
Lecture 7: Time Complexity, P vs. NP

Mika Göös

School of Computer and Communication Sciences

Lecture 7

Time Complexity

Lecture 7

Computability: worst case
Computability: Worst Case

< ∞ < ∞
< ∞ < ∞
< ∞ ∞
< ∞ < ∞
< ∞ < ∞
< ∞ < ∞
< ∞ < ∞
< ∞ ∞
< ∞ < ∞
< ∞ < ∞
⋮ ⋮

𝜀

0

1

01
10

00

11
000

⋮

𝑀𝐴 𝑀𝐵

Does not halt on this
input and, hence, is

not a decider

Number of
configurations TM
needs to reach an
accept/reject state

on this input

Recognizers for a language 𝐿;
Which one is better?

In the rest of the course we just consider decidable languages

001
010

In the rest of the course material we just consider decidable languages

Lecture 7

A decidable language L

2 2 5 2 3 4 2 2
2 5 12 2 3 5 12 5
20 12 14 13 8 19 2 9
32 14 18 9 18 3 5 90
12 21 56 8 12 18 18 30
21 22 26 15 11 12 32 15
11 12 25 100 13 48 98 29
320 201 159 201 190 200 180 65
211 208 190 200 189 301 219 82
328 271 214 441 193 208 109 77
227 261 191 201 188 107 211 207

𝜀

0
1

01
10

00

11

000
001

𝑀𝐴 𝑀𝐵 𝑀𝐶 𝑀𝐺𝑀𝐹𝑀𝐸𝑀𝐷 𝑀𝐻 ⋯

A Decidable Language 𝐿

Inputs

How to compare different deciders?

010
011

⋮

…

…

…

…
…

…
…

…

…

…

…

⋮ ⋮ ⋮ ⋮ ⋱⋮⋮⋮⋮

Deciders for L:

Number of
configurations TM
needs to reach an
accept/reject state

on this input

How to compare different deciders?
Lecture 7

Two deciders for L

2

4

12

15

22

17

110

49

34

38

300

𝑀𝐴 𝑀𝐵

12

110

⋮ ⋮

𝜀

0

1

01

10

00

11

⋮

001

010

011

000

2

9

10

40

30

45

39

73

77

85

80
300

10

45

85

𝜀

0

1

01

10

00

11

⋮

001

010

011

000

Worst case in
this group

2 2

Two Deciders for 𝐿

Lecture 7

Running time of a TM

Definition: Let M be a TM that halts on all inputs (decider). The
running time or time complexity of M is the function t : N→ N where

t(n) = max
w∈Σ∗:|w |=n

number of steps M takes on w

I M runs in time t(n)
I n represents the input length

t(0) = 2
t(1) = 10
t(2) = 45
t(3) = 85

Running Time of a TM
Definition: Let 𝑀 be a TM that halts on all inputs (decider). The
running time or time complexity of 𝑀 is the function 𝑡: ℕ → ℕ
where

𝑡 𝑛 = max
𝑤∈Σ⋆; 𝑤 =𝑛

number of steps 𝑀 takes on 𝑤

- 𝑀 runs in time 𝑡 𝑛
- 𝑛 represents the input length

2

9

10

21

30

45

33

73

77

85

80

𝑡 0 = 2

𝑡 1 = 10

𝑡 2 = 45

𝑡 3 = 85
⋮

10

45

85

𝜀

0
1

01
10

00

11

⋮

001

010
011

000

2

Lecture 7

Two deciders for L

Length 0

Length 1

Length 2

Length 3

Length 4

Length 5

⋮

𝑀𝐴
𝑀𝐵

Length 0

Length 1

Length 2

Length 3

Length 4

Length 5

⋮

𝑡1 1 = 5

𝑡1 2 = 9

𝑡1 3 = 17

𝑡1 4 = 33

𝑡1 5 = 65

𝑡2 1 = 8

𝑡2 2 = 13

𝑡2 3 = 18

𝑡2 4 = 23

𝑡2 5 = 28

⋮ ⋮

𝑡2 0 = 3𝑡1 0 = 3

Two Deciders for 𝐿

Lecture 7

0

10

20

30

40

50

60

70

0 1 2 3 4 5

𝑡1(𝑛) = 2𝑛+1 + 1 vs 𝑡2(𝑛) = 5𝑛 + 3

Time

Input length

How to compare running time functions?

𝒇𝟏 𝒏 = 𝟐𝒏, 𝒇𝟐 𝒏 = 𝟓𝒏𝟑 + 𝟏, 𝒇𝟑 𝒏 = 𝟐𝟎𝒏 + 𝟔
How to compare running time functions?

Lecture 7

The Growth of Functions

50 100 150
0

20,000

40,000

60,000 2x2

1000 log2(x)
2x

Lecture 7

Big-O and Small-o notation

Definition (Big-O): Let f , g : N→ R≥0. We say f (n) = O(g(n)) if

∃C > 0, n0 ∈ N s.t. ∀n ≥ n0 f (n) ≤ C · g(n)

Examples:
I 5n3 + 1 = O(2n) ? YES
I 5n3 + 1 = O(20n + 5) ? NO

Definition (Small-o): Let f , g : N→ R≥0. We say f (n) = o(g(n)) if

∀c > 0,∃n0 ∈ N s.t. ∀n ≥ n0 f (n) < c · g(n)

Examples:
I
√
n = o(n) ? YES

I f (n) = o(f (n)) ? NO

Lecture 7

Length 0

Length 1

Length 2

Length 3

Length 4

Length 5

⋮

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12

t(.)

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12

.

𝑡 𝑛 = 𝑂 2𝑛

2𝑛

To Summarize ..

⋮

𝑡 1 = 4

𝑡 2 = 3

𝑡 3 = 7

𝑡 4 = 15

𝑡 5 = 14

𝑡 0 = 2

10

2

3
4

2

4

3
⋮

⋮
7
⋮
6

⋮
15
⋮

10
8
⋮
14
⋮

𝑀

To summarize. . .

Lecture 7

Time Complexity

Definition: Time complexity class

TIME (t(n)) = {L ⊆ Σ∗ | L is decided by a TM with running time O(t(n))}

Example:
TIME(n) ⊆ TIME(n2) ⊆ · · · ⊆ TIME(2

√
n) ⊆ TIME(2n) ⊆ TIME(22n) . . .

Example: REGULAR ⊆ TIME (n)

Lecture 7

The complexity class P and efficiency

Definition: P is the class of languages that are decidable in polynomial
time on a (deterministic) Turing machine. In other words,

P =
∞⋃

k=1
TIME (nk) .

Some languages in P:
I {〈A〉 : A is a sorted array of integers}
I {〈G , s, t〉 : s and t are vertices connected in graph G}

(Breadth-First Search)
I {〈G〉 : G is a connected graph}

Lecture 7

NP: Verification vs. Search

Lecture 7

SAT-verify and SAT

Conjunctive Normal Form (CNF) Formula:

ϕ1 = (x ∨ y ∨ z0) ∧ (x ∨ y ∨ z1) ∧ (x ∨ y ∨ z2) ∧ (x ∨ y ∨ z3)

ϕ2 = x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)

ϕ3 = x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

I CNF Formula: AND of Clauses
I Clause: OR of Literals
I Literal: variable or its negation

Satisfying assignment: Boolean assignment to variables which makes
the formula TRUE.

Check: ϕ1 has 32 satisfying assignments, ϕ2 has only one, ϕ3 has zero.

A formula is satisfiable if it has at least one satisfying assignment.

Lecture 7

SAT-verify and SAT

SAT-verify = {〈ϕ,C〉 : C is a satisfying assignment of ϕ}

Is SAT-verify in P? Yes!

1 Substitute for literals according to C .

2 Check that every clause has at least one TRUE literal.

SAT = {〈ϕ〉 : ϕ is satisfiable}
= {〈ϕ〉 : ∃C such that 〈ϕ,C〉 ∈ SAT-verify}

Is SAT in P?

Decider for SAT:

1 For each assignment C :
I If 〈ϕ,C〉 ∈ SAT-verify, ACCEPT ϕ.

2 REJECT ϕ.

Lecture 7

GI-verify and GI

a

bc

d

e f

1

2

3

4

5

6

Graph Isomorphism: Bijection f : V (G1) −→ V (G2) which preserves
adjacency: {u, v} ∈ E (G1)⇔ {f (u), f (v)} ∈ E (G2)

Eg. a→ 1 b → 2 c → 3 d → 4 e → 5 f → 6 in the graphs above.

Two graphs are isomorphic if they have at least one graph isomorphism.

Lecture 7

GI-verify and GI

GI-verify = {〈G1,G2,C〉 : C : V (G1) −→ V (G2) is a graph isomorphism}

Is GI-verify in P? Yes!

1 Check that C is a bijection: For each u, v ∈ V (G1):
I Check {u, v} ∈ E (G1) ⇔ {C(u),C(v)} ∈ E (G2).

GI = {〈G1,G2〉 : G1 and G2 are isomorphic}
= {〈G1,G2〉 : ∃C such that 〈G1,G2,C〉 ∈ GI-verify}

Is GI in P?

Decider for GI:

1 For each function C : V (G1) −→ V (G2):
I If 〈G1,G2,C〉 ∈ GI-verify, ACCEPT 〈G1,G2〉.

2 REJECT 〈G1,G2〉.
Lecture 7

INDSET-verify and INDSET

1

2

3

4

5

6

Independent Set: Subset S ⊆ V (G) such that no two vertices in S are
adjacent in G .

Eg. {1, 3, 5}, {2, 4}, {6}, ∅, etc. in the graph above.

Lecture 7

INDSET-verify and INDSET

INDSET-verify = {〈G , k,C〉 : C is an independent set of size k in G}

Is INDSET-verify in P? Yes!
1 Check that |C | = k.

2 For each u, v ∈ C :
I Check {u, v} < E (G).

INDSET = {〈G , k〉 : G has an independent of size k}
= {〈G , k〉 : ∃C such that 〈G , k,C〉 ∈ INDSET-verify}

Is INDSET in P?

Decider for INDSET:

1 For each subset C ⊆ V (G):
I If 〈G , k,C〉 ∈ INDSET-verify, ACCEPT 〈G , k〉.

2 REJECT 〈G , k〉.
Lecture 7

Verifiers and the class NP

Recall: A decider for language L is a TM M such that for each x ∈ Σ∗

I If x ∈ L, then M accepts x .
I If x < L, then M rejects x .

Definition:
A verifier for language L is a TM M such that for each x ∈ Σ∗

I If x ∈ L, then there exists C such that M accepts 〈x ,C〉.
I If x < L, then for every C , M rejects 〈x ,C〉.

(C is called a certificate or witness)

A verifier is a polynomial time verifier if its running time on any
〈x ,C〉 is polynomial in |x|. (Thus |C | is polynomial in |x |)

Definition: NP is the class of languages that have poly-time verifiers.

Lecture 7

Why is it called NP?

Lecture 7

Detour: Non-deterministic Turing Machines

Recall: In a Turing machine, δ : (Q × Γ) −→ Q × Γ× {L,R}.

In a Nondeterministic Turing Machine (NTM),

δ : (Q × Γ) −→ P(Q × Γ× {L,R})

(several possible transitions for a given state and tape symbol)

Definition: A nondeterministic decider for language L is an NTM N
such that for each x ∈ Σ∗, every computation of N on x halts, and
moreover,
I If x ∈ L, then some computation of N on x accepts.
I If x < L, then every computation of N on x rejects.

An NTM is a polynomial time NTM if the running time of its longest
computation on x is polynomial in |x|.

Lecture 7

Nondeterministic deciders ⇐⇒ Verifiers

Theorem: For any language L ⊆ Σ∗,

L has a nondeterministic poly-time decider ⇐⇒ L has a poly-time verifier.

Proof Sketch (⇐=):

Let M be the verifier. NTM N on input x does the following:

1 Write a certificate C nondeterministically.

2 Run M on 〈x ,C〉.

Proof Sketch (=⇒):

Let N be the nondeterministic decider. Verifier M on 〈x ,C〉 computes:
I Simulate N on x , choosing transitions given by C .

M accepts 〈x ,C〉 iff x ∈ L and C is an accepting path of N on x .

Lecture 7

Non-deterministic Polynomial-time

Theorem: For any language L ⊆ Σ∗,

L has a nondeterministic poly-time decider ⇐⇒ L has a poly-time verifier.

Definition: NP is the class of languages which have poly-time nonde-
terministic deciders, or equivalently, have poly-time verifiers.

Definition:

NTIME(t(n)) = {L : L has a nondeterministic O(t(n)) time decider}

Then

NP =
∞⋃

k=1
NTIME(nk) .

∴ SAT, GI, INDSET are all in NP.

Lecture 7

P and NP
Is P ⊆ NP? Yes (obviously)

Is P = NP? Nobody knows . . .

Find the answer and win USD 1,000,000!

NP
SAT

INDSETGI?
P

GI?

P=NP

SAT

INDSET

GI

Cook-Levin Theorem (informal): SAT ∈ P iff P = NP.

(Also INDSET ∈ P iff P = NP.)
Lecture 7

