Lecture 8: The Class NP

Mika Goos

E PF L School of Computer and Communication Sciences

Lecture 8

Recall: Time Complexity

Time Complexity of a TM

Definition: Let M be a TM that halts on all inputs (decider). The
running time or time complexity of M is the function t : N — N where

t(n) = max number of steps M takes on w
wEX*:|w|=n

Definition: Time complexity class

TIME(t(n)) = {L C X" | L is decided by a TM with running time O(t(n))}

Lecture 8

The class P

Definition: P is the class of languages that are decidable in polynomial
time on a deterministic Turing machine. In other words,

P = TIME(n").
k=1

Some languages in P:
> {(A) : Ais a sorted array of integers}

» {(G,s,t) : s and t are vertices connected in graph G}
(Breadth-First Search)

» {(G) : G is a connected graph}

Lecture 8

NP: Easy-to-verify problems

The class NP

Definition: A verifier for a language Ais a TM V, where
A={w|3C st V accepts (w,C)}.

(Here C is called a certificate or witness)
A polynomial time verifier runs in polynomial time in |w]|.

Definition: NP is the class of languages with polynomial time verifiers

Lecture 8

Why is it called NP?

Recall: In a Turing machine, 6 : (@ x) — Q x I x {L, R}.
In a Nondeterministic Turing Machine (NTM),

§:(QxT)— P(QxT x{LR})

(several possible transitions for a given state and tape symbol)

Definition: A nondeterministic decider for language L is an NTM N
such that for each x € L*, every computation of N on x halts, and
moreover,

> If x € L, then some computation of N on x accepts.
> If x ¢ L, then every computation of N on x rejects.

An NTM is a polynomial time NTM if the running time its longest
computation on x is polynomial in |x|.

Theorem: For any language L C ¥,

L has a nondeterministic poly-time decider <= L has a poly-time verifier.

Proof Sketch («<):
Let V be the verifier. NTM N on input x does the following:
Write a certificate C nondeterministically.
Run V on (x, C) and accept accordingly.
Proof Sketch (=):
Let N be the nondeterministic decider. Verifier V on (x, C) computes:
Interpret C as a sequence of transitions of N.
Simulate N on x, choosing transitions given by C.

Now x € L iff there exists C such that V accepts (x, C).

on-deterministic olynomial-time

Theorem: For any language L C ¥*,

L has a nondeterministic poly-time decider <= L has a poly-time verifier.

Definition: NP is the class of languages which have poly-time nonde-
terministic deciders, or equivalently, have poly-time verifiers.

Definition:

NTIME(t(n)) = {L : L has a nondeterministic O(t(n)) time decider}
Then

NP = | J NTIME(n*).
k=1

Lecture 8

Example problems in NP

Conjunctive Normal Form (CNF) Formula:
1=XVYyVz2)AXVYVZ)AXVyYyV2a)A(xVyVz)

=X A1 VXR)A 1 VxaVX3)A(x1 VXV x3VXg)

p3=X A (x1VX2) A (x1V x)

» CNF Formula: AND of Clauses
» Clause: OR of Literals
> Literal: variable or its negation

Satisfying assignment: Boolean assignment to variables which makes
the formula TRUE.

Check: 1 has 32 satisfying assignments, ¢» as only one, @3 has zero.

A formula is satisfiable if it has at least one satisfying assignment.

Satisfiability problem, SAT

SAT = {{¢) : ¢ is satisfiable}
{{¢) : 3IC such that C evaluates ¢ to TRUE}

SAT is in NP
Poly-time verifier for SAT:

Given input {(p, C):

Interpret C as a truth assignment to the variables of ¢.

Substitute values for literals according to C.

Check that every clause has at least one TRUE literal.

Accept iff all checks pass.

SAT = {{¢) : 3C s.t. the above verifier accepts (p, C)}

Lecture 8

Graph isomorphism, Gl

Graph Isomorphism: Bijection f: V(G;) — V/(Gy) which preserves
adjacency: {u,v} € E(G1) < {f(u),f(v)} € E(Gp)

Eg.a—>1b—>2c—>3d—>4e—5f— 06in the graphs above.

Two graphs are isomorphic if they have at least one graph isomorphism.

L ecture 8

Graph isomorphism, Gl

Gl = {(Gy,Gy) : G and G, are isomorphic}

Gl is in NP
Poly-time verifier for Gl:
Given input (Gy, Gy, C):
Interpret C as a function V(G1) — V(G).
Check that C is a bijection.
Check that C preserves adjacency, that is, for each u, v € V(G):
> {u,v} € E(G) & {C(u),C(v)} € E(Gp).
Accept iff all checks pass.

Gl = {(Gy,Gy) : 3C s.t. above verifier accepts (Gy, Gy, C)}

Lecture 8

Independent set, INDSET

Independent Set: Subset S C V/(G) such that no two vertices in S are
adjacent in G.

Eg. {1,3,5}, {2,4}, {6}, 0, etc. in the graph above.

Lecture 8

Independent set, INDSET

INDSET = {(G,k) : G has an independent of size k}

INDSET is in NP

Poly-time verifier for INDSET:
On input (G, k, C):
Interpret C as a subset C C V(G)
Check that |C| = k.
For each u,v € C, check {u,v} ¢ E(G).
Accept iff all checks pass.

INDSET = {(G.,k) : 3C s.t. above verifier accepts (G, k, C)}

Lecture 8

P and NP

Is P C NP? Yes (obviously)

Is P = NP? Nobody knows ...
Find the answer and win USD 1,000,000!

NP
SAT

- INDSET

P=NP

SAT
INDSET

Cook-Levin Theorem (informal): SAT € P iff P = NP.
(Also INDSET € P iff P = NP.)

Lecture 8

Polynomial-Time Reductions

Lecture 8

Reductions Part 1:

Computability

f
/\.
2* Z*

w f(w)
CORCEECEY — | | — EEEEE

Definition: A function f : ¥* — Y* is a poly-time computable function
if some poly-time TM M, on every input w halts with just f(w) on its
tape.

Lecture 8

Reductions Part 2: Correctness

Mapping may not be

A " 172173 B
wy _'41]1
W3\‘§\ ””

/”’ \‘s\b
n Wy > Vs B
Vs
> >

Definition: Language A is poly-time mapping reducible to language
B, written A <p B, if there is a poly-time computable function
f:¥X* — ¥* such that for every w € ¥*:

weAsf(w)eB

Lecture 8

Theorem: If A<p B and Bisin P, then Aisin P.

Proof:

» Assume that M is an O(nP)-time decider for B and f is an
O(n?)-time reduction from A to B.

> Let N be a TM as follows:

N
Correctness
of f =
w f fw) N decides A

» N = "On input w :

Compute f(w) (O(|w|?) time; |f(w)| = O(|w|9))
Run M on input f(w) and output whatever M outputs”
(O(|w|[P7) time)

Corollary: If A<p B and Ais not in P, then B is not in P.

Theorem: If A<p B and B <p C, then A <p C. (i.e. <p is transitive.)

Proof:

> Assume fap is an O(nP)-time reduction from A to B
and fgc is an O(n9)-time reduction from B to C.

» N = "On input w :

Compute fag(w) (O(|w|P) time; |f(w)| = O(|w|P))
Compute fgc(fag(w))” (O(|w[P?) time)

» N computes a poly-time reduction A <p C.

Definition: A language L is said to be NP-complete if
» Lisin NP.
> For every language L' in NP, L' <p L.

Observe: If one NP-complete language has a polynomial time decider,
then every language in NP has a polynomial time decider, i.e. P = NP.

The Cook-Levin Theorem: SAT is NP-complete.

To show L is NP-complete:
> [NP membership] Give a poly-time verifier for L.

» [NP hardness] Show that SAT <p L
(or take any L* already proven to be NP-complete,
and show L* <p L).

Examples of NP-completeness proofs

Lecture 8

3SAT is NP-complete

kSAT = {¢ : ¢ is satisfiable and each clause of ¢ contains < k literals}

Verifier for 3SAT: Just use the verifier for SAT.
Claim: SAT <p 3SAT
Reduction: Given ¢,
> While ¢ contains a clause K = ({4 VoV €3V -+ V £p) with > 3

literals

Replace K with the following two clauses
Kl = (61 \/62 \/Z)
Ko=(ZV I3V ---Vip)

Preserves satisfiability
(check!)

What is the runtime?

Does SAT <p 2SAT analogously?

Lecture 8

INDSET is NP-complete

Claim: SAT <p INDSET
= x1 AN (aVxa) A (x1VxeVx3) A (x1VxVx3VXs)
~

Kl Kz K3 K4

K1

\
©)

K3
[@ -
Ka

Lecture 8

Claim: SAT <p INDSET
Reduction f: On input ¢,

Let G be the graph generated as follows.

Take a vertex for each literal of each clause.
Add edges for pairs of conflicting literals.
Add edges for pairs of literals from the same clause.

Let m be the number of clauses in (.
Output (G, m).
Claim: ¢ € SAT = f(¢) € INDSET

Proof: C: satisfying assignment of ¢. Pick one true literal from each
clause. The corresponding vertices form a independent set.

Claim: f(y) € INDSET = ¢ € SAT

Proof: C: independent set in G, |C| = m. C contains one vertex from
each group. Set the corresponding literals to true to get a satisfying
assignment.

Next class

Will continue NP-completeness.

