
Lecture 8: The Class NP

Mika Göös

School of Computer and Communication Sciences

Lecture 8

Recall: Time Complexity

Lecture 8

Time Complexity of a TM

Definition: Let M be a TM that halts on all inputs (decider). The
running time or time complexity of M is the function t : N→ N where

t(n) = max
w∈Σ∗:|w |=n

number of steps M takes on w

Definition: Time complexity class

TIME (t(n)) = {L ⊆ Σ∗ | L is decided by a TM with running time O(t(n))}

Lecture 8

The class P

Definition: P is the class of languages that are decidable in polynomial
time on a deterministic Turing machine. In other words,

P =
∞⋃

k=1
TIME (nk) .

Some languages in P:
I {〈A〉 : A is a sorted array of integers}
I {〈G , s, t〉 : s and t are vertices connected in graph G}

(Breadth-First Search)
I {〈G〉 : G is a connected graph}

Lecture 8

NP: Easy-to-verify problems

Lecture 8

The class NP

Definition: A verifier for a language A is a TM V , where

A = {w | ∃C s.t. V accepts 〈w ,C〉} .

(Here C is called a certificate or witness)
A polynomial time verifier runs in polynomial time in |w|.

Definition: NP is the class of languages with polynomial time verifiers

Lecture 8

Why is it called NP?

Lecture 8

Detour: Non-deterministic Turing Machines

Recall: In a Turing machine, δ : (Q × Γ) −→ Q × Γ× {L,R}.

In a Nondeterministic Turing Machine (NTM),

δ : (Q × Γ) −→ P(Q × Γ× {L,R})

(several possible transitions for a given state and tape symbol)

Definition: A nondeterministic decider for language L is an NTM N
such that for each x ∈ Σ∗, every computation of N on x halts, and
moreover,
I If x ∈ L, then some computation of N on x accepts.
I If x < L, then every computation of N on x rejects.

An NTM is a polynomial time NTM if the running time its longest
computation on x is polynomial in |x|.

Lecture 8

Nondeterministic deciders ⇐⇒ Verifiers

Theorem: For any language L ⊆ Σ∗,

L has a nondeterministic poly-time decider ⇐⇒ L has a poly-time verifier.

Proof Sketch (⇐=):

Let V be the verifier. NTM N on input x does the following:

1 Write a certificate C nondeterministically.

2 Run V on 〈x ,C〉 and accept accordingly.

Proof Sketch (=⇒):

Let N be the nondeterministic decider. Verifier V on 〈x ,C〉 computes:

1 Interpret C as a sequence of transitions of N.

2 Simulate N on x , choosing transitions given by C .

Now x ∈ L iff there exists C such that V accepts 〈x ,C〉.

Lecture 8

Non-deterministic Polynomial-time

Theorem: For any language L ⊆ Σ∗,

L has a nondeterministic poly-time decider ⇐⇒ L has a poly-time verifier.

Definition: NP is the class of languages which have poly-time nonde-
terministic deciders, or equivalently, have poly-time verifiers.

Definition:

NTIME(t(n)) = {L : L has a nondeterministic O(t(n)) time decider}

Then

NP =
∞⋃

k=1
NTIME(nk) .

Lecture 8

Example problems in NP

Lecture 8

Satisfiability problem, SAT

Conjunctive Normal Form (CNF) Formula:

ϕ1 = (x ∨ y ∨ z0) ∧ (x ∨ y ∨ z1) ∧ (x ∨ y ∨ z2) ∧ (x ∨ y ∨ z3)

ϕ2 = x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)

ϕ3 = x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

I CNF Formula: AND of Clauses
I Clause: OR of Literals
I Literal: variable or its negation

Satisfying assignment: Boolean assignment to variables which makes
the formula TRUE.

Check: ϕ1 has 32 satisfying assignments, ϕ2 as only one, ϕ3 has zero.

A formula is satisfiable if it has at least one satisfying assignment.

Lecture 8

Satisfiability problem, SAT

SAT = {〈ϕ〉 : ϕ is satisfiable}
= {〈ϕ〉 : ∃C such that C evaluates ϕ to TRUE}

SAT is in NP

Poly-time verifier for SAT:

1 Given input 〈ϕ,C〉:

2 Interpret C as a truth assignment to the variables of ϕ.

3 Substitute values for literals according to C .

4 Check that every clause has at least one TRUE literal.

5 Accept iff all checks pass.

SAT = {〈ϕ〉 : ∃C s.t. the above verifier accepts 〈ϕ,C〉}

Lecture 8

Graph isomorphism, GI

a

bc

d

e f

1

2

3

4

5

6

Graph Isomorphism: Bijection f : V (G1) −→ V (G2) which preserves
adjacency: {u, v} ∈ E (G1)⇔ {f (u), f (v)} ∈ E (G2)

Eg. a→ 1 b → 2 c → 3 d → 4 e → 5 f → 6 in the graphs above.

Two graphs are isomorphic if they have at least one graph isomorphism.

Lecture 8

Graph isomorphism, GI

GI = {〈G1,G2〉 : G1 and G2 are isomorphic}

GI is in NP

Poly-time verifier for GI:

1 Given input 〈G1,G2,C〉:

2 Interpret C as a function V (G1)→ V (G2).

3 Check that C is a bijection.

4 Check that C preserves adjacency, that is, for each u, v ∈ V (G1):
I {u, v} ∈ E (G1) ⇔ {C(u),C(v)} ∈ E (G2).

5 Accept iff all checks pass.

GI = {〈G1,G2〉 : ∃C s.t. above verifier accepts 〈G1,G2,C〉}

Lecture 8

Independent set, INDSET

1

2

3

4

5

6

Independent Set: Subset S ⊆ V (G) such that no two vertices in S are
adjacent in G .

Eg. {1, 3, 5}, {2, 4}, {6}, ∅, etc. in the graph above.

Lecture 8

Independent set, INDSET

INDSET = {〈G , k〉 : G has an independent of size k}

INDSET is in NP

Poly-time verifier for INDSET:

1 On input 〈G , k,C〉:

2 Interpret C as a subset C ⊆ V (G)

3 Check that |C | = k.

4 For each u, v ∈ C , check {u, v} < E (G).

5 Accept iff all checks pass.

INDSET = {〈G , k〉 : ∃C s.t. above verifier accepts 〈G , k,C〉}

Lecture 8

P and NP
Is P ⊆ NP? Yes (obviously)

Is P = NP? Nobody knows . . .

Find the answer and win USD 1,000,000!

NP
SAT

INDSETGI?
P

GI?

P=NP

SAT

INDSET

GI

Cook-Levin Theorem (informal): SAT ∈ P iff P = NP.

(Also INDSET ∈ P iff P = NP.)
Lecture 8

Polynomial-Time Reductions

Lecture 8

Reductions Part 1: Poly-time ComputabilityReductions Part 1: Computability

0 0 1 0 1 1 0 1 ⊔ 1 1 1 0 ⊔ ⊔ ⊔ ⊔ ⊔

𝑤
𝑇𝑀𝑓

𝑓(𝑤)

𝑓

Σ⋆ Σ⋆

𝑤1
𝑤2

𝑤3
𝑣1

𝑣2

𝑣3𝑤4 𝑣3𝑤4

Definition: A function 𝑓: Σ⋆ → Σ⋆ is a computable function if some
TM 𝑀, on every input 𝑤 halts with just 𝑓(𝑤) on its tape

Definition: A function f : Σ∗ → Σ∗ is a poly-time computable function
if some poly-time TM M, on every input w halts with just f (w) on its
tape.

Lecture 8

Reductions Part 2: CorrectnessReductions Part 2: Correctness

Definition: Language 𝐴 is mapping reducible to language 𝐵, written
𝑨 ≤𝒎 𝑩, if there is a computable function 𝑓: Σ⋆ → Σ⋆, such that for
every 𝑤 ∈ Σ⋆:

𝒘 ∈ 𝑨⟺ 𝒇 𝒘 ∈ 𝑩

Σ⋆ Σ⋆

𝑓

𝑤1
𝑤2
𝑤3

𝑣1

𝑣2

𝑣3

𝐴

𝑤4ഥ𝐴

𝐵

ത𝐵𝑣4𝑤4

Reduction
Mapping may not be

Surjective

𝑣3

𝑣5

Definition: Language A is poly-time mapping reducible to language
B, written A ≤P B, if there is a poly-time computable function
f : Σ∗ → Σ∗, such that for every w ∈ Σ∗:

w ∈ A⇔ f (w) ∈ B

Lecture 8

Theorem: If A ≤P B and B is in P, then A is in P.

Proof:
I Assume that M is an O(np)-time decider for B and f is an

O(nq)-time reduction from A to B.
I Let N be a TM as follows:

• Assume that 𝑴 is a decider for 𝑩 and 𝑓 is a reduction from 𝐴 to 𝐵

• Let 𝑁 be a TM as follows:

• 𝑁 =“On input 𝑤:
1. Compute 𝑓(𝑤)
2. Run 𝑀 on input 𝑓(𝑤) and output whatever 𝑀 outputs"

𝑤 𝑓(𝑤) 𝑀

𝑁

𝑓

Computability of 𝑓 ⇒
N is a decider

Correctness
of 𝑓 ⇒

N decides A

Theorem: If 𝐴 ≤𝑚 𝐵 and 𝐵 is decidable, then 𝐴 is decidable

Corollary: If 𝐴 ≤𝑚 𝐵 and 𝐴 is undecidable, then 𝐵 is undecidable

Proof:

I N = “On input w :

1 Compute f (w) (O(|w |q) time; |f (w)| = O(|w |q))
2 Run M on input f (w) and output whatever M outputs”

(O(|w |pq) time)

• Assume that 𝑴 is a decider for 𝑩 and 𝑓 is a reduction from 𝐴 to 𝐵

• Let 𝑁 be a TM as follows:

• 𝑁 =“On input 𝑤:
1. Compute 𝑓(𝑤)
2. Run 𝑀 on input 𝑓(𝑤) and output whatever 𝑀 outputs"

𝑤 𝑓(𝑤) 𝑀

𝑁

𝑓

Computability of 𝑓 ⇒
N is a decider

Correctness
of 𝑓 ⇒

N decides A

Theorem: If 𝐴 ≤𝑚 𝐵 and 𝐵 is decidable, then 𝐴 is decidable

Corollary: If 𝐴 ≤𝑚 𝐵 and 𝐴 is undecidable, then 𝐵 is undecidable

Proof:

Corollary: If A ≤P B and A is not in P, then B is not in P.
Lecture 8

Theorem: If A ≤P B and B ≤P C , then A ≤P C . (i.e. ≤P is transitive.)

Proof:
I Assume fAB is an O(np)-time reduction from A to B

and fBC is an O(nq)-time reduction from B to C .

I N = “On input w :

1 Compute fAB(w) (O(|w |p) time; |f (w)| = O(|w |p))
2 Compute fBC (fAB(w))” (O(|w |pq) time)

I N computes a poly-time reduction A ≤P C .

Lecture 8

NP-completeness

Definition: A language L is said to be NP-complete if
I L is in NP.
I For every language L′ in NP, L′ ≤P L.

Observe: If one NP-complete language has a polynomial time decider,
then every language in NP has a polynomial time decider, i.e. P = NP.

The Cook-Levin Theorem: SAT is NP-complete.

To show L is NP-complete:
I [NP membership] Give a poly-time verifier for L.
I [NP hardness] Show that SAT ≤P L

(or take any L∗ already proven to be NP-complete,
and show L∗ ≤P L).

Lecture 8

Examples of NP-completeness proofs

Lecture 8

3SAT is NP-complete

kSAT = {ϕ : ϕ is satisfiable and each clause of ϕ contains ≤ k literals}

Verifier for 3SAT: Just use the verifier for SAT.

Claim: SAT ≤P 3SAT

Reduction: Given ϕ,
I While ϕ contains a clause K = (`1 ∨ `2 ∨ `3 ∨ · · · ∨ `m) with > 3

literals

Replace K with the following two clauses
K1 = (`1 ∨ `2 ∨ z)

K2 = (z ∨ `3 ∨ · · · ∨ `m)


Preserves satisfiability

(check!)

What is the runtime?

Does SAT ≤P 2SAT analogously?

Lecture 8

INDSET is NP-complete
Claim: SAT ≤P INDSET

ϕ = x1︸︷︷︸
K1

∧ (x1 ∨ x2)︸ ︷︷ ︸
K2

∧ (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
K3

∧ (x1 ∨ x2 ∨ x3 ∨ x4)︸ ︷︷ ︸
K4

x1

x1

x2

x1 x2 x3

x1 x2 x3 x4

K1

K2

K3

K4

Lecture 8

INDSET is NP-complete
Claim: SAT ≤P INDSET

Reduction f : On input ϕ,

1 Let G be the graph generated as follows.

1 Take a vertex for each literal of each clause.
2 Add edges for pairs of conflicting literals.
3 Add edges for pairs of literals from the same clause.

2 Let m be the number of clauses in ϕ.

3 Output (G ,m).

Claim: ϕ ∈ SAT =⇒ f (ϕ) ∈ INDSET

Proof: C : satisfying assignment of ϕ. Pick one true literal from each
clause. The corresponding vertices form a independent set.

Claim: f (ϕ) ∈ INDSET =⇒ ϕ ∈ SAT

Proof: C : independent set in G , |C | = m. C contains one vertex from
each group. Set the corresponding literals to true to get a satisfying
assignment.

Lecture 8

Next class

Will continue NP-completeness.

Lecture 8

