

Lecture 8: The Class NP

Mika Göös

School of Computer and Communication Sciences

Lecture 8

Recall: Time Complexity

Time Complexity of a TM

Definition: Let M be a TM that halts on all inputs (decider). The running time or time complexity of M is the function $t : \mathbb{N} \rightarrow \mathbb{N}$ where

$$t(n) = \max_{w \in \Sigma^* : |w|=n} \text{number of steps } M \text{ takes on } w$$

Definition: Time complexity class

$$TIME(t(n)) = \{L \subseteq \Sigma^* \mid L \text{ is decided by a TM with running time } O(t(n))\}$$

The class P

Definition: \mathbf{P} is the class of languages that are **decidable** in **polynomial time** on a **deterministic** Turing machine. In other words,

$$\mathbf{P} = \bigcup_{k=1}^{\infty} \text{TIME}(n^k).$$

Some languages in P:

- ▶ $\{\langle A \rangle : A \text{ is a sorted array of integers}\}$
- ▶ $\{\langle G, s, t \rangle : s \text{ and } t \text{ are vertices connected in graph } G\}$
(Breadth-First Search)
- ▶ $\{\langle G \rangle : G \text{ is a connected graph}\}$

NP: Easy-to-verify problems

The class NP

Definition: A **verifier** for a language A is a TM V , where

$$A = \{w \mid \exists C \text{ s.t. } V \text{ accepts } \langle w, C \rangle\}.$$

(Here C is called a *certificate* or *witness*)

A **polynomial time verifier** runs in polynomial time in $|w|$.

Definition: **NP** is the class of languages with **polynomial time verifiers**

Why is it called **NP**?

Detour: Non-deterministic Turing Machines

Recall: In a Turing machine, $\delta : (Q \times \Gamma) \longrightarrow Q \times \Gamma \times \{L, R\}$.

In a **Nondeterministic Turing Machine (NTM)**,

$$\delta : (Q \times \Gamma) \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

(several possible transitions for a given state and tape symbol)

Definition: A **nondeterministic decider** for language L is an NTM N such that for each $x \in \Sigma^*$, **every computation of N on x halts**, and moreover,

- ▶ If $x \in L$, then **some** computation of N on x accepts.
- ▶ If $x \notin L$, then **every** computation of N on x rejects.

An NTM is a **polynomial time** NTM if the running time of its **longest computation** on x is **polynomial in $|x|$** .

Nondeterministic deciders \iff Verifiers

Theorem: For any language $L \subseteq \Sigma^*$,

L has a nondeterministic poly-time decider $\iff L$ has a poly-time verifier.

Proof Sketch (\Leftarrow):

Let V be the verifier. NTM N on input x does the following:

- 1 Write a certificate C nondeterministically.
- 2 Run V on $\langle x, C \rangle$ and accept accordingly.

Proof Sketch (\Rightarrow):

Let N be the nondeterministic decider. Verifier V on $\langle x, C \rangle$ computes:

- 1 Interpret C as a sequence of transitions of N .
- 2 Simulate N on x , choosing transitions given by C .

Now $x \in L$ iff there exists C such that V accepts $\langle x, C \rangle$.

Non-deterministic Polynomial-time

Theorem: For any language $L \subseteq \Sigma^*$,

L has a nondeterministic poly-time decider $\iff L$ has a poly-time verifier.

Definition: **NP** is the class of languages which have poly-time nondeterministic deciders, or equivalently, have poly-time verifiers.

Definition:

$\text{NTIME}(t(n)) = \{L : L \text{ has a nondeterministic } O(t(n)) \text{ time decider}\}$

Then

$$\text{NP} = \bigcup_{k=1}^{\infty} \text{NTIME}(n^k).$$

Example problems in **NP**

Satisfiability problem, SAT

Conjunctive Normal Form (CNF) Formula:

$$\varphi_1 = (\bar{x} \vee \bar{y} \vee z_0) \wedge (x \vee \bar{y} \vee z_1) \wedge (\bar{x} \vee y \vee z_2) \wedge (x \vee y \vee z_3)$$

$$\varphi_2 = \bar{x}_1 \wedge (x_1 \vee \bar{x}_2) \wedge (x_1 \vee x_2 \vee \bar{x}_3) \wedge (x_1 \vee x_2 \vee x_3 \vee \bar{x}_4)$$

$$\varphi_3 = \bar{x}_1 \wedge (x_1 \vee \bar{x}_2) \wedge (x_1 \vee x_2)$$

- ▶ **CNF Formula:** AND of Clauses
- ▶ **Clause:** OR of Literals
- ▶ **Literal:** variable or its negation

Satisfying assignment: Boolean assignment to variables which makes the formula TRUE.

Check: φ_1 has 32 satisfying assignments, φ_2 as only one, φ_3 has zero.

A formula is **satisfiable** if it has at least one satisfying assignment.

Satisfiability problem, SAT

$$\begin{aligned}\text{SAT} &= \{\langle \varphi \rangle : \varphi \text{ is satisfiable}\} \\ &= \{\langle \varphi \rangle : \exists C \text{ such that } C \text{ evaluates } \varphi \text{ to TRUE}\}\end{aligned}$$

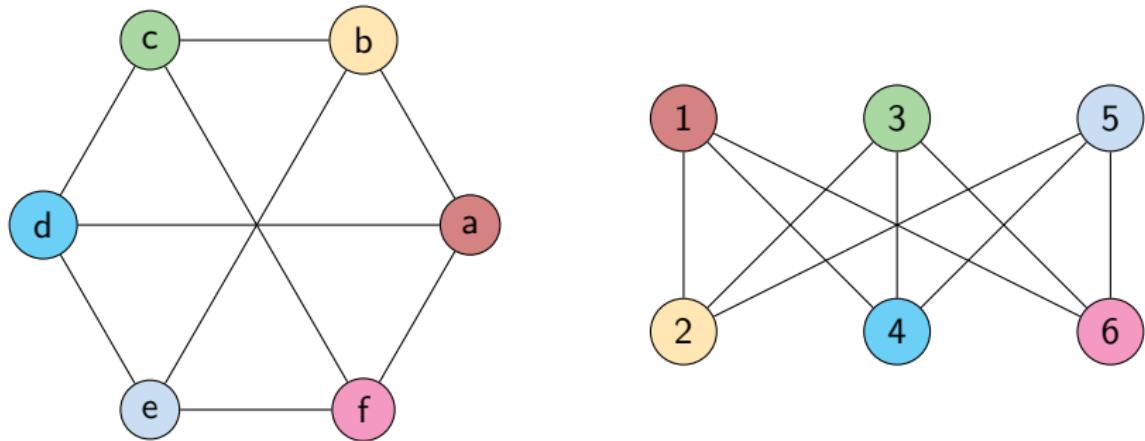
SAT is in NP

Poly-time verifier for SAT:

- 1 Given input $\langle \varphi, C \rangle$:
- 2 Interpret C as a truth assignment to the variables of φ .
- 3 Substitute values for literals according to C .
- 4 Check that every clause has at least one TRUE literal.
- 5 Accept iff all checks pass.

$$\text{SAT} = \{\langle \varphi \rangle : \exists C \text{ s.t. the above verifier accepts } \langle \varphi, C \rangle\}$$

Graph isomorphism, GI



Graph Isomorphism: Bijection $f: V(G_1) \rightarrow V(G_2)$ which preserves adjacency: $\{u, v\} \in E(G_1) \Leftrightarrow \{f(u), f(v)\} \in E(G_2)$

Eg. $a \rightarrow 1$ $b \rightarrow 2$ $c \rightarrow 3$ $d \rightarrow 4$ $e \rightarrow 5$ $f \rightarrow 6$ in the graphs above.

Two graphs are **isomorphic** if they have at least one graph isomorphism.

Graph isomorphism, GI

$$\text{GI} = \{\langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are isomorphic}\}$$

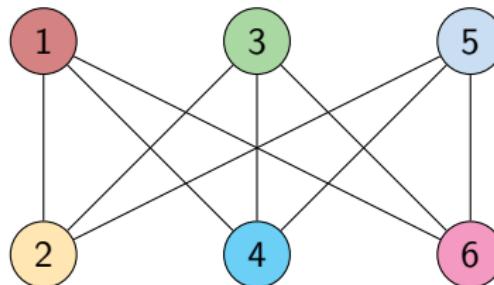
GI is in NP

Poly-time verifier for GI:

- 1 Given input $\langle G_1, G_2, C \rangle$:
- 2 Interpret C as a function $V(G_1) \rightarrow V(G_2)$.
- 3 Check that C is a bijection.
- 4 Check that C preserves adjacency, that is, for each $u, v \in V(G_1)$:
 - $\{u, v\} \in E(G_1) \Leftrightarrow \{C(u), C(v)\} \in E(G_2)$.
- 5 Accept iff all checks pass.

$$\text{GI} = \{\langle G_1, G_2 \rangle : \exists C \text{ s.t. above verifier accepts } \langle G_1, G_2, C \rangle\}$$

Independent set, INDSET



Independent Set: Subset $S \subseteq V(G)$ such that no two vertices in S are adjacent in G .

Eg. $\{1, 3, 5\}$, $\{2, 4\}$, $\{6\}$, \emptyset , etc. in the graph above.

Independent set, INDSET

$\text{INDSET} = \{\langle G, k \rangle : G \text{ has an independent set of size } k\}$

INDSET is in NP

Poly-time verifier for INDSET:

- 1 On input $\langle G, k, C \rangle$:
- 2 Interpret C as a subset $C \subseteq V(G)$
- 3 Check that $|C| = k$.
- 4 For each $u, v \in C$, check $\{u, v\} \notin E(G)$.
- 5 Accept iff all checks pass.

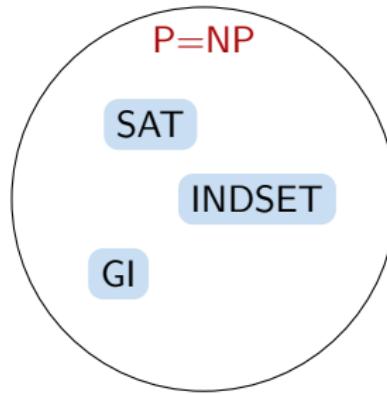
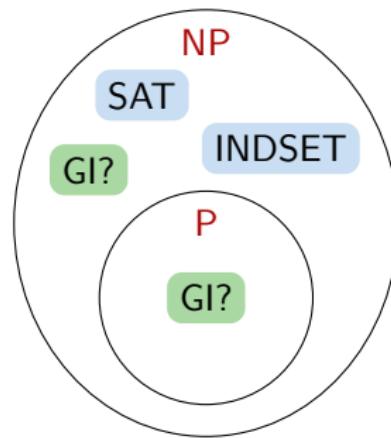
$\text{INDSET} = \{\langle G, k \rangle : \exists C \text{ s.t. above verifier accepts } \langle G, k, C \rangle\}$

P and NP

Is $P \subseteq NP$? Yes (obviously)

Is $P = NP$? Nobody knows ...

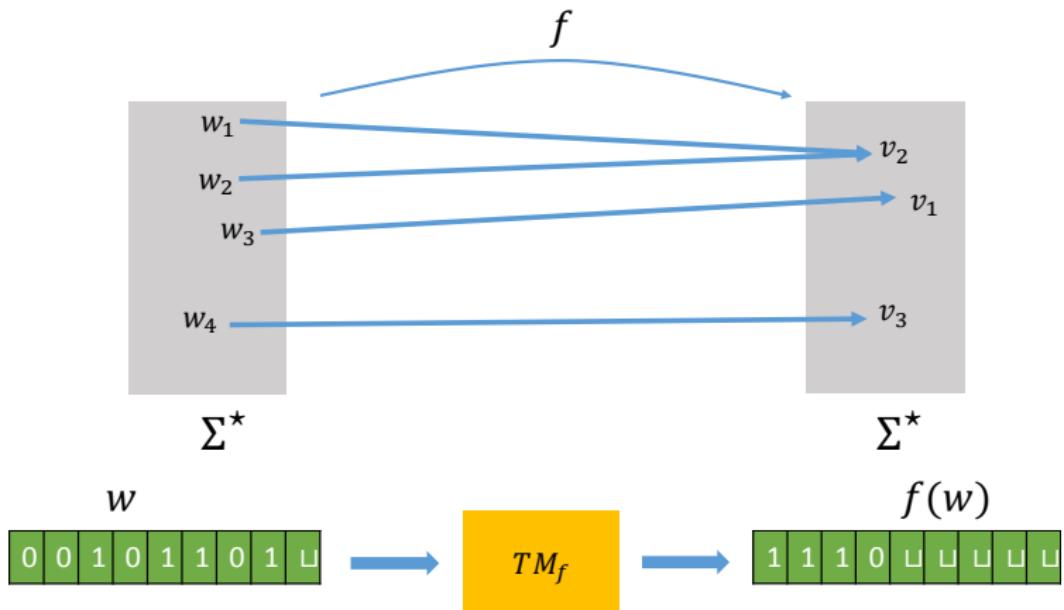
Find the answer and win USD 1,000,000!



Cook-Levin Theorem (informal): $SAT \in P$ iff $P = NP$.
(Also $INDSET \in P$ iff $P = NP$.)

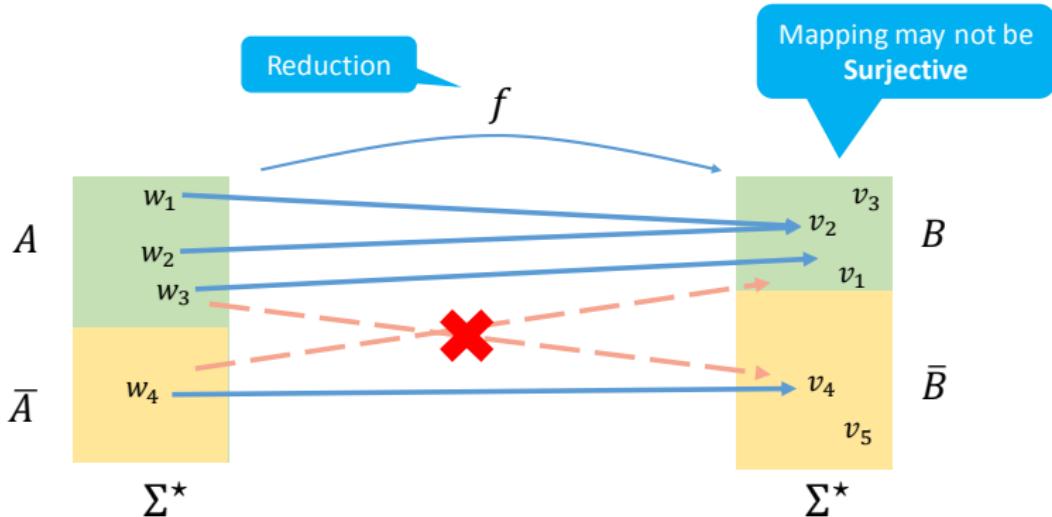
Polynomial-Time Reductions

Reductions Part 1: Poly-time Computability



Definition: A function $f : \Sigma^* \rightarrow \Sigma^*$ is a *poly-time computable function* if some *poly-time* TM M , on *every* input w halts with *just* $f(w)$ on its tape.

Reductions Part 2: Correctness



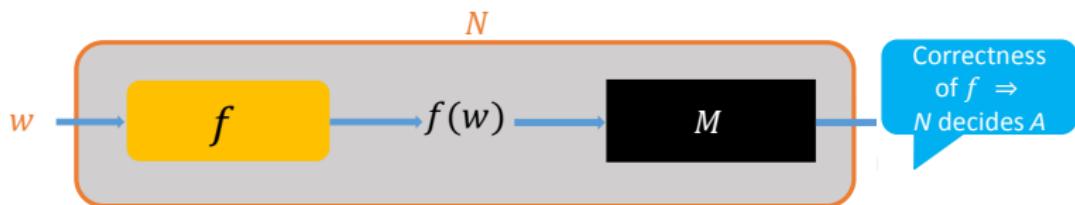
Definition: Language A is **poly-time mapping reducible** to language B , written $A \leq_P B$, if there is a **poly-time** computable function $f : \Sigma^* \rightarrow \Sigma^*$, such that for **every** $w \in \Sigma^*$:

$$w \in A \Leftrightarrow f(w) \in B$$

Theorem: If $A \leq_P B$ and B is in P , then A is in P .

Proof:

- ▶ Assume that M is an $O(n^p)$ -time decider for B and f is an $O(n^q)$ -time reduction from A to B .
- ▶ Let N be a TM as follows:



- ▶ N = “On input w :
 - 1 Compute $f(w)$ ($O(|w|^q)$ time; $|f(w)| = O(|w|^q)$)
 - 2 Run M on input $f(w)$ and output whatever M outputs” ($O(|w|^{pq})$ time)

Corollary: If $A \leq_P B$ and A is not in P , then B is not in P .

Theorem: If $A \leq_P B$ and $B \leq_P C$, then $A \leq_P C$. (i.e. \leq_P is transitive.)

Proof:

- ▶ Assume f_{AB} is an $O(n^p)$ -time reduction from A to B and f_{BC} is an $O(n^q)$ -time reduction from B to C .
- ▶ N = “On input w :
 - 1 Compute $f_{AB}(w)$ ($O(|w|^p)$ time; $|f(w)| = O(|w|^p)$)
 - 2 Compute $f_{BC}(f_{AB}(w))$ ” ($O(|w|^{pq})$ time)
- ▶ N computes a poly-time reduction $A \leq_P C$.

NP-completeness

Definition: A language L is said to be **NP-complete** if

- ▶ L is in NP.
- ▶ For every language L' in NP, $L' \leq_P L$.

Observe: If **one** NP-complete language has a polynomial time decider, then **every** language in NP has a polynomial time decider, i.e. $P = NP$.

The Cook-Levin Theorem: SAT is NP-complete.

To show L is NP-complete:

- ▶ **[NP membership]** Give a poly-time verifier for L .
- ▶ **[NP hardness]** Show that $SAT \leq_P L$
(or take any L^* already proven to be NP-complete, and show $L^* \leq_P L$).

Examples of NP-completeness proofs

3SAT is NP-complete

$k\text{SAT} = \{\varphi : \varphi \text{ is satisfiable and each clause of } \varphi \text{ contains } \leq k \text{ literals}\}$

Verifier for 3SAT: Just use the verifier for SAT.

Claim: $\text{SAT} \leq_P 3\text{SAT}$

Reduction: Given φ ,

- ▶ While φ contains a clause $K = (\ell_1 \vee \ell_2 \vee \ell_3 \vee \cdots \vee \ell_m)$ with > 3 literals

Replace K with the following two clauses

$$\left. \begin{array}{l} K_1 = (\ell_1 \vee \ell_2 \vee z) \\ K_2 = (\bar{z} \vee \ell_3 \vee \cdots \vee \ell_m) \end{array} \right\}$$

Preserves satisfiability
(check!)

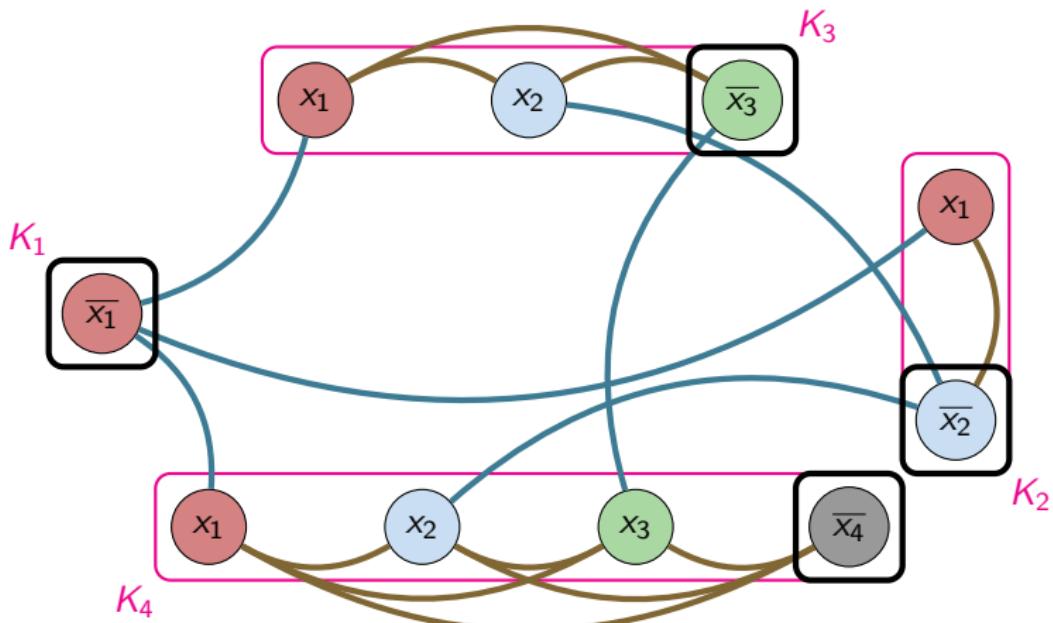
What is the runtime?

Does $\text{SAT} \leq_P 2\text{SAT}$ analogously?

INDSET is NP-complete

Claim: SAT \leq_P INDSET

$$\varphi = \underbrace{\overline{x_1}}_{K_1} \wedge \underbrace{(x_1 \vee \overline{x_2})}_{K_2} \wedge \underbrace{(x_1 \vee x_2 \vee \overline{x_3})}_{K_3} \wedge \underbrace{(x_1 \vee x_2 \vee x_3 \vee \overline{x_4})}_{K_4}$$



INDSET is NP-complete

Claim: $\text{SAT} \leq_P \text{INDSET}$

Reduction f : On input φ ,

- 1 Let G be the graph generated as follows.
 - 1 Take a vertex for each literal of each clause.
 - 2 Add edges for pairs of conflicting literals.
 - 3 Add edges for pairs of literals from the same clause.
- 2 Let m be the number of clauses in φ .
- 3 Output (G, m) .

Claim: $\varphi \in \text{SAT} \implies f(\varphi) \in \text{INDSET}$

Proof: C : satisfying assignment of φ . Pick one true literal from each clause. The corresponding vertices form an independent set.

Claim: $f(\varphi) \in \text{INDSET} \implies \varphi \in \text{SAT}$

Proof: C : independent set in G , $|C| = m$. C contains one vertex from each group. Set the corresponding literals to true to get a satisfying assignment.

Next class

Will continue NP-completeness.