
Lecture 7: Time Complexity, P vs. NP

Mika Göös

School of Computer and Communication Sciences

Lecture 7



Time Complexity

Lecture 7



Computability: worst case
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A decidable language L
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How to compare different deciders?
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Two deciders for L

2

4

12

15

22

17

110

49

34

38

300

𝑀𝐴 𝑀𝐵

12

110

⋮ ⋮

𝜀

0

1

01

10

00

11

⋮

001

010

011

000

2

9

10

40

30

45

39

73

77

85

80
300

10

45

85

𝜀

0

1

01

10

00

11

⋮

001

010

011

000

Worst case in 
this group  

2 2

Two Deciders for 𝐿

Lecture 7



Running time of a TM

Definition: Let M be a TM that halts on all inputs (decider). The
running time or time complexity of M is the function t : N→ N where

t(n) = max
w∈Σ∗:|w |=n

number of steps M takes on w

I M runs in time t(n)
I n represents the input length

t(0) = 2
t(1) = 10
t(2) = 45
t(3) = 85

Running Time of a TM 
Definition: Let 𝑀 be a TM that halts on all inputs (decider).  The 
running time or time complexity of 𝑀 is the function 𝑡: ℕ → ℕ
where 

𝑡 𝑛 = max
𝑤∈Σ⋆; 𝑤 =𝑛

number of steps 𝑀 takes on 𝑤

- 𝑀 runs in time 𝑡 𝑛
- 𝑛 represents the input length
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Two deciders for L
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Two Deciders for 𝐿
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How to compare running time functions?
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How to compare running time functions?
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The Growth of Functions
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Big-O and Small-o notation

Definition (Big-O): Let f , g : N→ R≥0. We say f (n) = O(g(n)) if

∃C > 0, n0 ∈ N s.t. ∀n ≥ n0 f (n) ≤ C · g(n)

Examples:
I 5n3 + 1 = O(2n) ? YES
I 5n3 + 1 = O(20n + 5) ? NO

Definition (Small-o): Let f , g : N→ R≥0. We say f (n) = o(g(n)) if

∀c > 0,∃n0 ∈ N s.t. ∀n ≥ n0 f (n) < c · g(n)

Examples:
I
√
n = o(n) ? YES

I f (n) = o(f (n)) ? NO
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Time Complexity

Definition: Time complexity class

TIME (t(n)) = {L ⊆ Σ∗ | L is decided by a TM with running time O(t(n))}

Example:
TIME(n) ⊆ TIME(n2) ⊆ · · · ⊆ TIME(2

√
n) ⊆ TIME(2n) ⊆ TIME(22n ) . . .

Example: REGULAR ⊆ TIME (n)
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The complexity class P and efficiency

Definition: P is the class of languages that are decidable in polynomial
time on a (deterministic) Turing machine. In other words,

P =
∞⋃

k=1
TIME (nk) .

Some languages in P:
I {〈A〉 : A is a sorted array of integers}
I {〈G , s, t〉 : s and t are vertices connected in graph G}

(Breadth-First Search)
I {〈G〉 : G is a connected graph}
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NP: Verification vs. Search
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SAT-verify and SAT

Conjunctive Normal Form (CNF) Formula:

ϕ1 = (x ∨ y ∨ z0) ∧ (x ∨ y ∨ z1) ∧ (x ∨ y ∨ z2) ∧ (x ∨ y ∨ z3)

ϕ2 = x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)

ϕ3 = x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

I CNF Formula: AND of Clauses
I Clause: OR of Literals
I Literal: variable or its negation

Satisfying assignment: Boolean assignment to variables which makes
the formula TRUE.

Check: ϕ1 has 32 satisfying assignments, ϕ2 has only one, ϕ3 has zero.

A formula is satisfiable if it has at least one satisfying assignment.
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SAT-verify and SAT

SAT-verify = {〈ϕ,C〉 : C is a satisfying assignment of ϕ}

Is SAT-verify in P? Yes!

1 Substitute for literals according to C .

2 Check that every clause has at least one TRUE literal.

SAT = {〈ϕ〉 : ϕ is satisfiable}
= {〈ϕ〉 : ∃C such that 〈ϕ,C〉 ∈ SAT-verify}

Is SAT in P?

Decider for SAT:

1 For each assignment C :
I If 〈ϕ,C〉 ∈ SAT-verify, ACCEPT ϕ.

2 REJECT ϕ.
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GI-verify and GI
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Graph Isomorphism: Bijection f : V (G1) −→ V (G2) which preserves
adjacency: {u, v} ∈ E (G1)⇔ {f (u), f (v)} ∈ E (G2)

Eg. a→ 1 b → 2 c → 3 d → 4 e → 5 f → 6 in the graphs above.

Two graphs are isomorphic if they have at least one graph isomorphism.

Lecture 7



GI-verify and GI

GI-verify = {〈G1,G2,C〉 : C : V (G1) −→ V (G2) is a graph isomorphism}

Is GI-verify in P? Yes!

1 Check that C is a bijection: For each u, v ∈ V (G1):
I Check {u, v} ∈ E (G1) ⇔ {C(u),C(v)} ∈ E (G2).

GI = {〈G1,G2〉 : G1 and G2 are isomorphic}
= {〈G1,G2〉 : ∃C such that 〈G1,G2,C〉 ∈ GI-verify}

Is GI in P?

Decider for GI:

1 For each function C : V (G1) −→ V (G2):
I If 〈G1,G2,C〉 ∈ GI-verify, ACCEPT 〈G1,G2〉.

2 REJECT 〈G1,G2〉.
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INDSET-verify and INDSET
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Independent Set: Subset S ⊆ V (G) such that no two vertices in S are
adjacent in G .

Eg. {1, 3, 5}, {2, 4}, {6}, ∅, etc. in the graph above.
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INDSET-verify and INDSET

INDSET-verify = {〈G , k,C〉 : C is an independent set of size k in G}

Is INDSET-verify in P? Yes!
1 Check that |C | = k.

2 For each u, v ∈ C :
I Check {u, v} < E (G).

INDSET = {〈G , k〉 : G has an independent of size k}
= {〈G , k〉 : ∃C such that 〈G , k,C〉 ∈ INDSET-verify}

Is INDSET in P?

Decider for INDSET:

1 For each subset C ⊆ V (G):
I If 〈G , k,C〉 ∈ INDSET-verify, ACCEPT 〈G , k〉.

2 REJECT 〈G , k〉.
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Verifiers and the class NP

Recall: A decider for language L is a TM M such that for each x ∈ Σ∗

I If x ∈ L, then M accepts x .
I If x < L, then M rejects x .

Definition:
A verifier for language L is a TM M such that for each x ∈ Σ∗

I If x ∈ L, then there exists C such that M accepts 〈x ,C〉.
I If x < L, then for every C , M rejects 〈x ,C〉.

(C is called a certificate or witness)

A verifier is a polynomial time verifier if its running time on any
〈x ,C〉 is polynomial in |x|. (Thus |C | is polynomial in |x |)

Definition: NP is the class of languages that have poly-time verifiers.
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Why is it called NP?
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Detour: Non-deterministic Turing Machines

Recall: In a Turing machine, δ : (Q × Γ) −→ Q × Γ× {L,R}.

In a Nondeterministic Turing Machine (NTM),

δ : (Q × Γ) −→ P(Q × Γ× {L,R})

(several possible transitions for a given state and tape symbol)

Definition: A nondeterministic decider for language L is an NTM N
such that for each x ∈ Σ∗, every computation of N on x halts, and
moreover,
I If x ∈ L, then some computation of N on x accepts.
I If x < L, then every computation of N on x rejects.

An NTM is a polynomial time NTM if the running time of its longest
computation on x is polynomial in |x|.
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Nondeterministic deciders ⇐⇒ Verifiers

Theorem: For any language L ⊆ Σ∗,

L has a nondeterministic poly-time decider ⇐⇒ L has a poly-time verifier.

Proof Sketch (⇐=):

Let M be the verifier. NTM N on input x does the following:

1 Write a certificate C nondeterministically.

2 Run M on 〈x ,C〉.

Proof Sketch (=⇒):

Let N be the nondeterministic decider. Verifier M on 〈x ,C〉 computes:
I Simulate N on x , choosing transitions given by C .

M accepts 〈x ,C〉 iff x ∈ L and C is an accepting path of N on x .
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Non-deterministic Polynomial-time

Theorem: For any language L ⊆ Σ∗,

L has a nondeterministic poly-time decider ⇐⇒ L has a poly-time verifier.

Definition: NP is the class of languages which have poly-time nonde-
terministic deciders, or equivalently, have poly-time verifiers.

Definition:

NTIME(t(n)) = {L : L has a nondeterministic O(t(n)) time decider}

Then

NP =
∞⋃

k=1
NTIME(nk) .

∴ SAT, GI, INDSET are all in NP.
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P and NP
Is P ⊆ NP? Yes (obviously)

Is P = NP? Nobody knows . . .

Find the answer and win USD 1,000,000!

NP
SAT

INDSETGI?
P

GI?

P=NP

SAT

INDSET

GI

Cook-Levin Theorem (informal): SAT ∈ P iff P = NP.

(Also INDSET ∈ P iff P = NP.)
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