Lecture 9: NP-completeness, Reductions
Mika Goos

E PF L School of Computer and Communication Sciences

Lecture 9



Recap: NP



The class NP

Definition: A verifier for a language Ais a TM V, where
A={w|3Cst. V accepts (w,C)}.

A polynomial time verifier runs in polynomial time in |w]|.

Definition: NP is the class of languages with polynomial time verifiers

Lecture O



Recall: In a Turing machine, 6 : (@ x ) — Q x I x {L, R}.
In a Nondeterministic Turing Machine (NTM),

§:(QxT)— P(QxT x{LR})

(several possible transitions for a given state and tape symbol)

Definition: A nondeterministic decider for language L is an NTM N
such that for each x € L*, every computation of N on x halts, and
moreover,

> If x € L, then some computation of N on x accepts.
> If x ¢ L, then every computation of N on x rejects.

An NTM is a polynomial time NTM if the running time its longest
computation on x is polynomial in |x|.



Theorem: For any language L C ¥,

L has a nondeterministic poly-time decider <= L has a poly-time verifier.

Proof Sketch («<=):

Let V be the verifier. NTM N on input x does the following:
Write a certificate C nondeterministically.
Run V on (x, C).

Proof Sketch (=):

Let N be the nondeterministic decider. Verifier V on (x, C) computes:
» Simulate N on x, choosing transitions given by C.

V accepts (x, C) iff C is the accepting path of N on x.



Theorem: For any language L C ¥ *,

L has a nondeterministic poly-time decider <=- L has a poly-time verifier.

Definition: NP is the class of languages which have poly-time nonde-
terministic deciders, or equivalently, have poly-time verifiers.

Definition:
NTIME(t(n)) = {L : L has a nondeterministic O(t(n)) time decider}

Then

NP = | J NTIME(n*).
k=1
.. SAT, GI, INDSET are all in NP.



NP-completeness



Poly-time Reductions (1):

Computability

f
/\.
2* Z*

w f(w)
CORCEECEY — | | — EEEEE

Definition: A function f : ¥* — Y* is a polynomial time computable
function if some poly-time TM M, on every input w halts with just f(w)
on its tape.

Lecture O



Poly-time Reductions (2): Correctness

Mapping may not be

A " vz"s B
wy _'41]1
WBN‘N\ ””

/”’ \‘s\b
n Wy > Vs B
Vs
I >

Definition: Language A is poly-time mapping reducible to language
B, written A <p B, if there is a poly-time computable function
f:¥X* — ¥* such that for every w € ¥*:

weAsf(w)eB

Lecture O



Definition: A language L is said to be NP-complete if
» Lisin NP.

> For every language L’ in NP, L' <p L.

Observe: If one NP-complete language has a polynomial time decider,
then every language in NP has a polynomial time decider, i.e. P = NP.

The Cook-Levin Theorem: SAT is NP-complete.
To show L is NP-complete:

» [NP membership] Give a poly-time verifier for L.

> [NP hardness] Show C <p L for some NP-complete language C
(not the other way around)






TN LL L L

e @K/(%

““1 can’t find an efficient algorithm, but neither can all these famous people.”



3SAT is NP-complete

kSAT = {{¢) : ¢ is satisfiable and each clause of ¢ contains < k literals}

Verifier for 3SAT: Just use the verifier for SAT.
Claim: SAT <p 3SAT
Reduction: Given ¢,
> While ¢ contains a clause K = ({4 VoV €3V -+ V £p) with > 3

literals

Replace K with the following two clauses
Kl = (61 \/62 \/Z)
Ko=(ZV I3V ---Vip)

Preserves satisfiability
(check!)

What is the runtime?

Does SAT <p 2SAT analogously?

Lecture O



INDSET

| VERTEX COVER] CLIQUE
SET COVER
SUBSET SUM

and many more ...



INDSET

| VERTEX COVER]

SET COVER

SUBSET SUM




INDSET is NP-complete

We have already seen that
INDSET = {(G, k) : G has an independet set of size k}

is in NP and so it remains to give a poly-time reduction from
an NP-complete language

Lecture O



INDSET is NP-complete

Claim: SAT <p INDSET
= x1 AN (aVxa) A (x1VxeVx3) A (x1VxVx3VXs)
~

Kl Kz K3 K4

K1

\
©)

K3
[ @ -
Ka

Lecture O



Claim: SAT <p INDSET
Reduction f: On input ¢,

Let G be the graph generated as follows.

Take a vertex for each literal of each clause.
Add edges for pairs of conflicting literals.
Add edges for pairs of literals from the same clause.

Let m be the number of clauses in (.
Output (G, m).
Claim: ¢ € SAT = f(p) € INDSET

Proof: C: satisfying assignment of . Pick one true literal from each
clause. The corresponding vertices form a independent set.

Claim: f(¢) € INDSET = ¢ € SAT

Proof: C: independent set in G, |C| = m. C contains one vertex from
each group. Set the corresponding literals to true to get a satisfying
assignment.



INDSET

| VERTEX COVER]

SET COVER

SUBSET SUM




CLIQUE

A,B,F is a 3-clique

Definition: A k-clique is a subset of k pairwise connected vertices
CLIQUE = {(G, k) | G has a clique of size k}

(G,3) € CLIQUE? Yes
(G,4) € CLIQUE? No

Lecture O



CLIQUE is NP-Complete

Theorem: INDSET <, CLIQUE
Corollary: CLIQUE is NP-complete

Goal find a poly-time reduction from INDSET to CLIQUE

Lecture O



For a graph G:
Independent set: A subset of pairwise non-adjacent vertices

Clique: A subset of pairwise adjacent vertices

Def (Complement): The complement of a graph G = (V, E) is a graph
G = (V, E) with same vertex set and edge set E s.t. uv € E iff uv ¢ E

Observation: If G is a graph and G its complement, then a subset S of
the vertices of G is an independent set iff S is a clique of G



INDSET <, CLIQUE

Reduction: f({G = (V,E), k)) := (G = (V,E), k)
Efficiency: The reduction is polynomial time

Correctness: (G, k) € INDSET « (G, k) € CLIQUE

Proof of correctness:

(G, k) € INDSET, |S| = k (G, k) € CLIQUE



| VERTEX COVER]

SET COVER

SUBSET SUM




Definition: For a graph G = (V/, E), a vertex cover is a subset S of V
such that every edge of G is incident to at least one vertex in S

G

Example

Definition:

VERTEX COVER = {(G, k) : G is a graph that has a vertex cover of size k}

> (G,4) € VERTEX COVER? Yes
> (G,3) € VERTEX COVER? No



VERTEX COVER is NP-Complete

STEP 1: VERTEX COVER € NP
TM V: “On input (G, k, C)
IF |C| # k, THEN REJECT

FOR every pair u # v of vertices DO
> IF uvis an edge AND u ¢ C AND v ¢ C THEN REJECT
ACCEPT"

STEP 2: INDSET <, VERTEX COVER

How to reduce INDSET to VERTEX COVER?

Lecture O



INDSET vs VERTEX COVER

Lemma: For every graph G, a subset S of the vertices is a vertex cover if
and only if S is an independent set where S = V' \ S

Since S is a vertex
cover, such an
edge cannot exist.

Independent set

Vertex cover

Corollary: For every graph G and a positive integer k, G has an
independent set of size k iff G has a vertex cover of size n — k

Lecture O



INDSET <, VERTEX COVER

Reduction: f({G, k)) := (G, n — k), where n is the number of vertices
of G

Efficiency: The reduction f is polynomial time

Correctness: Lemma/Corollary on previous slide!

& (G,n—k) € VERTEX COVER

(G,k) € INDSET & °



INDSET

| VERTEX COVER]

v

SET COVER

SUBSET SUM



Definition: Let U={1,...,n} and F ={Ty,..., T} be a family of
subsets Vi, T; C U

A subset {T;,..., T, } C Fis called a set cover of size k if UJ/.;1 T,=U

SET COVER = {(U, F, k) | F contains a set cover of size k}
Example:
» (U, F,3) € SET COVER? Yes {{1,2,4},{3,6,5},{4,7,8,9}}
» (U, F,2) € SET COVER? No



SET COVER is NP-Complete

Theorem: VERTEX COVER <, SET COVER

Corollary: SET COVER is NP-complete

Lecture O



VERTEX COVER <, SET COVER

Key idea: VERTEX COVER is a special case of SET COVER

€1

Example: U ={e e e3 €465}
€s
€y e, —) F = {{eg,e4},{eq, 5,65},
{6‘2,6‘3}, {63'64-' 65}}
€3
k=2 kK=k=2

Reduction:

> Let (G = (V,E), k) be an instance of VERTEX COVER
> Set U:=E

> For every vertex v € V create a set S,
S, :={e € E | eis incident to v}

> Let F:={S,|v € V} and set k' =

Efficiency: Obvious from construction



Correctness (=-): If G has a vertex cover of cardinality k, then U can
be covered by k sets

Proof:

> Suppose C C V is a vertex cover of G and |C| = k

> Every edge €; is adjacent to at least one vertex in C

USV:E

veC

> Hence U can be covered by k sets

Correctness («<=): If U can be covered by k sets, then G has a vertex
cover of cardinality k

Proof:
> Let Sy, Sy,,...,Sy, be a collection of sets which cover U = E
> We claim that C = {vi, v2,..., v} is a vertex cover of G

> Indeed, every edge e in G belongs to S, for some i € {1,2,...,k}

> Hence, every edge e in G is incident to some vertex v; € C



INDSET

| VERTEX COVER]

SET COVER

SUBSET SUM




SUBSET-SUM

Let X denote a (multi) set of positive integers

Definition: SUBSET-SUM
= {(X,s) : X contains a subset whose elements sum to s}

Example: X ={1,3,4,6,13,13}
> (X,8) € SUBSET-SUM? Yes T = {1,3,4}
> (X,12) € SUBSET-SUM? No

Question: SUBSET-SUM € P?

It depends on the input length

Lecture O



In SUBSET-SUM
we use binary

encoding

Unary S Binary

1*¥11*101*100LU

~ — — -~ S ——
1 3 5 4 1 3 5 4
({1,3,5},4) ({1,3,5} 4)
Input length: xq + x5 + -+ X + 5 > Input length: [log(x;)] + -+ + [log(x;,,)] + [log(s)]

| ecture O



SUBSET-SUM: An Algorithm

¢ LletX ={x;,Xp, ., X}, Sum =3, x;
. FORi=1..mDO

. FORj =0..sum DO

. Ali,j]: = False

e FORi=0tomDO

. Ali, 0] == True

. FORi=1..mDO

. FORj =1..sum DO

. IFA[i —1,j — x;] = True OR A[i — 1,j] = True THEN A[i, j]: = True

. IF A[m, s] = True, ACCEPT; ELSE, REJECT

Running time: For the input ({x, ..., X, }, s), the above algorithm takes O(m - (X% x;))
steps to output whether or not (X, s) € SUBSET-SUM

Unary representation: The length of the input x; + x, + - + x,,, + s. In this case the
running time is polynomial in the input length

Binary representation: The length of the input [log(x;)] + --- + [log(x,,)] + [log(s)]. In this
case, the running time is exponential in the input length

| ecture O



SUBSET-SUM is NP-Complete

Theorem: SET COVER <, SUBSET-SUM

Proof: Next lecture

Corollary: SUBSET-SUM is NP-Complete

Lecture O



