

Lecture 6: Reductions

Mika Göös

School of Computer and Communication Sciences

Lecture 6

Recall

Turing-Recognizable/Decidable Languages

A TM machine M **recognizes** a language $L \subseteq \Sigma^*$ iff for all inputs $w \in \Sigma^*$:

- 1 If $w \in L$ then M accepts w and
- 2 If $w \notin L$ then M either rejects w or never halts

Such languages are called **(Turing)-Recognizable**

A TM machine M **decides** a language $L \subseteq \Sigma^*$ iff for all inputs $w \in \Sigma^*$:

- 1 M halts on w , and
- 2 M accepts w iff $w \in L$

Such languages are called **(Turing)-Decidable**

Undecidable Languages

There are undecidable languages

- ▶ **Turing machines are countable:** enumerate all encodings

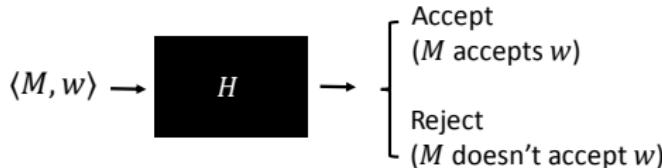
	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	$\langle M_6 \rangle$...
M_1	A	∞	R	A	A	R	...
M_2	R	R	A	A	∞	A	...
M_3	R	∞	A	∞	R	R	...
M_4	A	∞	R	R	R	∞	...
M_5	∞	∞	A	A	A	A	...
M_6	R	A	R	∞	A	∞	...
:	:	:	:	:	:	:	:
<i>DIAG</i>	R	A	R	A	R	A	

Let $DIAG = \{\langle M_i \rangle : M_i \text{ doesn't accept } \langle M_i \rangle\} = \{\langle M_2 \rangle, \langle M_4 \rangle, \langle M_6 \rangle, \dots\}$

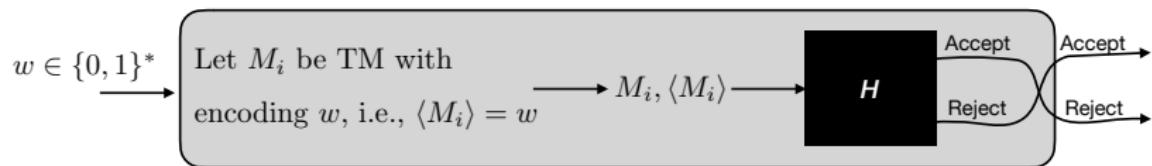
Then $DIAG \neq L(M_i)$ for all $i \in \mathbb{N}$. That is, $DIAG$ is undecidable

Thm: $A_{TM} = \{\langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w\}$ is undecidable

Proof by contradiction Assume on the contrary that H is a **decider** for A_{TM}

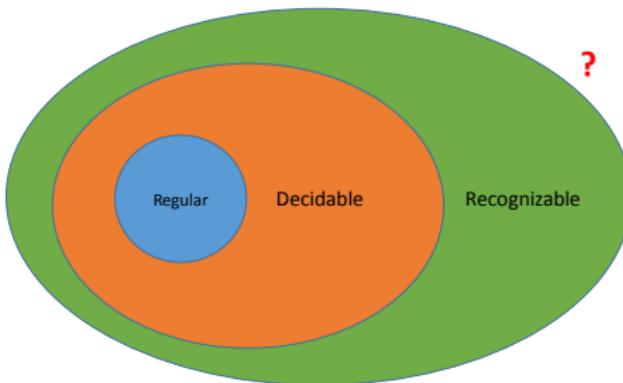


We construct a decider D for $DIAG = \{\langle M_i \rangle : M_i \text{ doesn't accept } \langle M_i \rangle\}$ using H :



Need to prove that D decides $DIAG$:

- 1 D halts on all inputs
- 2 D accepts $\langle M \rangle \iff M \text{ does not accept } \langle M \rangle \iff \langle M \rangle \in DIAG$



Unrecognizable languages?

Unrecognizable languages exist!

Thm: $\overline{A_{TM}}$ is not recognizable

Follows because A_{TM} is recognizable and since

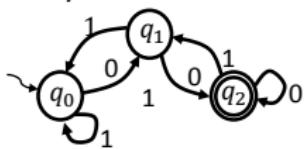
Thm: A language L is **decidable** iff it is **recognizable** and its complement is also **recognizable**

Reductions

A Reduction . . .

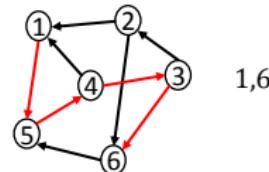
$$NE_{DFA} := \{\langle D \rangle \mid L(D) \neq \emptyset\}$$

Input:

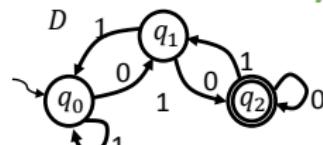


$$L_{path} := \{ \langle G, v, w \rangle \mid v, w \in V(G) \text{ and } \exists \text{ a path from } v \text{ to } w \text{ in } G \}$$

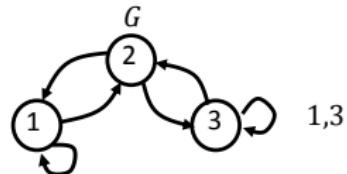
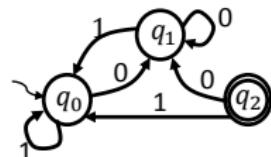
Input:



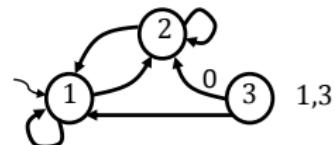
The reduction does not use the knowledge whether $\langle D \rangle$ is in the language NE_{DFA} or not!



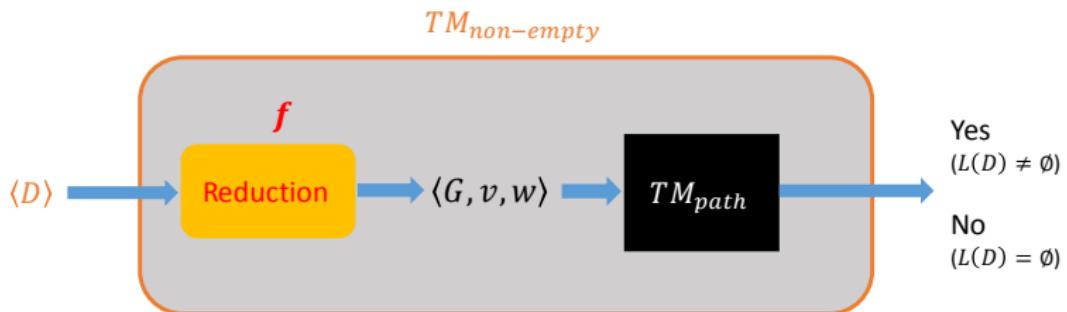
Accept \Rightarrow Accept



Reject \Rightarrow Reject



A reduction . . .



$$f : \{\langle D \rangle \mid D \text{ is a DFA}\} \rightarrow \{\langle G, v, w \rangle \mid G \text{ is a directed graph, } v, w \in V(G)\}$$

$\langle D \rangle$ can be in NE_{DFA} or not

There might or might not be a path from v to w

Informally

Reducibility Use knowledge about complexity of one language to reason about the complexity of other in an **easy** way

Reduction Way to show that to solve one problem (A), it is sufficient to solve another problem (B)

A reduces to B...

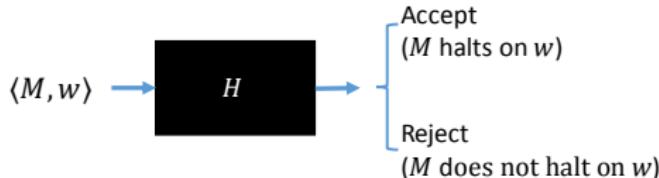
- ▶ Many examples (e.g. calculate area of rectangle reduces to calculate its width and height)
- ▶ Reductions quantify **relative** hardness of problems
 - ▶ If problem B is **easy** then problem A is **easy** too
 - ▶ If problem A is **hard** then problem B is **hard** too

Some Examples

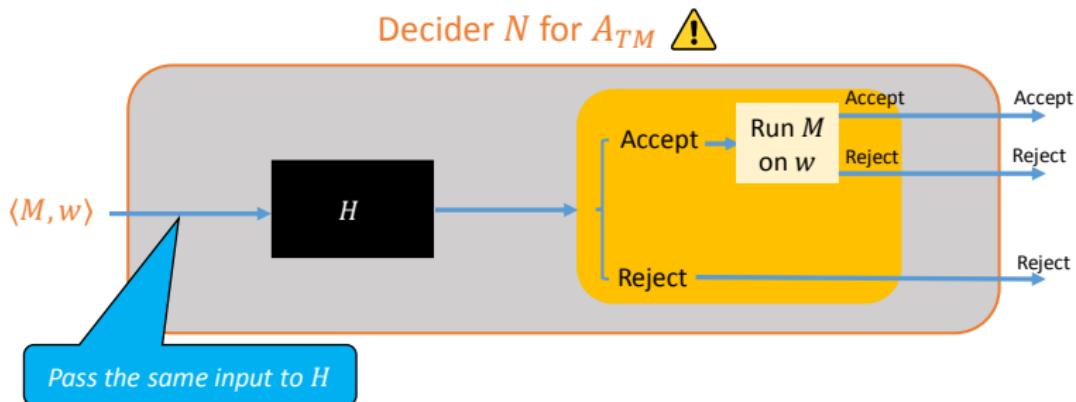
$$\text{HALT} = \{\langle M, w \rangle \mid M \text{ halts on input } w\}$$

Theorem: HALT is undecidable

Proof: Assume on the **contrary** that HALT is decided by H

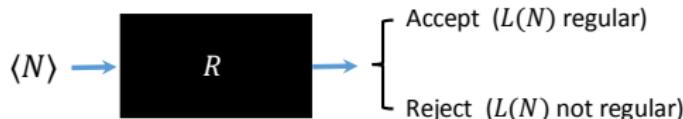


Construct a decider for $A_{TM} = \{\langle M, w \rangle : M \text{ accepts } w\}$



Theorem: $REG_{TM} = \{\langle N \rangle \mid L(N) \text{ is regular}\}$ is undecidable

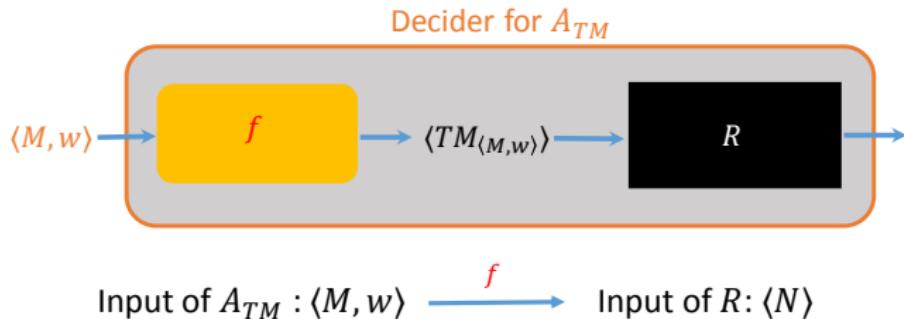
Proof: Assume on the **contrary** that REG_{TM} is decided by R



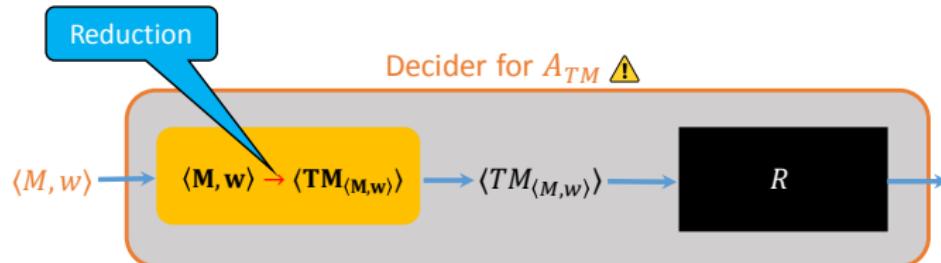
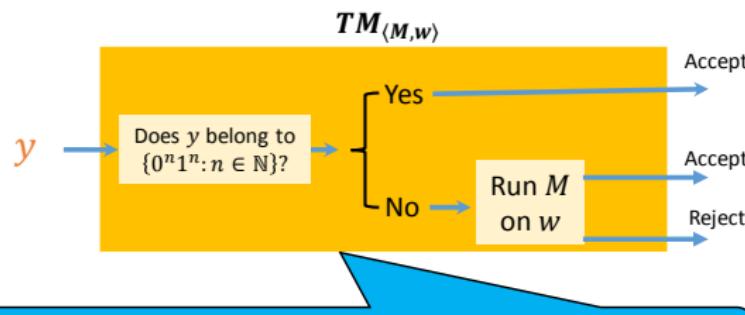
Can we decide A_{TM} using R ?

We'd like: given $\langle M, w \rangle$, construct a TM $TM_{\langle M, w \rangle}$ such that

- If $\langle M, w \rangle \in A_{TM} \Rightarrow L(\langle TM_{\langle M, w \rangle} \rangle)$ is *regular*
- If $\langle M, w \rangle \notin A_{TM} \Rightarrow L(\langle TM_{\langle M, w \rangle} \rangle)$ is *non-regular* (for example $\{0^n 1^n \mid n \in \mathbb{N}\}$)



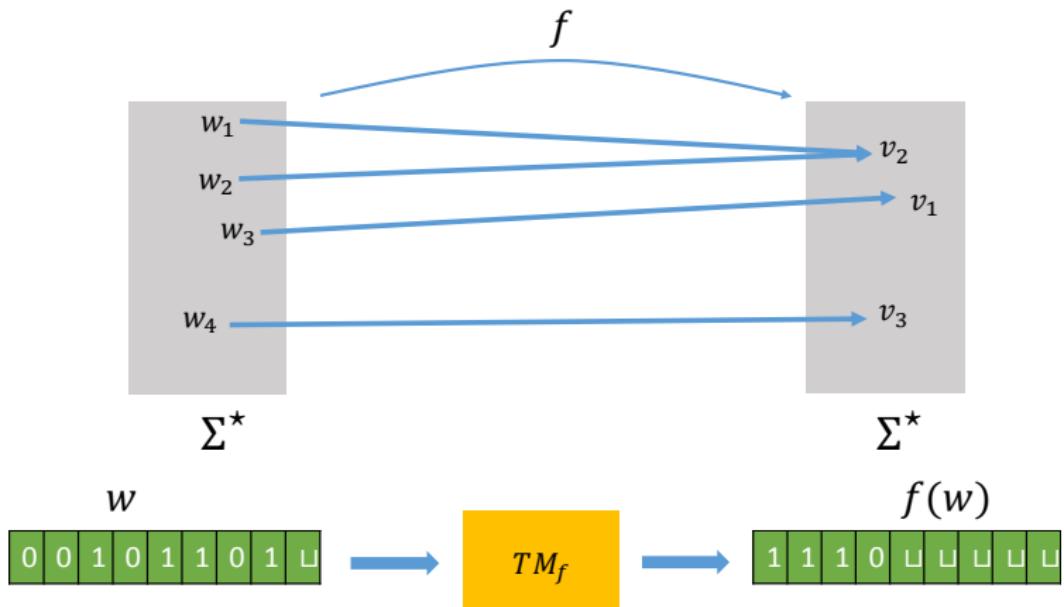
Theorem: $REG_{TM} = \{\langle N \rangle \mid L(N) \text{ is regular}\}$ is undecidable



Accepts a non-regular language $\{0^n 1^n : n \in \mathbb{N}\}$ if M does not accept w and accepts $\{0,1\}^*$ (regular) if M accepts w

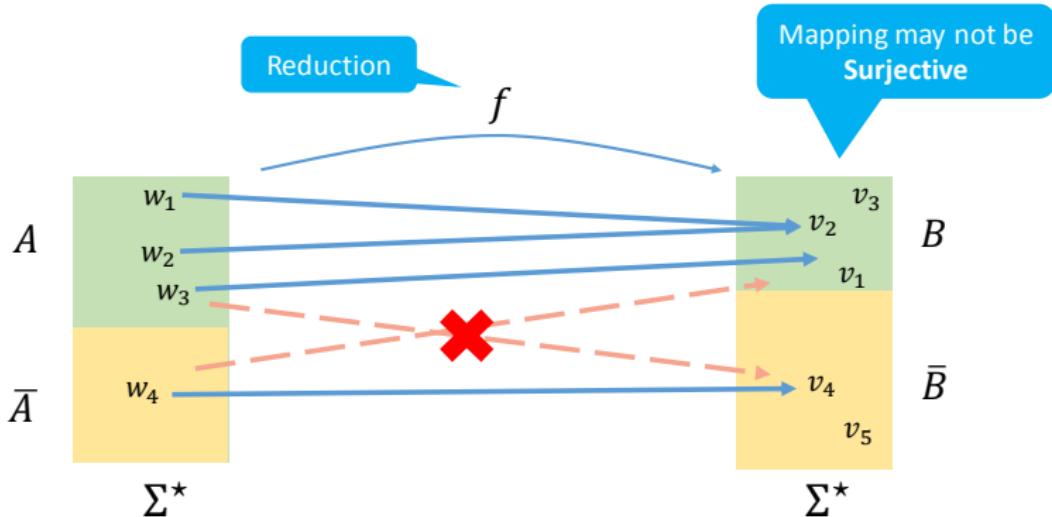
Formalising reductions

Reductions Part 1: Computability



Definition: A function $f : \Sigma^* \rightarrow \Sigma^*$ is a *computable function* if some TM M , on **every** input w halts with **just** $f(w)$ on its tape

Reductions Part 2: Correctness



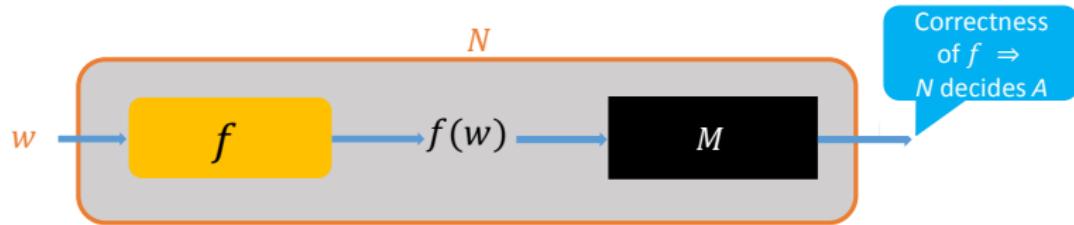
Definition: Language A is **mapping reducible** to language B , written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, such that for **every** $w \in \Sigma^*$:

$$w \in A \Leftrightarrow f(w) \in B$$

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Proof:

- ▶ Assume that M is a decider for B and f is a reduction from A to B
- ▶ Let N be a TM as follows:



- ▶ $N =$ “On input w :
 - 1 Compute $f(w)$
 - 2 Run M on input $f(w)$ and output whatever M outputs”

Computability of $f \Rightarrow N$ is a decider

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable

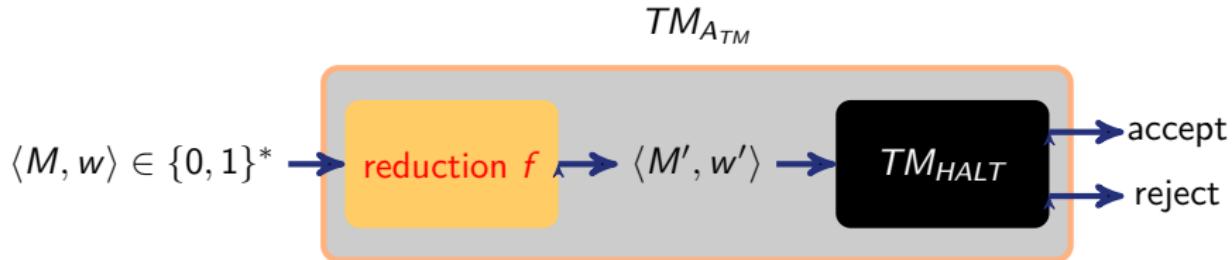
Examples of Reductions

$$HALT_{TM} = \{\langle M, w \rangle \mid M \text{ halts on } w\}$$

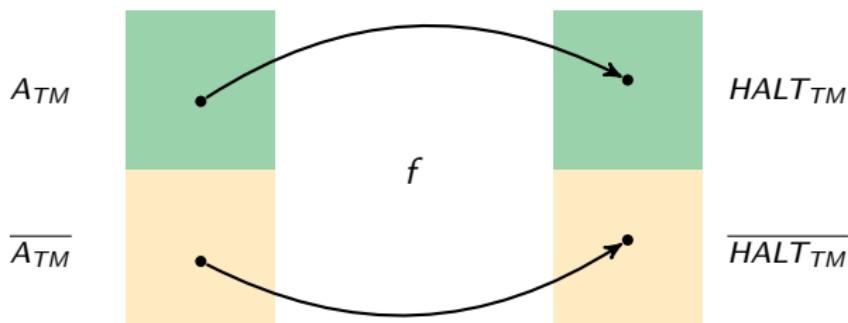
$$A_{TM} = \{\langle M, w \rangle \mid M \text{ accepts } w\}$$

Theorem: $A_{TM} \leq_m HALT_{TM}$

Proof idea:



Define **computable** f such that



Theorem: $A_{TM} \leq_m HALT$ ($\Rightarrow HALT$ is undecidable)

- ▶ Let us define a function f as follows
- ▶ Given an input $x = \langle M, w \rangle$, return $f(x) = \langle M', w \rangle$, where
- ▶ M' = “On input y :
 - 1 Run M on y ;
 - 2 If M rejects y , enter infinite loop. If M accepts y , accept y .
- ▶ Check that f is computable

f has to write down the code of M' only.
It does not run M' !
(M' might loop for some inputs.)

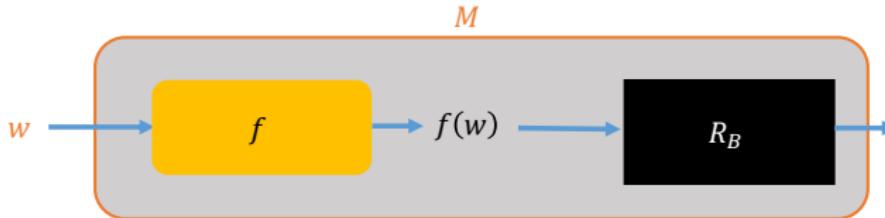
- ▶ \Rightarrow If $\langle M, w \rangle \in A_{TM}$ then M' halts on w .
Thus, $\langle M', w \rangle \in HALT$
- ▶ \Leftarrow If $\langle M, w \rangle \notin A_{TM}$ then either (1) will never halt or M rejects w and (2) will ensure no halting. Thus, $\langle M', w \rangle \notin HALT$

Theorem: $A_{TM} \leq_m REG_{TM}$ ($\Rightarrow REG_{TM}$ is undecidable)

- ▶ Let us define a function f as follows
- ▶ Given an input $x = \langle M, w \rangle$, return $f(x) = \langle M' \rangle$, where
- ▶ M' = “On input y :
 - 1 if $y \in B = \{0^n 1^n : n \geq 0\}$, then accept y
 - 2 Run M on w , and accept y iff M accepts w ”
- ▶ Check that f is computable

- ▶ \Rightarrow If $\langle M, w \rangle \in A_{TM}$ then M' accepts all inputs.
Thus, $L(M') = \{0, 1\}^*$ is regular — $\langle M' \rangle \in REG_{TM}$
- ▶ \Leftarrow If $\langle M, w \rangle \notin A_{TM}$ then M does not accept w .
Thus $L(M') = B$ is non-regular — $\langle M' \rangle \notin REG_{TM}$

Theorem: If $A \leq_m B$ and B is recognizable then A is recognizable



$$\begin{array}{c} \text{Definition} \\ \text{of } M \\ \hline M \text{ accepts } w \end{array} \Leftrightarrow \begin{array}{c} R_B \text{ accepts } f(w) \\ \hline R_B \text{ is a} \\ \text{recognizer} \\ \text{for } B \end{array} \Leftrightarrow \begin{array}{c} f(w) \in B \\ \hline A \leq_m B \end{array} \Leftrightarrow \begin{array}{c} w \in A \end{array}$$

$\Rightarrow M$ is a recognizer for A

Corollary: If $A \leq_m B$ and A is unrecognizable then B is unrecognizable

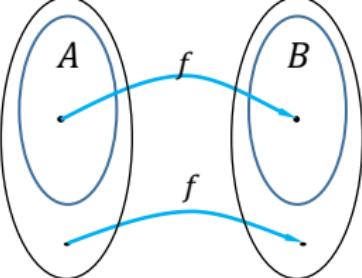
$$EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs s.t. } L(M_1) = L(M_2)\}$$

Theorem: $\overline{A_{TM}} \leq_m EQ_{TM}$ ($\Rightarrow EQ_{TM}$ is unrecognizable)

- ▶ Let us define a function f as follows
- ▶ Given an input $x = \langle M, w \rangle$, return $f(x) = \langle M_1, M_2 \rangle$, where
- ▶ $M_1 =$ “On input y :
 - 1 Run M on w (ignore the input y)
 - 2 If M accepts then accept, else enter an infinite loop
- ▶ $M_2 =$ “On input y :
 - 1 Reject y

- ▶ \Rightarrow If $\langle M, w \rangle \in \overline{A_{TM}}$ then M_1 loops on all inputs.
Thus, $L(M_1) = \emptyset = L(M_2) \mid \langle M_1, M_2 \rangle \in EQ_{TM}$
- ▶ \Leftarrow If $\langle M, w \rangle \notin \overline{A_{TM}}$ then M accepts w and hence M_1 accepts every string. Thus $L(M_1) = \Sigma^* \neq \emptyset = L(M_2) \mid \langle M_1, M_2 \rangle \notin EQ_{TM}$

Summary



Definition: A function $f : \Sigma^* \rightarrow \Sigma^*$ is a *computable function* if some TM M , on **every** input w halts with **just** $f(w)$ on its tape

Definition: Language A is **mapping reducible** to language B , written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, such that for **every** $w \in \Sigma^*$:

$$w \in A \Leftrightarrow f(w) \in B$$

f is called a **reduction** from A to B

Theorem: If $A \leq_m B$ and B is decidable (recognizable), then A is decidable (recognizable)

Corollary: If $A \leq_m B$ and A is undecidable (unrecognizable) then B is undecidable (unrecognizable)

Next week: Recap of reductions!