

Lecture 7: Time Complexity, P vs. NP

Mika Göös

School of Computer and Communication Sciences

Lecture 7

Time Complexity

Computability: worst case

Number of configurations TM needs to reach an accept/reject state on this input

Recognizers for a language L ;
Which one is better?

	M_A	M_B
ϵ	$< \infty$	$< \infty$
0	$< \infty$	$< \infty$
1	$< \infty$	∞
00	$< \infty$	$< \infty$
01	$< \infty$	$< \infty$
10	$< \infty$	$< \infty$
11	$< \infty$	$< \infty$
000	$< \infty$	∞
001	$< \infty$	$< \infty$
010	$< \infty$	$< \infty$
\vdots	\vdots	\vdots

Does not halt on this input and, hence, is not a decider

In the rest of the course material we just consider **decidable** languages

A decidable language L

		Deciders for L :								
		M_A	M_B	M_C	M_D	M_E	M_F	M_G	M_H	
Inputs	ϵ	2	2	5	2	3	4	2	2	...
	0	2	5	12	2	3	5	12	5	...
	1	20	12	14	13	8	19	2	9	...
	00	32	14	18	9	18	3	5	90	...
	01	12	21	56	8	12	18	18	30	...
	10	21	22	26	15	11	12	32	15	...
	11	11	12	25	100	13	48	98	29	...
	000	320	201	159	201	190	200	180	65	...
	001	211	208	190	200	189	301	219	82	...
	010	328	271	214	441	193	208	109	77	...
	011	227	261	191	201	188	107	211	207	...
	:	:	:	:	:	:	:	:	:	:

Number of configurations TM needs to reach an accept/reject state on this input

How to compare different deciders?

Two deciders for L

	M_A		M_B	
ε	2	2	2	2
0	4	12	9	10
1	12		10	
00	15		40	
01	22	110	30	
10	17		45	
11	110		39	
000	49		73	
001	34		77	
010	38	300	85	85
011	300		80	
\vdots			\vdots	

Worst case in this group

300

Running time of a TM

Definition: Let M be a TM that halts on all inputs (decider). The running time or **time complexity** of M is the function $t : \mathbb{N} \rightarrow \mathbb{N}$ where

$$t(n) = \max_{w \in \Sigma^* : |w|=n} \text{number of steps } M \text{ takes on } w$$

- M runs in time $t(n)$
- n represents the input length

$$t(0) = 2$$

$$t(1) = 10$$

$$t(2) = 45$$

$$t(3) = 85$$

ϵ	2	2
0	9	
1	10	10
00	21	
01	30	45
10	45	
11	33	85
000	73	
001	77	85
010	85	
011	80	85
:		

Two deciders for L

M_A
Length 0
Length 1
Length 2
Length 3
Length 4
Length 5
⋮

$t_1(0) = 3$

$t_1(1) = 5$

$t_1(2) = 9$

$t_1(3) = 17$

$t_1(4) = 33$

$t_1(5) = 65$

⋮

M_B
Length 0
Length 1
Length 2
Length 3
Length 4
Length 5
⋮

$t_2(0) = 3$

$t_2(1) = 8$

$t_2(2) = 13$

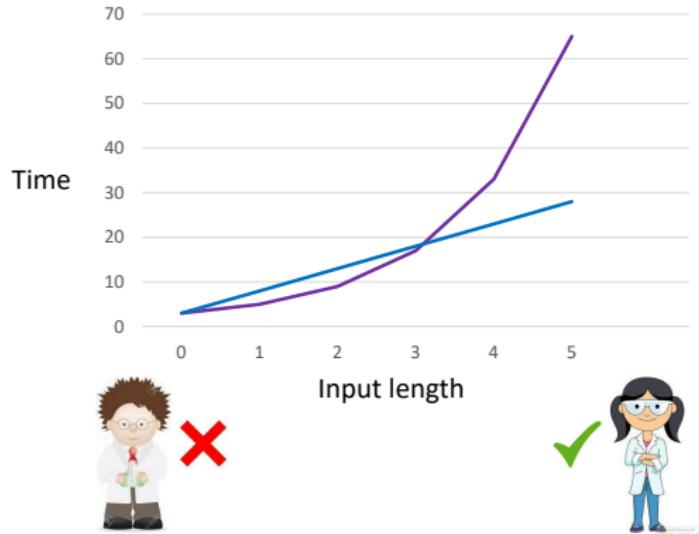
$t_2(3) = 18$

$t_2(4) = 23$

$t_2(5) = 28$

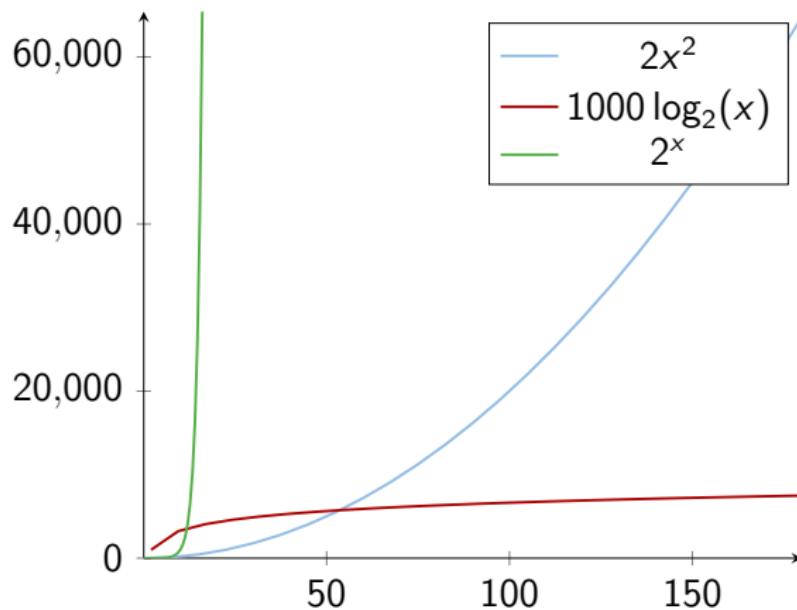
⋮

$$t_1(n) = 2^{n+1} + 1 \quad \text{vs} \quad t_2(n) = 5n + 3$$



How to compare running time functions?

The Growth of Functions



Big-O and Small-o notation

Definition (Big-O): Let $f, g : \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$. We say $f(n) = O(g(n))$ if

$$\exists C > 0, \exists n_0 \in \mathbb{N} \text{ s.t. } \forall n \geq n_0 \quad f(n) \leq C \cdot g(n)$$

Examples:

- ▶ $5n^3 + 1 = O(2^n)$? YES
- ▶ $5n^3 + 1 = O(20n + 5)$? NO

Definition (Small-o): Let $f, g : \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$. We say $f(n) = o(g(n))$ if

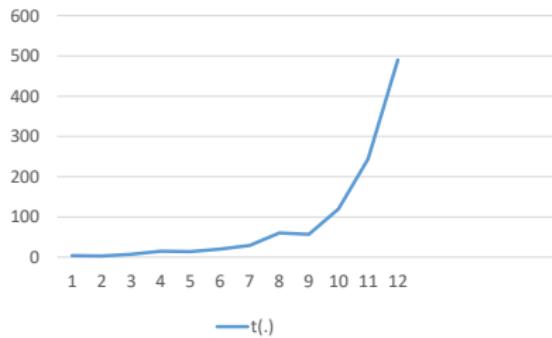
$$\forall c > 0, \exists n_0 \in \mathbb{N} \text{ s.t. } \forall n \geq n_0 \quad f(n) < c \cdot g(n)$$

Examples:

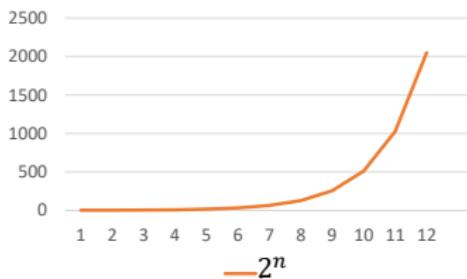
- ▶ $\sqrt{n} = o(n)$? YES
- ▶ $f(n) = o(f(n))$? NO

To summarize...

<i>M</i>		
2	Length 0	$t(0) = 2$
4	Length 1	$t(1) = 4$
3	Length 2	$t(2) = 3$
2		
3		
\vdots		
4	Length 3	$t(3) = 7$
\vdots		
7		
\vdots		
6		
10	Length 4	$t(4) = 15$
\vdots		
15		
\vdots		
10	Length 5	$t(5) = 14$
8		
\vdots		
14		
\vdots		
		\vdots



$$t(n) = O(2^n)$$



Time Complexity

Definition: Time complexity class

$$TIME(t(n)) = \{L \subseteq \Sigma^* \mid L \text{ is decided by a TM with running time } O(t(n))\}$$

Example:

$$TIME(n) \subseteq TIME(n^2) \subseteq \dots \subseteq TIME(2^{\sqrt{n}}) \subseteq TIME(2^n) \subseteq TIME(2^{2^n}) \dots$$

Example: $REGULAR \subseteq TIME(n)$

The complexity class **P** and efficiency

Definition: **P** is the class of languages that are **decidable in polynomial time** on a (deterministic) Turing machine. In other words,

$$\mathbf{P} = \bigcup_{k=1}^{\infty} \text{TIME}(n^k).$$

Some languages in P:

- ▶ $\{\langle A \rangle : A \text{ is a sorted array of integers}\}$
- ▶ $\{\langle G, s, t \rangle : s \text{ and } t \text{ are vertices connected in graph } G\}$
(Breadth-First Search)
- ▶ $\{\langle G \rangle : G \text{ is a connected graph}\}$

NP: Verification vs. Search

SAT-verify and SAT

Conjunctive Normal Form (CNF) Formula:

$$\varphi_1 = (\bar{x} \vee \bar{y} \vee z_0) \wedge (x \vee \bar{y} \vee z_1) \wedge (\bar{x} \vee y \vee z_2) \wedge (x \vee y \vee z_3)$$

$$\varphi_2 = \bar{x}_1 \wedge (x_1 \vee \bar{x}_2) \wedge (x_1 \vee x_2 \vee \bar{x}_3) \wedge (x_1 \vee x_2 \vee x_3 \vee \bar{x}_4)$$

$$\varphi_3 = \bar{x}_1 \wedge (x_1 \vee \bar{x}_2) \wedge (x_1 \vee x_2)$$

- ▶ **CNF Formula:** AND of Clauses
- ▶ **Clause:** OR of Literals
- ▶ **Literal:** variable or its negation

Satisfying assignment: Boolean assignment to variables which makes the formula TRUE.

Check: φ_1 has 32 satisfying assignments, φ_2 has only one, φ_3 has zero.

A formula is **satisfiable** if it has at least one satisfying assignment.

SAT-verify and SAT

$\text{SAT-verify} = \{\langle \varphi, C \rangle : C \text{ is a satisfying assignment of } \varphi\}$

Is SAT-verify in P? Yes!

- 1 Substitute for literals according to C .
- 2 Check that every clause has at least one TRUE literal.

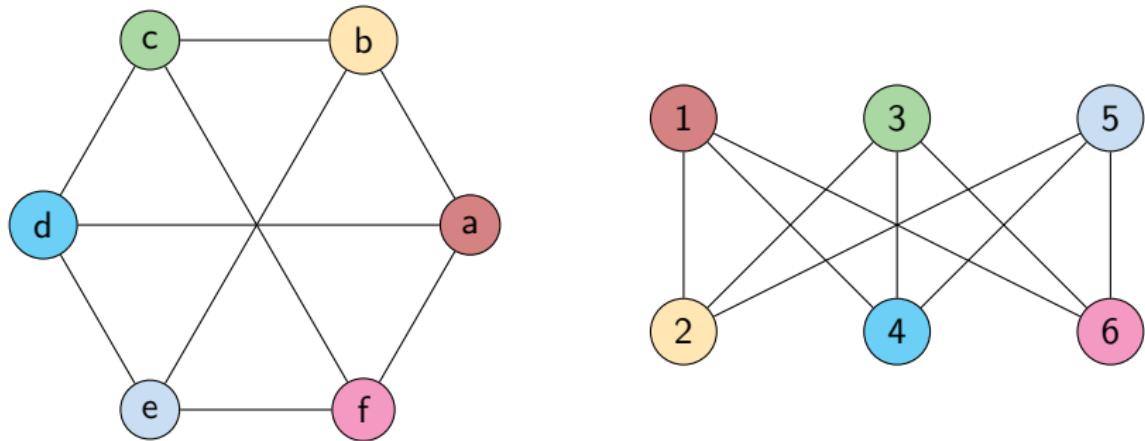
$$\begin{aligned}\text{SAT} &= \{\langle \varphi \rangle : \varphi \text{ is satisfiable}\} \\ &= \{\langle \varphi \rangle : \exists C \text{ such that } \langle \varphi, C \rangle \in \text{SAT-verify}\}\end{aligned}$$

Is SAT in P?

Decider for SAT:

- 1 For each assignment C :
 - If $\langle \varphi, C \rangle \in \text{SAT-verify}$, ACCEPT φ .
- 2 REJECT φ .

GI-verify and GI



Graph Isomorphism: Bijection $f: V(G_1) \rightarrow V(G_2)$ which preserves adjacency: $\{u, v\} \in E(G_1) \Leftrightarrow \{f(u), f(v)\} \in E(G_2)$

Eg. $a \rightarrow 1$ $b \rightarrow 2$ $c \rightarrow 3$ $d \rightarrow 4$ $e \rightarrow 5$ $f \rightarrow 6$ in the graphs above.

Two graphs are **isomorphic** if they have at least one graph isomorphism.

GI-verify and GI

GI-verify = $\{\langle G_1, G_2, C \rangle : C : V(G_1) \longrightarrow V(G_2) \text{ is a graph isomorphism}\}$

Is GI-verify in P? Yes!

- 1 Check that C is a bijection: For each $u, v \in V(G_1)$:
 - Check $\{u, v\} \in E(G_1) \Leftrightarrow \{C(u), C(v)\} \in E(G_2)$.

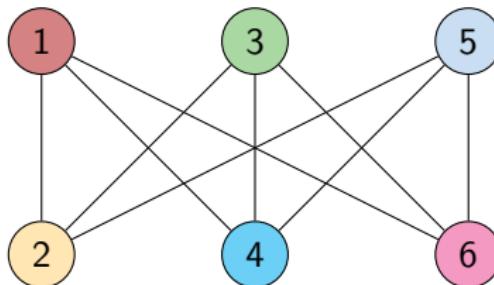
$$\begin{aligned} \text{GI} &= \{\langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are isomorphic}\} \\ &= \{\langle G_1, G_2 \rangle : \exists C \text{ such that } \langle G_1, G_2, C \rangle \in \text{GI-verify}\} \end{aligned}$$

Is GI in P?

Decider for GI:

- 1 For each function $C : V(G_1) \longrightarrow V(G_2)$:
 - If $\langle G_1, G_2, C \rangle \in \text{GI-verify}$, ACCEPT $\langle G_1, G_2 \rangle$.
- 2 REJECT $\langle G_1, G_2 \rangle$.

INDSET-verify and INDSET



Independent Set: Subset $S \subseteq V(G)$ such that no two vertices in S are adjacent in G .

Eg. $\{1, 3, 5\}$, $\{2, 4\}$, $\{6\}$, \emptyset , etc. in the graph above.

INDSET-verify and INDSET

$\text{INDSET-verify} = \{\langle G, k \rangle : C \text{ is an independent set of size } k \text{ in } G\}$

Is INDSET-verify in P? Yes!

- 1 Check that $|C| = k$.
- 2 For each $u, v \in C$:
 - Check $\{u, v\} \notin E(G)$.

$\text{INDSET} = \{\langle G, k \rangle : G \text{ has an independent set of size } k\}$
 $= \{\langle G, k \rangle : \exists C \text{ such that } \langle G, k, C \rangle \in \text{INDSET-verify}\}$

Is INDSET in P?

Decider for INDSET:

- 1 For each subset $C \subseteq V(G)$:
 - If $\langle G, k, C \rangle \in \text{INDSET-verify}$, ACCEPT $\langle G, k \rangle$.
- 2 REJECT $\langle G, k \rangle$.

Verifiers and the class NP

Recall: A **decider** for language L is a TM M such that for each $x \in \Sigma^*$

- ▶ If $x \in L$, then M accepts x .
- ▶ If $x \notin L$, then M rejects x .

Definition:

A **verifier** for language L is a TM M such that for each $x \in \Sigma^*$

- ▶ If $x \in L$, then there exists C such that M accepts $\langle x, C \rangle$.
- ▶ If $x \notin L$, then for every C , M rejects $\langle x, C \rangle$.

(C is called a *certificate* or *witness*)

A verifier is a **polynomial time** verifier if its running time on any $\langle x, C \rangle$ is **polynomial in $|x|$** . (Thus $|C|$ is polynomial in $|x|$)

Definition: NP is the class of languages that have poly-time verifiers.

Why is it called **NP**?

Detour: Non-deterministic Turing Machines

Recall: In a Turing machine, $\delta : (Q \times \Gamma) \longrightarrow Q \times \Gamma \times \{L, R\}$.

In a **Nondeterministic Turing Machine (NTM)**,

$$\delta : (Q \times \Gamma) \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

(several possible transitions for a given state and tape symbol)

Definition: A **nondeterministic decider** for language L is an NTM N such that for each $x \in \Sigma^*$, **every computation of N on x halts**, and moreover,

- ▶ If $x \in L$, then **some** computation of N on x accepts.
- ▶ If $x \notin L$, then **every** computation of N on x rejects.

An NTM is a **polynomial time** NTM if the running time of its **longest computation** on x is **polynomial in $|x|$** .

Nondeterministic deciders \iff Verifiers

Theorem: For any language $L \subseteq \Sigma^*$,

L has a nondeterministic poly-time decider $\iff L$ has a poly-time verifier.

Proof Sketch (\Leftarrow):

Let M be the verifier. NTM N on input x does the following:

- 1 Write a certificate C nondeterministically.
- 2 Run M on $\langle x, C \rangle$.

Proof Sketch (\Rightarrow):

Let N be the nondeterministic decider. Verifier M on $\langle x, C \rangle$ computes:

- ▶ Simulate N on x , choosing transitions given by C .

M accepts $\langle x, C \rangle$ iff $x \in L$ and C is an accepting path of N on x .

Non-deterministic Polynomial-time

Theorem: For any language $L \subseteq \Sigma^*$,

L has a nondeterministic poly-time decider $\iff L$ has a poly-time verifier.

Definition: **NP** is the class of languages which have poly-time nondeterministic deciders, or equivalently, have poly-time verifiers.

Definition:

$\text{NTIME}(t(n)) = \{L : L \text{ has a nondeterministic } O(t(n)) \text{ time decider}\}$

Then

$$\text{NP} = \bigcup_{k=1}^{\infty} \text{NTIME}(n^k).$$

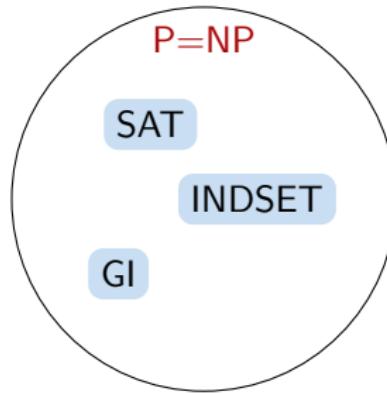
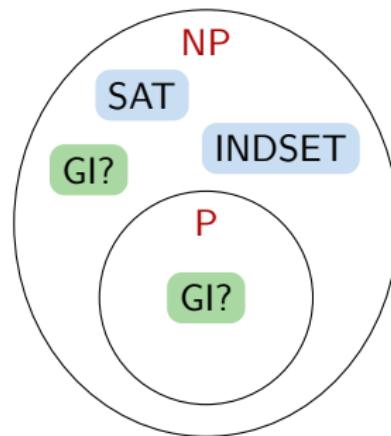
\therefore SAT, GI, INDSET are all in NP.

P and NP

Is $P \subseteq NP$? Yes (obviously)

Is $P = NP$? Nobody knows ...

Find the answer and win USD 1,000,000!



Cook-Levin Theorem (informal): $SAT \in P$ iff $P = NP$.
(Also $INDSET \in P$ iff $P = NP$.)