

# Lecture 9: NP-completeness, Reductions

Mika Göös



School of Computer and Communication Sciences

Lecture 9

# Recap: NP

# The class NP

**Definition:** A **verifier** for a language  $A$  is a TM  $V$ , where

$$A = \{w \mid \exists C \text{ s.t. } V \text{ accepts } \langle w, C \rangle\}.$$

A **polynomial time verifier** runs in polynomial time in  $|w|$ .

**Definition:** **NP** is the class of languages with **polynomial time verifiers**

# Non-deterministic Turing Machines

Recall: In a Turing machine,  $\delta : (Q \times \Gamma) \longrightarrow Q \times \Gamma \times \{L, R\}$ .

In a **Nondeterministic Turing Machine (NTM)**,

$$\delta : (Q \times \Gamma) \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

(several possible transitions for a given state and tape symbol)

**Definition:** A **nondeterministic decider** for language  $L$  is an NTM  $N$  such that for each  $x \in \Sigma^*$ , **every computation of  $N$  on  $x$  halts**, and moreover,

- ▶ If  $x \in L$ , then **some** computation of  $N$  on  $x$  accepts.
- ▶ If  $x \notin L$ , then **every** computation of  $N$  on  $x$  rejects.

An NTM is a **polynomial time** NTM if the running time of its **longest** computation on  $x$  is **polynomial in  $|x|$** .

# Nondeterministic deciders $\iff$ Verifiers

**Theorem:** For any language  $L \subseteq \Sigma^*$ ,

$L$  has a nondeterministic poly-time decider  $\iff L$  has a poly-time verifier.

**Proof Sketch ( $\iff$ ):**

Let  $V$  be the verifier. NTM  $N$  on input  $x$  does the following:

- 1 Write a certificate  $C$  nondeterministically.
- 2 Run  $V$  on  $\langle x, C \rangle$ .

**Proof Sketch ( $\implies$ ):**

Let  $N$  be the nondeterministic decider. Verifier  $V$  on  $\langle x, C \rangle$  computes:

- ▶ Simulate  $N$  on  $x$ , choosing transitions given by  $C$ .

$V$  accepts  $\langle x, C \rangle$  iff  $C$  is the accepting path of  $N$  on  $x$ .

# Non-deterministic Polynomial-time

**Theorem:** For any language  $L \subseteq \Sigma^*$ ,

$L$  has a nondeterministic poly-time decider  $\iff L$  has a poly-time verifier.

**Definition:** **NP** is the class of languages which have poly-time nondeterministic deciders, or equivalently, have poly-time verifiers.

**Definition:**

$\text{NTIME}(t(n)) = \{L : L \text{ has a nondeterministic } O(t(n)) \text{ time decider}\}$

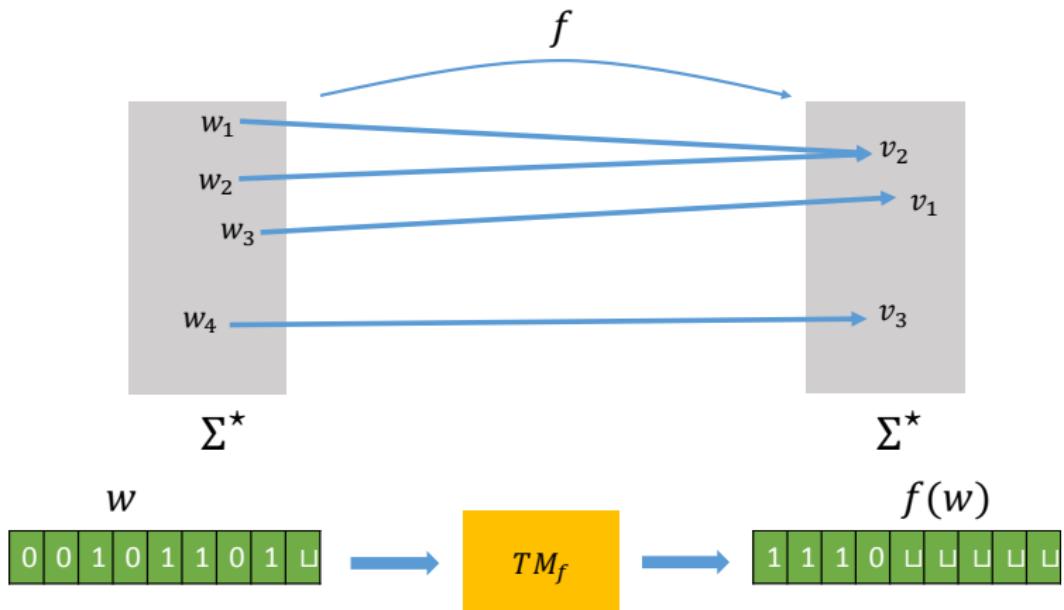
Then

$$\text{NP} = \bigcup_{k=1}^{\infty} \text{NTIME}(n^k).$$

$\therefore$  SAT, GI, INDSET are all in NP.

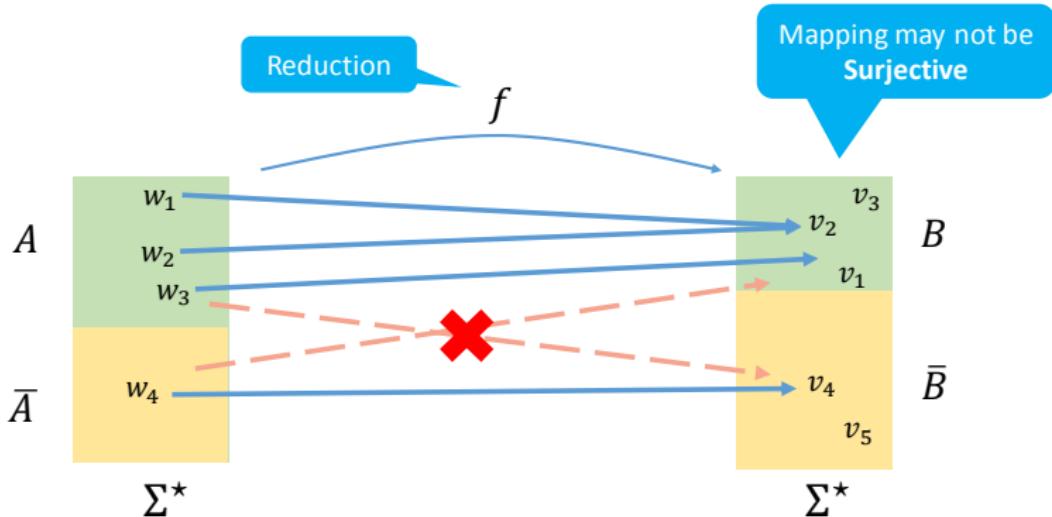
# NP-completeness

# Poly-time Reductions (1): Poly-time Computability



**Definition:** A function  $f : \Sigma^* \rightarrow \Sigma^*$  is a *polynomial time computable function* if some **poly-time** TM  $M$ , on **every** input  $w$  halts with **just**  $f(w)$  on its tape.

## Poly-time Reductions (2): Correctness



**Definition:** Language  $A$  is **poly-time mapping reducible** to language  $B$ , written  $A \leq_P B$ , if there is a **poly-time** computable function  $f : \Sigma^* \rightarrow \Sigma^*$ , such that for **every**  $w \in \Sigma^*$ :

$$w \in A \Leftrightarrow f(w) \in B$$

# NP-completeness

**Definition:** A language  $L$  is said to be **NP-complete** if

- ▶  $L$  is in **NP**.
- ▶ For every language  $L'$  in **NP**,  $L' \leq_P L$ .

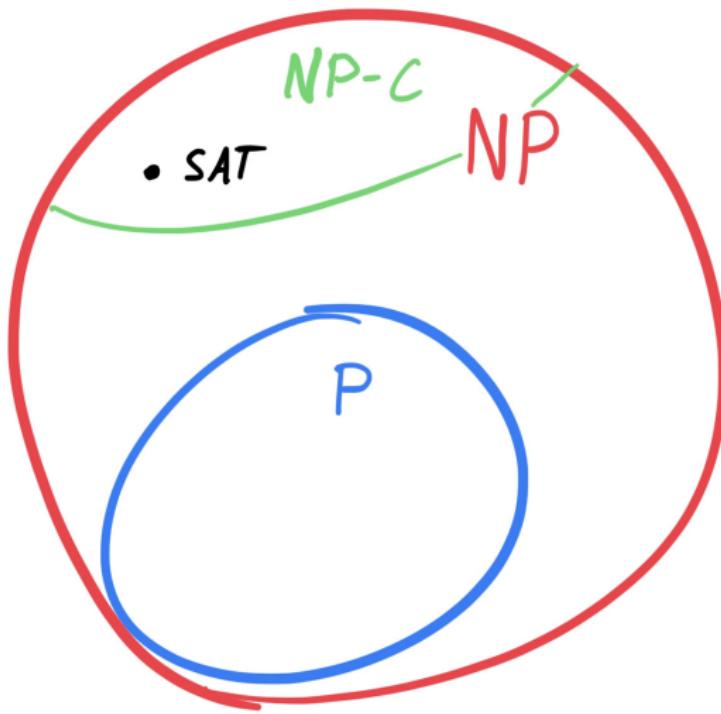
**Observe:** If **one** NP-complete language has a polynomial time decider, then **every** language in **NP** has a polynomial time decider, i.e.  $\mathbf{P} = \mathbf{NP}$ .

**The Cook–Levin Theorem:** SAT is **NP**-complete.

To show  $L$  is **NP**-complete:

- ▶ **[NP membership]** Give a poly-time verifier for  $L$ .
- ▶ **[NP hardness]** Show  $C \leq_P L$  for some **NP**-complete language  $C$  (not the other way around)

# Big picture



# Takehome message



“I can't find an efficient algorithm, but neither can all these famous people.”

# 3SAT is NP-complete

$k\text{SAT} = \{\langle \varphi \rangle : \varphi \text{ is satisfiable and each clause of } \varphi \text{ contains } \leq k \text{ literals}\}$

Verifier for 3SAT: Just use the verifier for SAT.

**Claim:**  $\text{SAT} \leq_P 3\text{SAT}$

Reduction: Given  $\varphi$ ,

- ▶ While  $\varphi$  contains a clause  $K = (\ell_1 \vee \ell_2 \vee \ell_3 \vee \cdots \vee \ell_m)$  with  $> 3$  literals

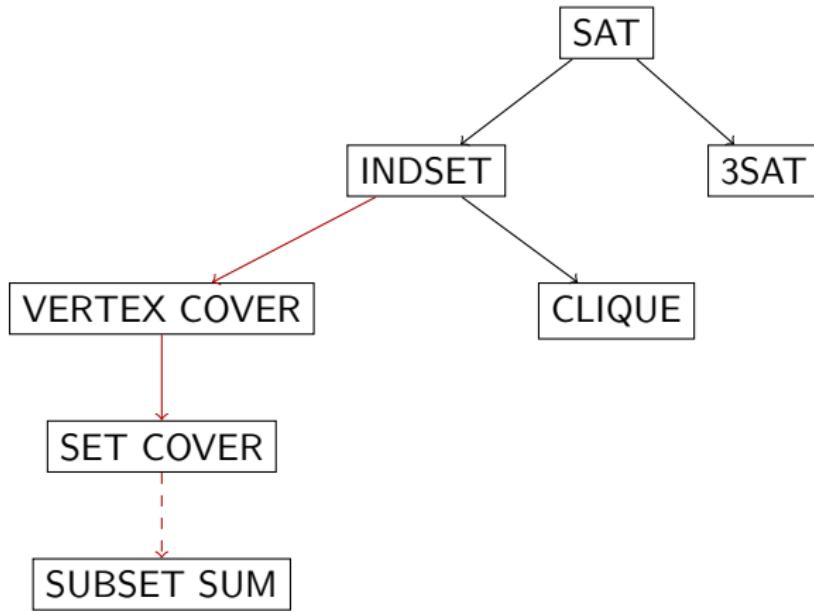
Replace  $K$  with the following two clauses

$$\left. \begin{array}{l} K_1 = (\ell_1 \vee \ell_2 \vee z) \\ K_2 = (\bar{z} \vee \ell_3 \vee \cdots \vee \ell_m) \end{array} \right\}$$

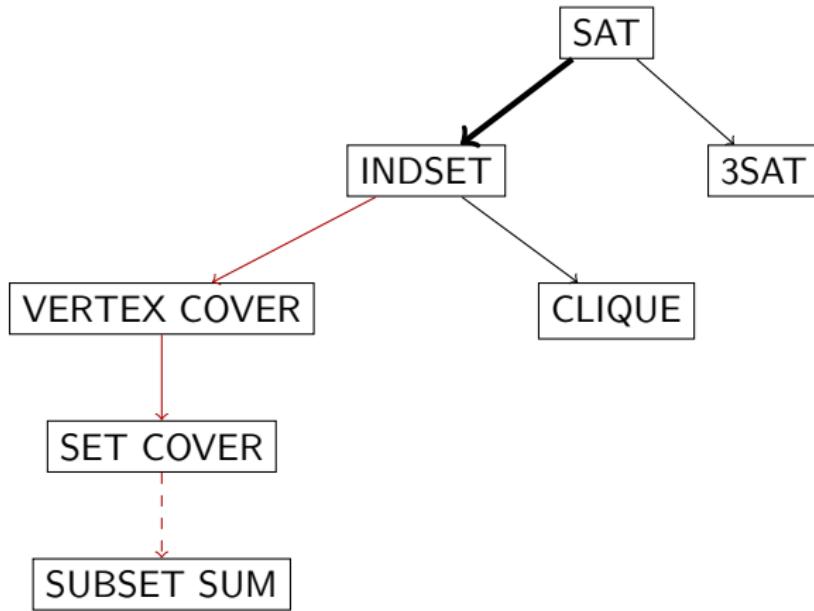
Preserves satisfiability  
(check!)

What is the runtime?

Does  $\text{SAT} \leq_P 2\text{SAT}$  analogously?



and many more . . .



# INDSET is NP-complete

We have already seen that

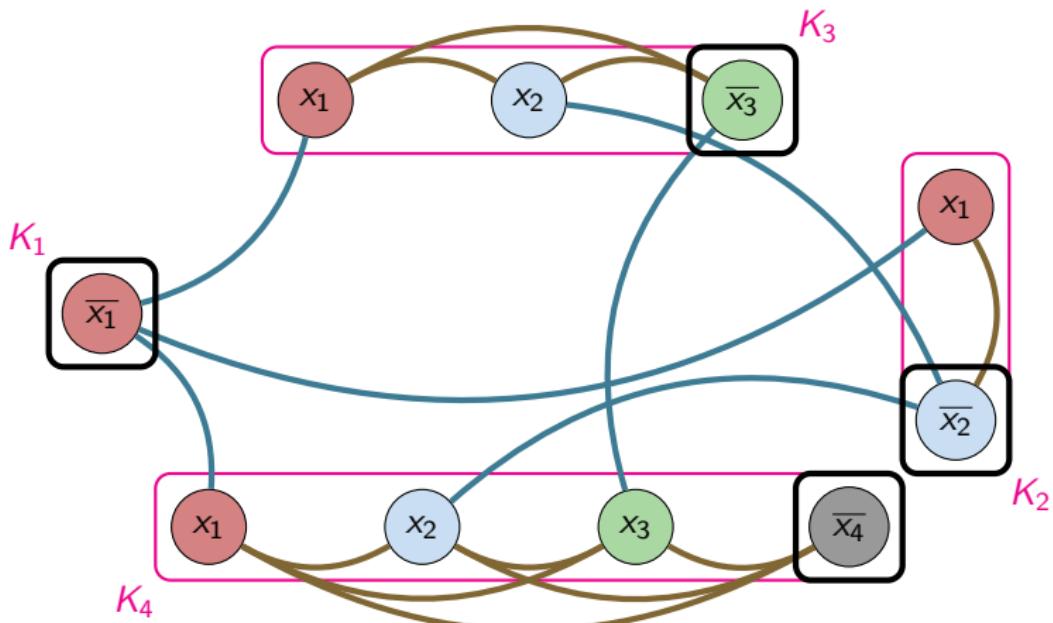
$$\text{INDSET} = \{\langle G, k \rangle : G \text{ has an independent set of size } k\}$$

is in **NP** and so it remains to give a poly-time reduction from an **NP**-complete language

# INDSET is NP-complete

Claim: SAT  $\leq_P$  INDSET

$$\varphi = \underbrace{\overline{x_1}}_{K_1} \wedge \underbrace{(x_1 \vee \overline{x_2})}_{K_2} \wedge \underbrace{(x_1 \vee x_2 \vee \overline{x_3})}_{K_3} \wedge \underbrace{(x_1 \vee x_2 \vee x_3 \vee \overline{x_4})}_{K_4}$$



# INDSET is NP-complete

**Claim:**  $\text{SAT} \leq_P \text{INDSET}$

Reduction  $f$ : On input  $\varphi$ ,

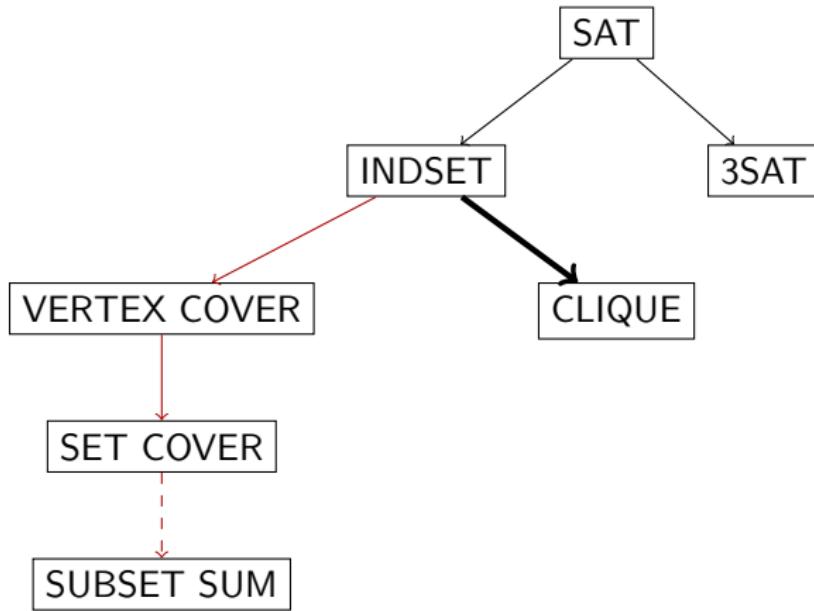
- 1 Let  $G$  be the graph generated as follows.
  - 1 Take a vertex for each literal of each clause.
  - 2 Add edges for pairs of conflicting literals.
  - 3 Add edges for pairs of literals from the same clause.
- 2 Let  $m$  be the number of clauses in  $\varphi$ .
- 3 Output  $(G, m)$ .

**Claim:**  $\varphi \in \text{SAT} \implies f(\varphi) \in \text{INDSET}$

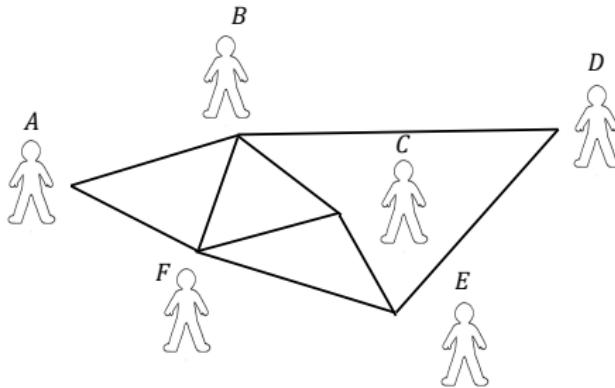
**Proof:**  $C$ : satisfying assignment of  $\varphi$ . Pick one true literal from each clause. The corresponding vertices form a independent set.

**Claim:**  $f(\varphi) \in \text{INDSET} \implies \varphi \in \text{SAT}$

**Proof:**  $C$ : independent set in  $G$ ,  $|C| = m$ .  $C$  contains one vertex from each group. Set the corresponding literals to true to get a satisfying assignment.



# CLIQUE



$A, B, F$  is a 3-clique

**Definition:** A  $k$ -clique is a subset of  $k$  pairwise connected vertices

$$\text{CLIQUE} = \{\langle G, k \rangle \mid G \text{ has a clique of size } k\}$$

$\langle G, 3 \rangle \in \text{CLIQUE?}$  Yes

$\langle G, 4 \rangle \in \text{CLIQUE?}$  No

# CLIQUE is NP-Complete

**Theorem:** INDSET  $\leq_p$  CLIQUE

**Corollary:** CLIQUE is **NP**-complete

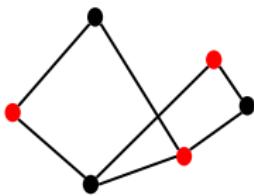
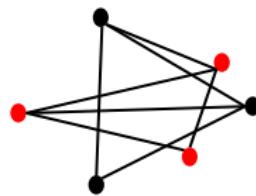
Goal find a poly-time reduction from INDSET to CLIQUE

# INDSET vs CLIQUE

For a graph  $G$ :

**Independent set:** A subset of pairwise **non-adjacent** vertices

**Clique:** A subset of pairwise **adjacent** vertices



**Def (Complement):** The *complement* of a graph  $G = (V, E)$  is a graph  $\bar{G} = (V, \bar{E})$  with same vertex set and edge set  $\bar{E}$  s.t.  $uv \in \bar{E}$  iff  $uv \notin E$

**Observation:** If  $G$  is a graph and  $\bar{G}$  its complement, then a subset  $S$  of the vertices of  $G$  is an **independent set** iff  $S$  is a **clique** of  $\bar{G}$

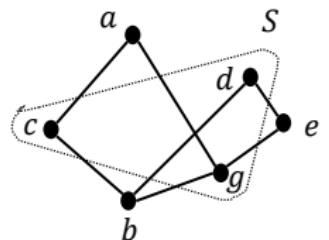
$$\text{INDSET} \leq_p \text{CLIQUE}$$

Reduction:  $f(\langle G = (V, E), k \rangle) := \langle \bar{G} = (\bar{V}, \bar{E}), k \rangle$

Efficiency: The reduction is polynomial time

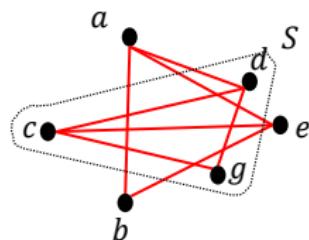
Correctness:  $\langle G, k \rangle \in \text{INDSET} \Leftrightarrow \langle \bar{G}, k \rangle \in \text{CLIQUE}$

### Proof of correctness:

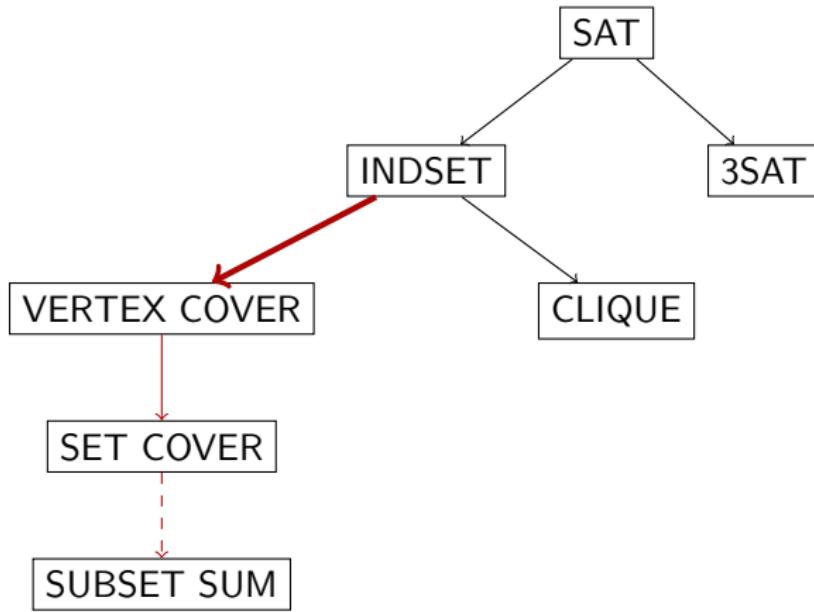


$\langle G, k \rangle \in \text{INDSET}, |S| = k$

$\Leftrightarrow$



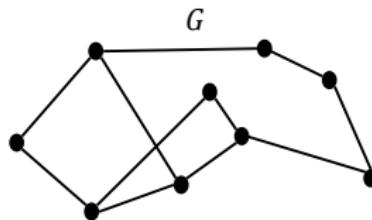
$\langle \bar{G}, k \rangle \in \text{CLIQUE}$



# Vertex Cover

**Definition:** For a graph  $G = (V, E)$ , a *vertex cover* is a subset  $S$  of  $V$  such that every edge of  $G$  is incident to at least one vertex in  $S$

**Example**



**Definition:**

$\text{VERTEX COVER} = \{\langle G, k \rangle : G \text{ is a graph that has a vertex cover of size } k\}$

- ▶  $\langle G, 4 \rangle \in \text{VERTEX COVER?}$  Yes
- ▶  $\langle G, 3 \rangle \in \text{VERTEX COVER?}$  No

# VERTEX COVER is NP-Complete

## STEP 1: VERTEX COVER $\in$ NP

TM  $V$ : “On input  $\langle G, k, C \rangle$

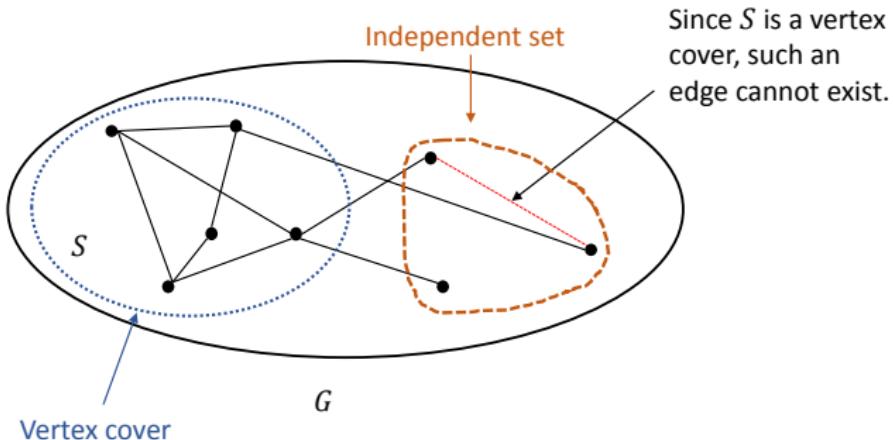
- 1 IF  $|C| \neq k$ , THEN REJECT
- 2 FOR every pair  $u \neq v$  of vertices DO
  - IF  $uv$  is an edge AND  $u \notin C$  AND  $v \notin C$  THEN REJECT
- 3 ACCEPT”

## STEP 2: INDSET $\leq_p$ VERTEX COVER

How to reduce INDSET to VERTEX COVER?

# INDSET vs VERTEX COVER

**Lemma:** For every graph  $G$ , a subset  $S$  of the vertices is a vertex cover if and only if  $\bar{S}$  is an independent set where  $\bar{S} = V \setminus S$



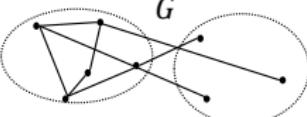
**Corollary:** For every graph  $G$  and a positive integer  $k$ ,  $G$  has an independent set of size  $k$  iff  $G$  has a vertex cover of size  $n - k$

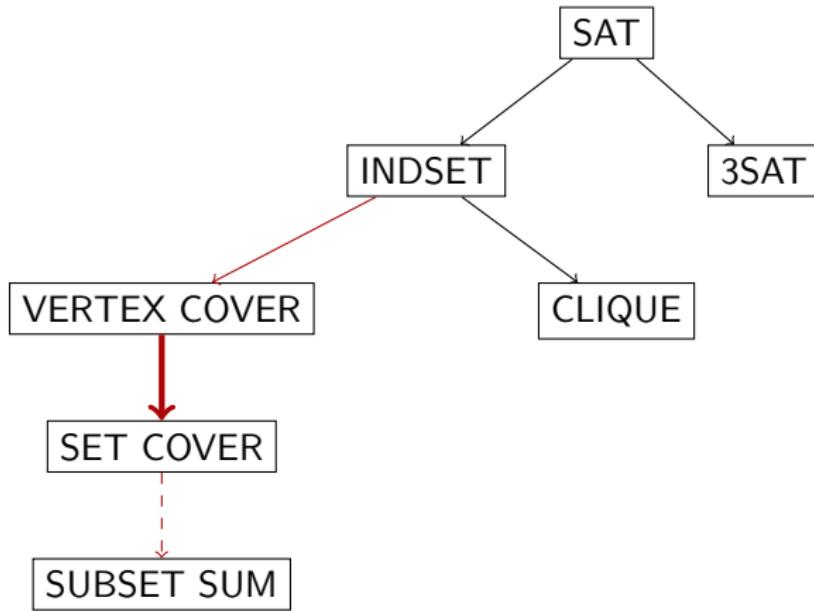
## INDSET $\leq_p$ VERTEX COVER

Reduction:  $f(\langle G, k \rangle) := \langle G, n - k \rangle$ , where  $n$  is the number of vertices of  $G$

Efficiency: The reduction  $f$  is polynomial time

Correctness: Lemma/Corollary on previous slide!

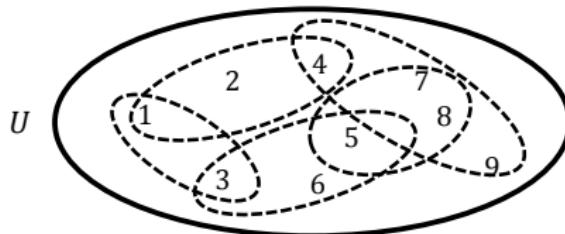
$$\langle G, k \rangle \in \text{INDSET} \Leftrightarrow \text{Diagram } G \text{ with } k \text{ vertices} \Leftrightarrow \langle G, n - k \rangle \in \text{VERTEX COVER}$$




# Set Cover

**Definition:** Let  $U = \{1, \dots, n\}$  and  $\mathcal{F} = \{T_1, \dots, T_m\}$  be a family of subsets  $\forall i, T_i \subseteq U$

A subset  $\{T_{i_1}, \dots, T_{i_k}\} \subseteq \mathcal{F}$  is called a **set cover** of size  $k$  if  $\bigcup_{j=1}^k T_{i_j} = U$



**SET COVER** =  $\{\langle U, \mathcal{F}, k \rangle \mid \mathcal{F} \text{ contains a set cover of size } k\}$

**Example:**

- $\langle U, \mathcal{F}, 3 \rangle \in \text{SET COVER?}$  Yes  $\{\{1, 2, 4\}, \{3, 6, 5\}, \{4, 7, 8, 9\}\}$
- $\langle U, \mathcal{F}, 2 \rangle \in \text{SET COVER?}$  No

# SET COVER is NP-Complete

**Theorem:** VERTEX COVER  $\leq_p$  SET COVER

**Corollary:** SET COVER is NP-complete

## VERTEX COVER $\leq_p$ SET COVER

**Key idea:** VERTEX COVER is a *special case* of SET COVER



### Reduction:

- ▶ Let  $\langle G = (V, E), k \rangle$  be an instance of VERTEX COVER
- ▶ Set  $U := E$
- ▶ For every vertex  $v \in V$  create a set  $S_v$

$$S_v := \{e \in E \mid e \text{ is incident to } v\}$$

- ▶ Let  $\mathcal{F} := \{S_v \mid v \in V\}$  and set  $k' = k$

**Efficiency:** Obvious from construction

**Correctness ( $\Rightarrow$ ):** If  $G$  has a vertex cover of cardinality  $k$ , then  $U$  can be covered by  $k$  sets

**Proof:**

- ▶ Suppose  $C \subseteq V$  is a vertex cover of  $G$  and  $|C| = k$
- ▶ Every edge  $e_i$  is adjacent to at least one vertex in  $C$

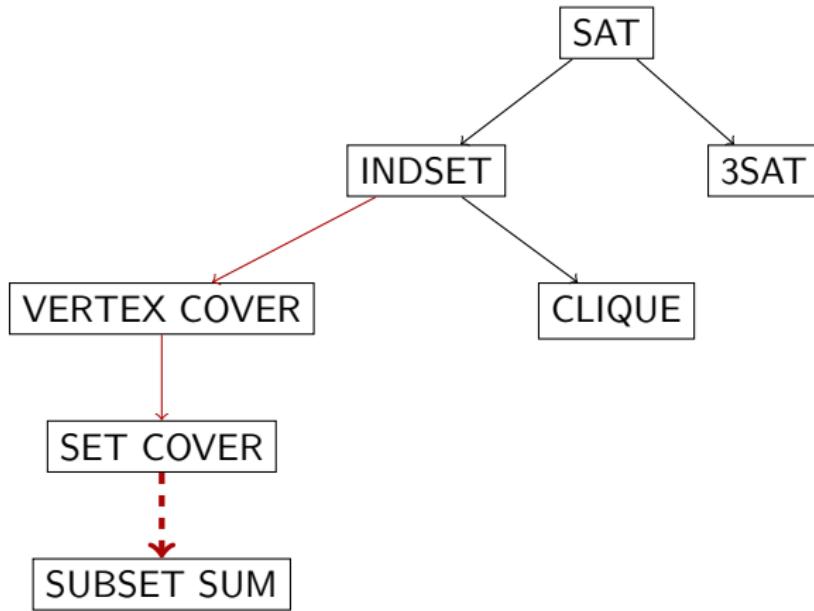
$$\bigcup_{v \in C} S_v = E$$

- ▶ Hence  $U$  can be covered by  $k$  sets

**Correctness ( $\Leftarrow$ ):** If  $U$  can be covered by  $k$  sets, then  $G$  has a vertex cover of cardinality  $k$

**Proof:**

- ▶ Let  $S_{v_1}, S_{v_2}, \dots, S_{v_k}$  be a collection of sets which cover  $U = E$
- ▶ We claim that  $C = \{v_1, v_2, \dots, v_k\}$  is a vertex cover of  $G$
- ▶ Indeed, every edge  $e$  in  $G$  belongs to  $S_{v_i}$  for some  $i \in \{1, 2, \dots, k\}$
- ▶ Hence, every edge  $e$  in  $G$  is incident to some vertex  $v_i \in C$



# SUBSET-SUM

Let  $X$  denote a (multi) set of positive integers

**Definition:** SUBSET-SUM

$= \{\langle X, s \rangle : X \text{ contains a subset whose elements sum to } s\}$

**Example:**  $X = \{1, 3, 4, 6, 13, 13\}$

- ▶  $\langle X, 8 \rangle \in \text{SUBSET-SUM? Yes } T = \{1, 3, 4\}$
- ▶  $\langle X, 12 \rangle \in \text{SUBSET-SUM? No}$

**Question:** SUBSET-SUM  $\in P$ ?

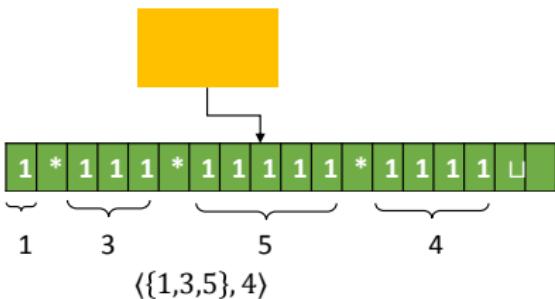
It depends on the **input length**

In *SUBSET-SUM*  
we use binary  
encoding

Unary

vs

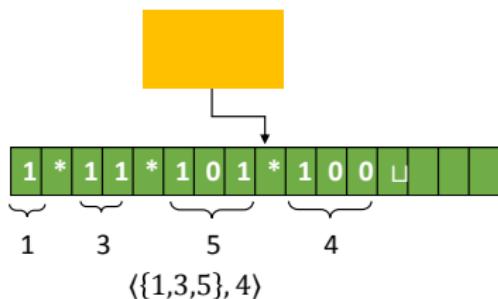
Binary



Input length:  $x_1 + x_2 + \dots + x_m + s$

»

Input length:  $\lceil \log(x_1) \rceil + \dots + \lceil \log(x_m) \rceil + \lceil \log(s) \rceil$



# SUBSET-SUM: An Algorithm

- Let  $X = \{x_1, x_2, \dots, x_m\}$ ,  $sum := \sum_{j=1}^m x_j$
- FOR  $i = 1 \dots m$  DO
- FOR  $j = 0 \dots sum$  DO
- $A[i, j] := False$
- FOR  $i = 0$  to  $m$  DO
- $A[i, 0] := True$
- FOR  $i = 1 \dots m$  DO
- FOR  $j = 1 \dots sum$  DO
- IF  $A[i - 1, j - x_i] = True$  OR  $A[i - 1, j] = True$  THEN  $A[i, j] := True$
- IF  $A[m, s] = True$ , ACCEPT; ELSE, REJECT

**Running time:** For the input  $\langle \{x_1, \dots, x_m\}, s \rangle$ , the above algorithm takes  $\mathcal{O}(m \cdot (\sum_{i=1}^m x_i))$  steps to output whether or not  $\langle X, s \rangle \in \text{SUBSET-SUM}$

**Unary representation:** The length of the input  $x_1 + x_2 + \dots + x_m + s$ . In this case the running time is **polynomial** in the input length

**Binary representation:** The length of the input  $\lceil \log(x_1) \rceil + \dots + \lceil \log(x_m) \rceil + \lceil \log(s) \rceil$ . In this case, the running time is **exponential** in the input length

# SUBSET-SUM is **NP**-Complete

**Theorem:** SET COVER  $\leq_p$  SUBSET-SUM

**Proof:** Next lecture

**Corollary:** SUBSET-SUM is **NP**-Complete