Lecture 7: Time Complexity, P vs. NP
Mika Goos

E PF L School of Computer and Communication Sciences

Lecture 7

Time Complexity

Computability: worst case

Number of
configurations TM
needs to reach an
accept/reject state

Recognizers for a language L;
Which one is better?

on this input M, My
< o < o
0 < < o0
1 < 0o %)
00 St St

Does not halt on this
01 < < input and, hence, is
not a decider

10 < < oo
11 ey <@
000 <& ©
001 <@ <@
010 < <

In the rest of the course material we just consider decidable languages

Lecture 7

A decidable language L

Number of
configurations TM
needs to reach an

. accept/reject state
Deciders for L: S
L

My Mg Mg Mp, Mg Mg
lnputs € 2 2 5 2 3 4
o 2 5 12 2 3 s
1 20 12 14 13 8 19 2
00 32 14 18 9 18 3 5 90
01 12 21 56 8 12 18 18 30
10 21 22 26 15 11 12 32 15
11 11 12 25 100 13 48 98 29
000 320 201 159 201 190 200 180 65
001 211 208 190 200 189 301 219 82
010 328 271 214 441 193 208 109 77
011 227 261 191 201 188 107 211 207

How to compare different deciders?

| ecture 7

Two deciders for L

M, Mp
€ 2] 2 € 2] 2
0 4 0 9
1 12 2 1 10 1

Worst case in

(1 300 011

00 - 00 - this group
o .

110 45
o o
0 -
o (N

Lecture 7

Running time of a TM

Definition: Let M be a TM that halts on all inputs (decider). The
running time or time complexity of M is the function t : N — N where

t(n) = max number of steps M takes on w
wEX*:|w|=n

£ 2 } 2
> M runs in time t(n) 0 9]
10
> n represents the input length 10
o0 21
01 30
t(0) =2 0 8 | *®
t(1) =10 11 33
t(2) = 45 000 73
£(3) = 85 ot
(3)= 010 ¥ |ass
011 &

Lecture 7

Two deciders for L

M, Mg
lengho] t;(0) =3 tengtho } t,(0) =3
eght } (1) =5 el | (1) =8
Length 2 Length 2
t(2) =9 5(2)=13
Length 3 t,(3) =17 lengin® t,(3) =18
s h h _
i Length 4 t1(4) —33 Length 4 t2(4,) 23
Length S t;(5) = 65 Length 5 t,(5) =28

Lecture 7

ti(n)=2""1+1 vs t,(n)=5n+3

Time

70
60
50
40
30
20
10

0
0 1 2 3 4 5

” Input length ﬁ
O X b

==

How to compare running time functions?

The Growth of Functions

60,000 | —2x?
——1000 log,(x)
S 0x
40,000 |
20,000 |
. 4_}7

50 100 150

Lecture 7

Big-O and Small-o notation

Definition (Big-O): Let f,g : N — R>q. We say f(n) = O(g(n)) if

3C > 0,np € N sit. Yn>ny f(n) < C-g(n)

Examples:
> 50+ 1=0(2") ? YES
> 5n° 4+ 1= 0(20n+5) ? NO

Definition (Small-0): Let f, g : N — Rxq. We say f(n) = o(g(n)) if

Ve > 0,3np € N sit. Yn>ng f(n) <c-g(n)

Examples:
» /n=o(n)? YES
> f(n) = o(f(n)) ? NO

Lecture 7

To summarize. . .

X

W WA N

Length O
Length 1
Length 2

Length 3

Length 4

Length 5

t(0) =2
t(1) =4
t(2)=3
t(3)=7
t(4) =15
t(5) =14

—)

500

400

300

200

100

2500

2000

1500

1000

500

123 456 7 8 9 101112
—t()

t(n) =0(2")

!

12 3 4 5 6 7 8 9 10 11 12

— L

Time Complexity

Definition: Time complexity class

TIME(t(n)) = {L C X" | L is decided by a TM with running time O(t(n))}

Example:
TIME(n) C TIME(n?) C --- C TIME(2V™) C TIME(2") C TIME(22") ...

Example: REGULAR C TIME(n)

Lecture 7

The complexity class P and efficiency

Definition: P is the class of languages that are decidable in polynomial
time on a (deterministic) Turing machine. In other words,

o0
P = TIME(n").
k=1

Some languages in P:
> {(A) : Ais a sorted array of integers}

» {(G,s,t) : s and t are vertices connected in graph G}
(Breadth-First Search)

» {(G) : G is a connected graph}

Lecture 7

NP: Verification vs. Search

Conjunctive Normal Form (CNF) Formula:
1=XVYyVz2)AXVYVZ)AXVyYyV2a)A(xVyVz)

=X A1 VXR)A 1 VxaVX3)A(x1 VXV x3VXg)

p3=X A (x1VX2) A (x1V x)

» CNF Formula: AND of Clauses
» Clause: OR of Literals
> Literal: variable or its negation

Satisfying assignment: Boolean assignment to variables which makes
the formula TRUE.

Check: 1 has 32 satisfying assignments, ¢, has only one, (3 has zero.

A formula is satisfiable if it has at least one satisfying assignment.

SAT-verify and SAT

SAT-verify = {(¢, C) : C is a satisfying assignment of ¢}
Is SAT-verify in P? Yes!
Substitute for literals according to C.

Check that every clause has at least one TRUE literal.
SAT = {{(p) : ¢ is satisfiable}
{{¢) : 3C such that (¢, C) € SAT-verify}

Is SAT in P?
Decider for SAT:
For each assignment C:
> If (p, C) € SAT-verify, ACCEPT .
REJECT .

Lecture 7

Gl-verify and Gl

Graph Isomorphism: Bijection f: V(G;) — V/(Gy) which preserves
adjacency: {u,v} € E(G1) < {f(u),f(v)} € E(Gp)

Eg.a—>1b—>2c—>3d—>4e—5f— 06in the graphs above.

Two graphs are isomorphic if they have at least one graph isomorphism.

Lecture 7

Gl-verify and Gl

Gl-verify = {(G1, Gp, C) : C: V(G1) — V/(Gy) is a graph isomorphism}
Is Gl-verify in P? Yes!

Check that C is a bijection: For each u,v € V(G;):
> Check {u,v} € E(G1) & {C(u),C(v)} € E(Gp).

Gl = {{(G,Gy) : Gy and G, are isomorphic}
= {(G1,Gy) : 3C such that (Gy, Gy, C) € Gl-verify}
Is Gl in P?
Decider for Gl:
For each function C : V(G1) — V(Gp):
> If (G1, Gp, C) € Gl-verify, ACCEPT (Gi, Gp).
REJECT (Gy, Go).

Lecture 7

INDSET-verify and INDSET

Independent Set: Subset S C V/(G) such that no two vertices in S are
adjacent in G.

Eg. {1,3,5}, {2,4}, {6}, 0, etc. in the graph above.

Lecture 7

INDSET-verify and INDSET

INDSET-verify = {(G, k, C) : C is an independent set of size k in G}
Is INDSET-verify in P? Yes!
Check that |C| = k.

For each u,v € C:
» Check {u,v} ¢ E(G).

INDSET = {(G,k) : G has an independent of size k}
= {(G,k) : 3C such that (G, k, C) € INDSET-verify}
Is INDSET in P?
Decider for INDSET:
For each subset C C V(G):
> If (G, k, C) € INDSET-verify, ACCEPT (G, k).
REJECT (G, k).

Lecture 7

Recall: A decider for language L is a TM M such that for each x € ¥*
» If x € L, then M accepts x.
> If x ¢ L, then M rejects x.
Definition:
A verifier for language L is a TM M such that for each x € ©*
> If x € L, then there exists C such that M accepts (x, C).
» If x ¢ L, then for every C, M rejects (x, C).
(C is called a certificate or witness)
A verifier is a polynomial time verifier if its running time on any

(x, C) is polynomial in |x|. (Thus |C] is polynomial in |x|)

Definition: NP is the class of languages that have poly-time verifiers.

Why is it called NP?

Recall: In a Turing machine, 6 : (@ x) — Q x I x {L, R}.
In a Nondeterministic Turing Machine (NTM),

§:(QxT)— P(QxT x{LR})

(several possible transitions for a given state and tape symbol)

Definition: A nondeterministic decider for language L is an NTM N
such that for each x € L*, every computation of N on x halts, and
moreover,

> If x € L, then some computation of N on x accepts.
> If x ¢ L, then every computation of N on x rejects.

An NTM is a polynomial time NTM if the running time of its longest
computation on x is polynomial in |x|.

Theorem: For any language L C ¥,

L has a nondeterministic poly-time decider <= L has a poly-time verifier.

Proof Sketch («<=):

Let M be the verifier. NTM N on input x does the following:
Write a certificate C nondeterministically.
Run M on (x, C).

Proof Sketch (=):

Let N be the nondeterministic decider. Verifier M on (x, C) computes:
> Simulate N on x, choosing transitions given by C.

M accepts (x, C) iff x € L and C is an accepting path of N on x.

Theorem: For any language L C ¥ *,

L has a nondeterministic poly-time decider <=- L has a poly-time verifier.

Definition: NP is the class of languages which have poly-time nonde-
terministic deciders, or equivalently, have poly-time verifiers.

Definition:
NTIME(t(n)) = {L : L has a nondeterministic O(t(n)) time decider}

Then

NP = | J NTIME(n*).
k=1
.. SAT, GI, INDSET are all in NP.

P and NP

Is P C NP? Yes (obviously)

Is P = NP? Nobody knows ...
Find the answer and win USD 1,000,000!

NP
SAT

- INDSET

P=NP

SAT
INDSET

Cook-Levin Theorem (informal): SAT € P iff P = NP.
(Also INDSET € P iff P = NP.)

Lecture 7

