satisfiability

(check!)

What is the runtime?

Does SAT ≤P 2SAT analogously?

Lecture 9

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

and many more . . .

Lecture 9

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 9

INDSET is NP-complete

We have already seen that

INDSET = {〈G , k〉 : G has an independet set of size k}

is in NP and so it remains to give a poly-time reduction from
an NP-complete language

Lecture 9

INDSET is NP-complete
Claim: SAT ≤P INDSET

ϕ = x1︸︷︷︸
K1

∧ (x1 ∨ x2)︸ ︷︷ ︸
K2

∧ (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
K3

∧ (x1 ∨ x2 ∨ x3 ∨ x4)︸ ︷︷ ︸
K4

x1

x1

x2

x1 x2 x3

x1 x2 x3 x4

K1

K2

K3

K4

Lecture 9

INDSET is NP-complete
Claim: SAT ≤P INDSET

Reduction f : On input ϕ,

1 Let G be the graph generated as follows.
1 Take a vertex for each literal of each clause.
2 Add edges for pairs of conflicting literals.
3 Add edges for pairs of literals from the same clause.

2 Let m be the number of clauses in ϕ.

3 Output (G ,m).

Claim: ϕ ∈ SAT =⇒ f (ϕ) ∈ INDSET

Proof: C : satisfying assignment of ϕ. Pick one true literal from each
clause. The corresponding vertices form a independent set.

Claim: f (ϕ) ∈ INDSET =⇒ ϕ ∈ SAT

Proof: C : independent set in G , |C | = m. C contains one vertex from
each group. Set the corresponding literals to true to get a satisfying
assignment.

Lecture 9

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 9

CLIQUE

CLIQUE

Defn: A 𝑘-clique is a subset of 𝑘 pairwise connected vertices

𝐷

𝐴

𝐵

𝐶

𝐹

𝐺, 3 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸 ?

𝐺, 4 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸? No 4-clique

𝐴, 𝐵, 𝐹 is a 3-clique

𝐶𝐿𝐼𝑄𝑈𝐸 = 𝐺, 𝑘 𝐺 has a clique of size 𝑘}

𝐸

A,B,F is a 3-clique

Definition: A k-clique is a subset of k pairwise connected vertices

CLIQUE = {〈G , k〉 | G has a clique of size k}

〈G , 3〉 ∈ CLIQUE? Yes

〈G , 4〉 ∈ CLIQUE? No

Lecture 9

CLIQUE is NP-Complete

Theorem: INDSET ≤p CLIQUE

Corollary: CLIQUE is NP-complete

Goal find a poly-time reduction from INDSET to CLIQUE

Lecture 9

INDSET vs CLIQUE

For a graph G :

Independent set: A subset of pairwise non-adjacent vertices

Clique: A subset of pairwise adjacent vertices

INDSET vs CLIQUE
For a graph 𝐺:
Independent set: A subset of pairwise non-adjacent vertices

Clique: A subset of pairwise adjacent vertices

Observation: If 𝐺 is a graph and ҧ𝐺 is its complement, then a subset 𝑆 of the
vertices of 𝐺 is an independent set iff 𝑆 is a clique of ҧ𝐺

Definition (Complement): The complement of a graph 𝐺 = (𝑉, 𝐸) is a graph
ҧ𝐺 = (𝑉, ഥ𝑬) with the same vertex set and the edge set ത𝐸 s.t. 𝑢𝑣 ∈ ത𝐸 iff 𝑢𝑣 ∉ 𝐸

T𝐡𝐞𝐨𝐫𝐞𝐦: 𝐶𝐿𝐼𝑄𝑈𝐸 ≤𝑃 𝐼𝑁𝐷𝑆𝐸𝑇 and 𝐼𝑁𝐷𝑆𝐸𝑇 ≤𝑃 𝐶𝐿𝐼𝑄𝑈𝐸

Def (Complement): The complement of a graph G = (V ,E) is a graph
Ḡ = (V , Ē) with same vertex set and edge set Ē s.t. uv ∈ Ē iff uv < E

Observation: If G is a graph and Ḡ its complement, then a subset S of
the vertices of G is an independent set iff S is a clique of Ḡ

Lecture 9

INDSET ≤p CLIQUE

Reduction: f (〈G = (V ,E), k〉) := 〈Ḡ = (V , Ē), k〉

Efficiency: The reduction is polynomial time

Correctness: 〈G , k〉 ∈ INDSET⇔ 〈Ḡ , k〉 ∈ CLIQUE

Proof of correctness:

INDSET vs CLIQUE
𝐼𝑁𝐷𝑆𝐸𝑇 ≤𝑃 𝐶𝐿𝐼𝑄𝑈𝐸

1. Reduction: 𝑓 𝐺 = 𝑉, 𝐸 , 𝑘 ≔ ҧ𝐺 = (𝑉, ത𝐸), 𝑘
2. Efficiency: The reduction is polynomial time
3. Correctness: 𝐺, 𝑘 ∈ 𝐼𝑁𝐷𝑆𝐸𝑇 ⇔ ഥ𝐺, 𝑘 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸

⇒⇔

Similarly: 𝐶𝐿𝐼𝑄𝑈𝐸 ≤𝑃 INDSET

Proof of correctness:

𝑎

𝑏

𝑐
𝑑

𝑒
𝑔

𝑎

𝑏

𝑐

𝑑

𝑒
𝑔

𝐺, 𝑘 ∈ 𝐼𝑁𝐷𝑆𝐸𝑇, 𝑆 = 𝑘

𝑆

ҧ𝐺, 𝑘 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸

𝑆

Lecture 9

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 9

Vertex Cover
Definition: For a graph G = (V ,E), a vertex cover is a subset S of V
such that every edge of G is incident to at least one vertex in S

Example

Vertex Cover
Definition: For a graph 𝐺(𝑉, 𝐸), a vertex cover is a subset 𝑆 of 𝑉 such that
every edge of 𝐺 is incident with at least one vertex in 𝑆

Example:

Definition:
𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅 = { 𝐺, 𝑘 : 𝐺 is a graph that has a vertex cover of size 𝑘}

𝐺

𝐺, 4 ∈ 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅?

𝐺, 3 ∈ 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅?

Definition:

VERTEX COVER = {〈G , k〉 : G is a graph that has a vertex cover of size k}

I 〈G , 4〉 ∈ VERTEX COVER? Yes
I 〈G , 3〉 ∈ VERTEX COVER? No

Lecture 9

VERTEX COVER is NP-Complete

STEP 1: VERTEX COVER ∈ NP

TM V : “On input 〈G , k,C〉

1 IF |C | , k, THEN REJECT

2 FOR every pair u , v of vertices DO
I IF uv is an edge AND u < C AND v < C THEN REJECT

3 ACCEPT”

STEP 2: INDSET ≤p VERTEX COVER

How to reduce INDSET to VERTEX COVER?

Lecture 9

INDSET vs VERTEX COVER
Lemma: For every graph G , a subset S of the vertices is a vertex cover if
and only if S̄ is an independent set where S̄ = V \ S

Vertex Covers vs Independent Sets

𝐺

𝑆

Vertex cover

Since 𝑆 is a vertex
cover, such an
edge cannot exist.

Theorem: For every graph 𝐺, a subset 𝑆 of the vertices is a vertex
cover if and only if ҧ𝑆 is an independent set where ҧ𝑆 = 𝑉\𝑆

Independent set

Corollary: For every graph 𝐺 and a positive integer 𝑘, 𝐺 has an independent
set of size 𝑘 iff 𝐺 has a vertex cover of size 𝑛 − 𝑘Corollary: For every graph G and a positive integer k, G has an
independent set of size k iff G has a vertex cover of size n − k

Lecture 9

INDSET ≤p VERTEX COVER

Reduction: f (〈G , k〉) := 〈G , n − k〉, where n is the number of vertices
of G

Efficiency: The reduction f is polynomial time

Correctness: Lemma/Corollary on previous slide!

VERTEX COVER is NP-Complete
STEP 1: VERTEX COVER ∈ NP

TM V: “On input 𝐺, 𝑘, 𝐶
1. IF 𝐶 ≠ 𝑘, THEN, REJECT
2. FOR every pair 𝑢 ≠ 𝑣 of vertices DO

1. IF 𝑢𝑣 is an edge AND 𝑢 ∉ 𝐶 AND 𝑣 ∉ 𝐶, THEN
REJECT

3. ACCEPT”
STEP 2: 𝐼𝑁𝐷𝑆𝐸𝑇 ≤𝑃 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅.

Reduction: 𝑓 𝐺, 𝑘 ≔ 〈𝐺, 𝑛 − 𝑘〉 where 𝑛 is the number of vertices
of 𝐺.

𝐺, 𝑘 ∈ 𝐼𝑁𝐷𝑆𝐸𝑇 ⟺ ⟺ 𝐺, 𝑛 − 𝑘 ∈ 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅

𝐺

Efficiency: 𝑓 is (obviously) polynomial time computable

Correctness: Theorem on previous slide!

Lecture 9

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 9

Set Cover
Definition: Let U = {1, . . . , n} and F = {T1, . . . ,Tm} be a family of
subsets ∀i ,Ti ⊆ U

A subset {Ti1 , . . . ,Tik} ⊆ F is called a set cover of size k if
⋃k

j=1 Tij = U

𝑆𝐸𝑇 𝐶𝑂𝑉𝐸𝑅

3

1
2 4 7

5
6 9

8

Definition: Let 𝑈 = {1, … , 𝑛} and ℱ = 𝑇1,… , 𝑇𝑚 be a family of its subsets ∀𝑖, 𝑇𝑖 ⊆ 𝑈

A subset 𝑇𝑖1, … , 𝑇𝑖𝑘 ⊆ ℱ is called a set cover of size 𝑘 if ∪𝑗=1𝑘 𝑇𝑖𝑗 = 𝑈

𝑆𝐸𝑇 𝐶𝑂𝑉𝐸𝑅 ≔ { 𝑈,ℱ, 𝑘 ∶ ℱ contains a set cover of size 𝑘}

Example:

𝑈,ℱ, 3 ∈ 𝑆𝐸𝑇𝐶𝑂𝑉𝐸𝑅?

𝑈, ℱ, 2 ∈ 𝑆𝐸𝑇𝐶𝑂𝑉𝐸𝑅?

{ 1,2,4 , 3,6,5 , {4,7,8,9}}

𝑈

SET COVER = {〈U,F , k〉 | F contains a set cover of size k}

Example:
I 〈U,F , 3〉 ∈ SET COVER? Yes {{1, 2, 4}, {3, 6, 5}, {4, 7, 8, 9}}
I 〈U,F , 2〉 ∈ SET COVER? No

Lecture 9

SET COVER is NP-Complete

Theorem: VERTEX COVER ≤p SET COVER

Corollary: SET COVER is NP-complete

Lecture 9

VERTEX COVER ≤p SET COVER

Key idea: VERTEX COVER is a special case of SET COVER

Example:

V𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅 ≤𝑃 𝑆𝐸𝑇 𝐶𝑂𝑉𝐸𝑅

Reduction:
• Let 𝐺 = (𝑉, 𝐸), 𝑘 be an instance of 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅
• Set 𝑈 ≔ 𝐸
• For every vertex 𝑣 ∈ 𝑉 create a set 𝑆𝑣

𝑆𝑣 ≔ 𝑒 ∈ 𝐸: 𝑒 is incident to 𝑣
• Let ℱ ≔ 𝑆𝑣 ∶ 𝑣 ∈ 𝑉 and set 𝑘′ = 𝑘

𝑒1

𝑒2

𝑒3

𝑒4
𝑒5

𝑈 = 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5

ℱ = { 𝑒1, 𝑒4 , 𝑒1, 𝑒2, 𝑒5 ,
𝑒2, 𝑒3 , 𝑒3, 𝑒4, 𝑒5 }

𝑘′ = 𝑘 = 2𝑘 = 2

Example:

Key Idea: 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅 is a special case of 𝑆𝐸𝑇 𝐶𝑂𝑉𝐸𝑅

Efficiency: Obvious from the construction

Reduction:
I Let 〈G = (V , E), k〉 be an instance of VERTEX COVER
I Set U := E
I For every vertex v ∈ V create a set Sv

Sv := {e ∈ E | e is incident to v}

I Let F := {Sv | v ∈ V} and set k′ = k

Efficiency: Obvious from construction

Lecture 9

Correctness (⇒): If G has a vertex cover of cardinality k, then U can
be covered by k sets

Proof:
I Suppose C ⊆ V is a vertex cover of G and |C | = k
I Every edge ei is adjacent to at least one vertex in C⋃

v∈C

Sv = E

I Hence U can be covered by k sets

Correctness (⇐): If U can be covered by k sets, then G has a vertex
cover of cardinality k

Proof:
I Let Sv1 , Sv2 , . . . , Svk be a collection of sets which cover U = E
I We claim that C = {v1, v2, . . . , vk} is a vertex cover of G
I Indeed, every edge e in G belongs to Svi for some i ∈ {1, 2, . . . , k}
I Hence, every edge e in G is incident to some vertex vi ∈ C

Lecture 9

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 9

SUBSET-SUM
Let X denote a (multi) set of positive integers

Definition: SUBSET-SUM
= {〈X , s〉 : X contains a subset whose elements sum to s}

Example: X = {1, 3, 4, 6, 13, 13}
I 〈X , 8〉 ∈ SUBSET-SUM? Yes T = {1, 3, 4}
I 〈X , 12〉 ∈ SUBSET-SUM? No

Question: SUBSET-SUM ∈ P?

It depends on the input length

Lecture 9

SUBSET-SUM
• Let 𝑋 be a (multi) set of positive integers
• Definition: 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 ≔ { 𝑋, 𝑠 : 𝑋 contains a subset whose elements sum to 𝑠}
• Example: 𝑋 = 1,3,4,6,13,13

• 𝑋, 8 ∈ 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀?
• 𝑋, 12 ∈ 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀?

• Question: Does 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 ∈ 𝑃?
• Input length

1 * 1 1 1 * 1 1 1 1 1 * 1 1 1 1 ⊔

𝑇 ≔ {1,3,4}

Unary vs Binary

1 * 1 1 * 1 0 1 * 1 0 0 ⊔

Input length: 𝑥1 + 𝑥2 +⋯+ 𝑥𝑚 + 𝑠 ≫ Input length: ⌈log(𝑥1)⌉ + ⋯+ ⌈log(𝑥𝑚)⌉ + ⌈log(𝑠)⌉

〈 1,3,5 , 4〉 〈 1,3,5 , 4〉
1 3 5 4 1 3 5 4

In 𝑆𝑈𝐵𝑆𝐸𝑇-𝑆𝑈𝑀
we use binary

encoding

Lecture 9

SUBSET-SUM: An Algorithm

𝑆𝑈𝐵𝑆𝐸𝑇-𝑆𝑈𝑀: An Algorithm

Running time: For the input {𝑥1,… , 𝑥𝑚}, 𝑠 , the above algorithm takes 𝑂 𝑚 ⋅ σ𝑖=1
𝑚 𝑥𝑖

steps to output whether or not 𝑋, 𝑠 ∈ 𝑆𝑈𝐵𝑆𝐸𝑇-𝑆𝑈𝑀

• Let 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑚 , 𝑠𝑢𝑚 ≔ σ𝑗=1
𝑚 𝑥𝑗

• FOR 𝑖 = 1 . . 𝑚 DO
• FOR 𝑗 = 0 . . 𝑠𝑢𝑚 DO
• 𝐴 𝑖, 𝑗 : = 𝐹𝑎𝑙𝑠𝑒
• FOR 𝑖 = 0 to 𝑚 DO
• 𝐴 𝑖, 0 ≔ 𝑇𝑟𝑢𝑒
• FOR 𝑖 = 1 . . 𝑚 DO
• FOR 𝑗 = 1 . . 𝑠𝑢𝑚 DO
• IF 𝐴 𝑖 − 1, 𝑗 − 𝑥𝑖 = 𝑇𝑟𝑢𝑒 OR 𝐴 𝑖 − 1, 𝑗 = 𝑇𝑟𝑢𝑒 THEN 𝐴 𝑖, 𝑗 := 𝑇𝑟𝑢𝑒
• IF 𝑨 𝒎, 𝒔 = 𝑻𝒓𝒖𝒆, ACCEPT; ELSE, REJECT

Unary representation: The length of the input 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑚 + 𝑠. In this case the
running time is polynomial in the input length

Binary representation: The length of the input ⌈log(𝑥1)⌉ + ⋯+ ⌈log(𝑥𝑚)⌉ + ⌈log(𝑠)⌉. In this
case, the running time is exponential in the input length

Lecture 9

SUBSET-SUM is NP-Complete

Theorem: SET COVER ≤p SUBSET-SUM

Proof: Next lecture

Corollary: SUBSET-SUM is NP-Complete

Lecture 9

