Lecture 6: Reductions

Mika Goos

E PF L School of Computer and Communication Sciences

Lecture 6

Recall

Lecture 6

Turing-Recognizable/Decidable Languages

A TM machine M recognizes a language L C ¥* iff for all inputs w € £*:
If w e L then M accepts w and
If w¢ L then M either rejects w or never halts

Such languages are called (Turing)-Recognizable

A TM machine M decides a language L C X* iff for all inputs w € *:
M halts on w, and
M accepts w iff w € L

Such languages are called (Turing)-Decidable

Lecture 6

Undecidable Languages

There are undecidable languages

» Turing machines are countable: enumerate all encodings

(M1) (Ma) (Mz) (Ma) (Ms) (Mg)
My A o9 R A A R
M, R R A A &9 A
M3 R [eS) A [eS) R R
M, A 00 R R R oS
Ms S 00 A A A A
Mg R A R [eS) A [e9)
DIAG R A R A R A

Let DIAG = {(M;) : M; doesn't accept (M;)} = {{Ma), (M), (Me), ...}

Then DIAG # L(M;) for all i € N. That is, DIAG is undecidable

Lecture 6

Thm: Ay = {(M,w) : Mis a TM and M accepts w} is undecidable

Proof by contradiction Assume on the contrary that I is a decider for Aty

Accept

(M accepts w)
(M, W) —_ H —
Reject

(M doesn’t accept w)

We construct a decider D for DIAG = {(M;) : M; doesn’t accept (M;)} using

w e {0,1}* Let M; be TM with
— : . — M;, (M;)
encoding w, i.e., (M;) = w

Need to prove that D decides DIAG:
D halts on all inputs
D accepts (M) <= M does not accept (M) <= (M) € DIAG

Unrecognizable languages?

Lecture 6

Unrecognizable languages exist!

Thm: A7y is not recognizable

Follows because A1y, is recognizable and since

Thm: A language L is decidable iff it is recognizable and its
complement is also recognizable

Lecture 6

Lyaen = {{G,v,w)|lv,w €V(G)and T a

NEpra = {(D)|L(D) #
ora = UDNLD) # 0} path from v tow in G}

Input:

Accept = Accept

G
The reduction
does not use A - 1,3
the knowledge o/ O O
whether (D)

isin the
language @ 0 . .
Reject = Reject

NEpp4 or not!

) 43) 13

| ecture 6

Yes
(path exists)

(G,v,w) —
No
(no path)
TMnon—empLy
f Yes
(L(D) # @)
(D) Reduction === (G,v,w) m==)|

No
(L(D) = @)

f:{(D) | DisaDFA} - {{G,v,w) | G is a directed graph, v,w € V(G)}

There might or
might not be a path
from v tow

(D) can be in
NEpp, or not

Reducibility Use knowledge about complexity of one language to reason
about the complexity of other in an easy way

Reduction Way to show that to solve one problem (A), it is sufficient to
solve another problem (B)

A reduces to B. ..

» Many examples (e.g. calculate area of rectangle reduces to calculate its
width and height)

» Reductions quantify relative hardness of problems

> If problem B is easy then problem A is easy too
> If problem A is hard then problem B is hard too

Some Examples

HALT = {{M, w) | M halts on input w}

Theorem: HALT is undecidable
Proof: Assume on the contrary that HALT is decided by H

Accept

(M halts on w)

Reject

(M does not halt on w)
Construct a decider for Aty = {{(M, w) : M accepts w}

Decider N for Aty &

Accept \ Accept
Accept —» Run M
onw Reject Reject
g El
q Reject
Reject

Pass the same input to H

Theorem: REGry = {(N) | L(N) is regular} is undecidable
Proof: Assume on the contrary that REGry is decided by R
Accept (L(N) regular)
Reject (L(N) not regular)
Can we decide A7y using R?
We'd like: given (M, w), construct a TM TMy, ,,y such that

If (M,w) € Aty = L{TMpm,wy)) is regular
If (M, w) ¢ Arm = L({TMpm,u))) is non-regular (for example {0"1" | n € N})

f
Input of Az 1 (M, w) Input of R: (N)

Theorem: REGy = {(N) | L(N) is regular} is undecidable

Reduction
Decider for A7y A

(M, w) (TMvw)) > (TM(pm)) =

TM)
Accept
Yes
Does y belong to
y {0"1":n € N}? | Accept
RunM =
No

onw Reject
—

Accepts a non-reqular language {0™1™:n € N} if M does not accept w
and accepts {0,1}* (regular) if M accepts w

Formalising reductions

Lecture 6

Reductions Part 1: Computability

f
/_\
* *

w f(w)
CORCEECEY — | | — EEEEE

Definition: A function f : ¥* — ¥* is a computable function if some
TM M, on every input w halts with just f(w) on its tape

Lecture 6

Reductions Part 2: Correctness

Mapping may not be
Surjective

A " 172173 B
wy _'41]1
WBN‘N\ ””

/”’ \‘s\b
n Wy > Vs B
Vs
> >

Definition: Language A is mapping reducible to language B, written
A <,, B, if there is a computable function f : ¥* — ¥*, such that for
every w € ¥*:

weAsf(w)eB

Lecture 6

Theorem: If A <,, B and B is decidable, then A is decidable

Proof:
» Assume that M is a decider for B and f is a reduction from A to B

> Let N be a TM as follows:

Correctness
N of f =
N decides A
w f fw)

u . . Computability of f =
> =

Compute f(w)
Run M on input f(w) and output whatever M outputs”

Corollary: If A <., B and A is undecidable, then B is undecidable

Examples of Reductions

Lecture 6

HALT1p = {(M,w) | M halts on w}
Arm = {{(M,w) | M accepts w}

Theorem: Aty <,, HALT 1y

Proof idea:
TMary,

accept
(M,w) € {0,1}* =3 reduction f = (M', w’) w :
reject

Define computable f such that

A . /\‘ AL TTM

f'

Arw ‘_/‘ HALT T

Theorem: Ary <,, HALT (= HALT is undecidable)

> Let us define a function f as follows

> Given an input x = (M, w), return f(x) = (M’, w), where

f has to write down the code of M’ only.

> MI :“On input y It does not run M'!

(M" might loop for some inputs.)
Run M on y;
If M rejects y, enter infinite loop. If M accepts y, accept y.

» Check that f is computable

» = If (M,w) € Arp then M’ halts on w.
Thus, (M',w) € HALT

» < If (M, w) ¢ Arn then either (1) will never halt or M rejects w
and (2) will ensure no halting. Thus, (M', w) ¢ HALT

Theorem: Ary <, REGtym (= REGty is undecidable)

> Let us define a function f as follows
> Given an input x = (M, w), return f(x) = (M), where

» M’ ="On inputy :

if y € B=4{0"1": n> 0}, then accept y
Run M on w, and accept y iff M accepts w”

» Check that f is computable

» = If (M,w) € Ay then M’ accepts all inputs.
Thus, L(M') ={0,1}* is regular — (M') € REGTpm

> < If (M,w) ¢ Aty then M does not accept w.
Thus L(M’) = B is non-regular — (M’) ¢ REGT

Theorem: If A <,, B and B is recognizable then A is recognizable

M

Rpisa
recognizer

Definition
of M
for B

M acceptsw & Rpaccepts f(w) & f(w)eB & wEA

= M is arecognizer for A

Corollary: If A <,, B and A is unrecognizable then B is unrecognizable

EQTM = {<M1, M2> | /\/’17 M, are TMs s.t. L(Ml) = L(M2)}

Theorem: Ary <, EQrm (= EQ7u is unrecognizable)
» Let us define a function f as foliows

> Given an input x = (M, w), return f(x) = (My, My), where

» M; ="On input y :

Run M on w (ignore the input y)

If M accepts then accept, else enter an infinite loop
> ="On input y :

Reject y
> If (M, w) € Aty then Mj loops on all inputs.

ThUS L(Ml) == L(Mg) — <M1, M2> € EQm

>

If (M, w) ¢ Aty then M accepts w and hence M; accepts every
strlng Thus () =X*#0=L(M) — (My, M) ¢ EQrm

Definition: A function f : ¥* — ¥* is a computable function
if some TM M, on every input w halts with just f(w) on its tape

Definition: Language A is mapping reducible to language B, written A <,, B, if
there is a computable function f : X* — X *, such that for every w € X*:

weAsf(w)eB

f is called a reduction from A to B

Theorem: If A <,, B and B is decidable (recognizable), then A is decidable
(recognizable)

Corollary: If A <,, B and A is undecidable (unrecognizable) then B is undecidable
(unrecognizable)

Next week: Recap of reductions!

