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Turing-Recognizable/Decidable Languages

A TM machine M recognizes a language L ⊆ Σ∗ iff for all inputs w ∈ Σ∗:

1 If w ∈ L then M accepts w and

2 If w < L then M either rejects w or never halts

Such languages are called (Turing)-Recognizable

A TM machine M decides a language L ⊆ Σ∗ iff for all inputs w ∈ Σ∗:

1 M halts on w , and

2 M accepts w iff w ∈ L

Such languages are called (Turing)-Decidable
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Undecidable Languages
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There are undecidable languages

I Turing machines are countable: enumerate all encodings

〈M1〉 〈M2〉 〈M3〉 〈M4〉 〈M5〉 〈M6〉 . . .

M1 A ∞ R A A R . . .

M2 R R A A ∞ A . . .

M3 R ∞ A ∞ R R . . .

M4 A ∞ R R R ∞ . . .

M5 ∞ ∞ A A A A . . .

M6 R A R ∞ A ∞ . . .

...
...

...
...

...
...

...

DIAG R A R A R A

Let DIAG = {〈Mi〉 : Mi doesn’t accept 〈Mi〉} = {〈M2〉, 〈M4〉, 〈M6〉, . . .}

Then DIAG , L(Mi ) for all i ∈ N. That is, DIAG is undecidable
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Thm: ATM = {〈M, w〉 : M is a TM and M accepts w} is undecidable

Proof by contradiction Assume on the contrary that H is a decider for ATM

Thm:𝐴𝑇𝑀 is Undecidable.

Assume on the contrary that 𝑯 is a decider for 𝐴𝑇𝑀

𝐻〈𝑀, 𝑤〉

Accept
(𝑀 accepts 𝑤)

Reject
(𝑀 doesn’t accept 𝑤)

We construct a decider 𝑫 for 𝑳𝑫𝑰𝑨𝑮 using 𝑯
and encoder/decoder functions for strings/TMs.

Accept

𝑤 𝑖

𝑤𝑖 (= 𝑤)

〈𝑀𝑖, 𝑤𝑖〉 𝐻

𝐷
Accept

Reject𝑀𝑖
Reject

STR-DEC

STR-ENC

TM-DEC

Proof: (by contradiction)

Need to prove that 𝑫 decides 𝑳𝑫𝑰𝑨𝑮!

We construct a decider D for DIAG = {〈Mi 〉 : Mi doesn’t accept 〈Mi 〉} using H:

w 2 {0, 1}⇤
<latexit sha1_base64="kLQXTNA20UKi4EHQhjXIsU+PQ3Y=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCiJSkHhRPBS8eK9gPaGLZbDft0s0m7G4qJfSfePGgiFf/iTf/jds2B60+GHi8N8PMvCDhTGnH+bIKK6tr6xvFzdLW9s7unr1/0FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+e0xlYrF4l5PEupHeCBYyAjWRurZduXRYwJ5mXPuetOHs0rPLjtVZw70l7g5KUOORs/+9PoxSSMqNOFYqa7rJNrPsNSMcDoteamiCSYjPKBdQwWOqPKz+eVTdGKUPgpjaUpoNFd/TmQ4UmoSBaYzwnqolr2Z+J/XTXV45WdMJKmmgiwWhSlHOkazGFCfSUo0nxiCiWTmVkSGWGKiTVglE4K7/PJf0qpV3Ytq7a5Wrl/ncRThCI7hFFy4hDrcQgOaQGAMT/ACr1ZmPVtv1vuitWDlM4fwC9bHN01xkhw=</latexit>

Let Mi be TM with

encoding w, i.e., hMii = w
<latexit sha1_base64="+sdWX7toMZuvj55n0g/8TEEnQgs="></latexit>

Mi, hMii
<latexit sha1_base64="aeAU0Hqg7ho2+SfqUHUFDpMUEyQ=">AAACA3icbZDLSgMxFIYz9VbrbdSdboKt4ELKTF0orgpu3AgV7AU6Q8mkZ9rQTGZIMkIpBTe+ihsXirj1Jdz5NqbTWWj1h8CX/5xDcv4g4Uxpx/myCkvLK6trxfXSxubW9o69u9dScSopNGnMY9kJiALOBDQ10xw6iQQSBRzawehqVm/fg1QsFnd6nIAfkYFgIaNEG6tnH1RueuwUe5yIAQdsLtiTGVd6dtmpOpnwX3BzKKNcjZ796fVjmkYgNOVEqa7rJNqfEKkZ5TAteamChNARGUDXoCARKH+S7TDFx8bp4zCW5giNM/fnxIRESo2jwHRGRA/VYm1m/lfrpjq88CdMJKkGQecPhSnHOsazQHCfSaCajw0QKpn5K6ZDIgnVJraSCcFdXPkvtGpV96xau62V65d5HEV0iI7QCXLROaqja9RATUTRA3pCL+jVerSerTfrfd5asPKZffRL1sc3wneWSw==</latexit>

H

Accept

Reject

Accept

Reject

Need to prove that D decides DIAG:

1 D halts on all inputs

2 D accepts 〈M〉 ⇐⇒ M does not accept 〈M〉 ⇐⇒ 〈M〉 ∈ DIAG
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Regular Decidable Recognizable

?

Unrecognizable languages?
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Unrecognizable languages exist!

Thm: ATM is not recognizable

Follows because ATM is recognizable and since

Thm: A language L is decidable iff it is recognizable and its
complement is also recognizable
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Reductions
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A Reduction . . .
A Reduction …

𝑁𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 ≠ ∅} 𝐿𝑝𝑎𝑡ℎ ≔ 𝐺, 𝑣,𝑤 𝑣, 𝑤 ∈ 𝑉 𝐺 and ∃ a 
path from 𝑣 to 𝑤 in 𝐺}

𝑞2𝑞0

𝑞11
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1
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3

21

5
6

4 1,6

Input: Input:

𝑞2𝑞0
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01
1
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𝐷

31

2
𝐺

1,3

Accept ⇒ Accept

Reject ⇒ Reject
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does not use 

the knowledge 
whether 𝐷
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A reduction . . .

Yes
(path exists)

No
(no path)

𝑇𝑀𝑝𝑎𝑡ℎ𝐺, 𝑣,𝑤

𝒇 ∶ 𝐷 D is a DFA} → { 𝐺, 𝑣, 𝑤 | 𝐺 is a directed graph, 𝑣,𝑤 ∈ 𝑉(𝐺)}

〈𝐷〉 can be in 
𝑁𝐸𝐷𝐹𝐴 or not

A Reduction …

𝐷 𝐺, 𝑣,𝑤 𝑇𝑀𝑝𝑎𝑡ℎ

Yes
(𝐿 𝐷 ≠ ∅)

No
(𝐿 𝐷 = ∅)

𝑇𝑀𝑛𝑜𝑛−𝑒𝑚𝑝𝑡𝑦

Reduction

𝒇

There might or 
might not be a path 

from 𝑣 to 𝑤
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Informally

Reducibility Use knowledge about complexity of one language to reason
about the complexity of other in an easy way

Reduction Way to show that to solve one problem (A), it is sufficient to
solve another problem (B)

A reduces to B. . .

I Many examples (e.g. calculate area of rectangle reduces to calculate its
width and height)

I Reductions quantify relative hardness of problems
I If problem B is easy then problem A is easy too
I If problem A is hard then problem B is hard too
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Some Examples
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HALT = {〈M, w〉 | M halts on input w}

Theorem: HALT is undecidable

Proof: Assume on the contrary that HALT is decided by H

𝐻𝐴𝐿𝑇𝑇𝑀 = { 𝑀,𝑤 :𝑀 is a TM and 𝑀 halts on 𝑤}
Theorem:𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable

𝐻〈𝑀,𝑤〉

Accept
(𝑀 halts on 𝑤)

Reject
(𝑀 does not halt on 𝑤)

〈𝑀,𝑤〉 𝐻

Accept

Reject

Run 𝑀
on 𝑤

Accept Accept

Reject Reject

Reject

Proof. Assume on the contrary that 𝐻𝐴𝐿𝑇𝑇𝑀 is decided by 𝐻

Decider 𝑁 for 𝐴𝑇𝑀

Pass the same input to 𝐻

Construct a decider for ATM = {〈M, w〉 : M accepts w}

𝐻𝐴𝐿𝑇𝑇𝑀 = { 𝑀,𝑤 :𝑀 is a TM and 𝑀 halts on 𝑤}
Theorem:𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable

𝐻〈𝑀,𝑤〉

Accept
(𝑀 halts on 𝑤)

Reject
(𝑀 does not halt on 𝑤)

〈𝑀,𝑤〉 𝐻

Accept

Reject

Run 𝑀
on 𝑤

Accept Accept

Reject Reject

Reject

Proof. Assume on the contrary that 𝐻𝐴𝐿𝑇𝑇𝑀 is decided by 𝐻

Decider 𝑁 for 𝐴𝑇𝑀

Pass the same input to 𝐻
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Theorem: REGTM = {〈N〉 | L(N) is regular} is undecidable

Proof: Assume on the contrary that REGTM is decided by R
Theorem: 𝑅𝐸𝐺𝑇𝑀 ≔ 𝑁 𝐿 𝑁 is regular} is undecidable
Proof. Assume on the contrary that 𝑅𝐸𝐺𝑇𝑀 is decided by 𝑅

𝑅〈𝑁〉
Accept  (𝐿(𝑁) regular)

Reject  (𝐿(𝑁) not regular)

Can we decide 𝐴𝑇𝑀 using 𝑅?
We would like: given 〈𝑴,𝒘〉, construct a Turing Machine 𝑻𝑴〈𝑴,𝒘〉 such that:
• If 𝑴,𝒘 ∈ 𝑨𝑻𝑴 ⟹ L( 𝑇𝑀 𝑀,𝑤 ) is regular and
• If 𝑴,𝒘 ∉ 𝑨𝑻𝑴 ⟹L( 𝑇𝑀 𝑀,𝑤 ) is non-regular (For example 𝟎𝒏𝟏𝒏: 𝒏 ∈ ℕ )

〈𝑀,𝑤〉 〈𝑇𝑀 𝑀,𝑤 〉 𝑅

Decider for 𝐴𝑇𝑀

𝑓

Input of 𝐴𝑇𝑀 : 〈𝑀,𝑤〉 Input of 𝑅: 〈𝑁〉
𝑓

Can we decide ATM using R?
We’d like: given 〈M, w〉, construct a TM TM〈M,w〉 such that
I If 〈M, w〉 ∈ ATM ⇒ L(〈TM〈M,w〉〉) is regular
I If 〈M, w〉 < ATM ⇒ L(〈TM〈M,w〉〉) is non-regular (for example {0n1n | n ∈ N})

Theorem: 𝑅𝐸𝐺𝑇𝑀 ≔ 𝑁 𝐿 𝑁 is regular} is undecidable
Proof. Assume on the contrary that 𝑅𝐸𝐺𝑇𝑀 is decided by 𝑅

𝑅〈𝑁〉
Accept  (𝐿(𝑁) regular)

Reject  (𝐿(𝑁) not regular)

Can we decide 𝐴𝑇𝑀 using 𝑅?
We would like: given 〈𝑴,𝒘〉, construct a Turing Machine 𝑻𝑴〈𝑴,𝒘〉 such that:
• If 𝑴,𝒘 ∈ 𝑨𝑻𝑴 ⟹ L( 𝑇𝑀 𝑀,𝑤 ) is regular and
• If 𝑴,𝒘 ∉ 𝑨𝑻𝑴 ⟹L( 𝑇𝑀 𝑀,𝑤 ) is non-regular (For example 𝟎𝒏𝟏𝒏: 𝒏 ∈ ℕ )

〈𝑀,𝑤〉 〈𝑇𝑀 𝑀,𝑤 〉 𝑅

Decider for 𝐴𝑇𝑀

𝑓

Input of 𝐴𝑇𝑀 : 〈𝑀,𝑤〉 Input of 𝑅: 〈𝑁〉
𝑓

Theorem: 𝑅𝐸𝐺𝑇𝑀 ≔ 𝑁 𝐿 𝑁 is regular} is undecidable
Proof. Assume on the contrary that 𝑅𝐸𝐺𝑇𝑀 is decided by 𝑅

𝑅〈𝑁〉
Accept  (𝐿(𝑁) regular)

Reject  (𝐿(𝑁) not regular)

Can we decide 𝐴𝑇𝑀 using 𝑅?
We would like: given 〈𝑴,𝒘〉, construct a Turing Machine 𝑻𝑴〈𝑴,𝒘〉 such that:
• If 𝑴,𝒘 ∈ 𝑨𝑻𝑴 ⟹ L( 𝑇𝑀 𝑀,𝑤 ) is regular and
• If 𝑴,𝒘 ∉ 𝑨𝑻𝑴 ⟹L( 𝑇𝑀 𝑀,𝑤 ) is non-regular (For example 𝟎𝒏𝟏𝒏: 𝒏 ∈ ℕ )

〈𝑀,𝑤〉 〈𝑇𝑀 𝑀,𝑤 〉 𝑅

Decider for 𝐴𝑇𝑀

𝑓

Input of 𝐴𝑇𝑀 : 〈𝑀,𝑤〉 Input of 𝑅: 〈𝑁〉
𝑓
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Theorem: REGTM = {〈N〉 | L(N) is regular} is undecidableTheorem: 𝑅𝐸𝐺𝑇𝑀 ≔ 𝑁 𝐿 𝑁 is reg.} is undecidable

〈𝑀,𝑤〉 〈𝑇𝑀 𝑀,𝑤 〉 𝑅

Decider for 𝐴𝑇𝑀

𝐌,𝐰 → 〈𝐓𝐌 𝐌,𝐰 〉

Accepts a non-regular language 0𝑛1𝑛: 𝑛 ∈ ℕ if M does not accept w 
and  accepts 0,1 ⋆ (regular) if M accepts w

Reduction

𝑦
Yes

No

𝑻𝑴〈𝑴,𝒘〉

Does 𝑦 belong to
0𝑛1𝑛: 𝑛 ∈ ℕ ?

Run 𝑀
on 𝑤

Accept

Reject

Accept
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Formalising reductions
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Reductions Part 1: ComputabilityReductions Part 1: Computability

0 0 1 0 1 1 0 1 ⊔ 1 1 1 0 ⊔ ⊔ ⊔ ⊔ ⊔

𝑤
𝑇𝑀𝑓

𝑓(𝑤)

𝑓

Σ⋆ Σ⋆

𝑤1
𝑤2

𝑤3
𝑣1

𝑣2

𝑣3𝑤4 𝑣3𝑤4

Definition: A function 𝑓: Σ⋆ → Σ⋆ is a computable function if some
TM 𝑀, on every input 𝑤 halts with just 𝑓(𝑤) on its tape

Definition: A function f : Σ∗ → Σ∗ is a computable function if some
TM M, on every input w halts with just f (w) on its tape
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Reductions Part 2: CorrectnessReductions Part 2: Correctness

Definition: Language 𝐴 is mapping reducible to language 𝐵, written
𝑨 ≤𝒎 𝑩, if there is a computable function 𝑓: Σ⋆ → Σ⋆, such that for 
every 𝑤 ∈ Σ⋆:

𝒘 ∈ 𝑨⟺ 𝒇 𝒘 ∈ 𝑩

Σ⋆ Σ⋆

𝑓

𝑤1
𝑤2
𝑤3

𝑣1

𝑣2

𝑣3

𝐴

𝑤4ഥ𝐴

𝐵

ത𝐵𝑣4𝑤4

Reduction
Mapping may not be 

Surjective

𝑣3

𝑣5

Definition: Language A is mapping reducible to language B, written
A ≤m B, if there is a computable function f : Σ∗ → Σ∗, such that for
every w ∈ Σ∗:

w ∈ A⇔ f (w) ∈ B
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Theorem: If A ≤m B and B is decidable, then A is decidable

Proof:
I Assume that M is a decider for B and f is a reduction from A to B
I Let N be a TM as follows:

• Assume that 𝑴 is a decider for 𝑩 and 𝑓 is a reduction from 𝐴 to 𝐵

• Let 𝑁 be a TM as follows:

• 𝑁 =“On input 𝑤:
1. Compute 𝑓(𝑤)
2. Run 𝑀 on input 𝑓(𝑤) and output whatever 𝑀 outputs"

𝑤 𝑓(𝑤) 𝑀

𝑁

𝑓

Computability of 𝑓 ⇒
N is a decider 

Correctness 
of 𝑓 ⇒

N decides A

Theorem: If 𝐴 ≤𝑚 𝐵 and 𝐵 is decidable, then 𝐴 is decidable

Corollary: If 𝐴 ≤𝑚 𝐵 and 𝐴 is undecidable, then 𝐵 is undecidable

Proof:

I N = “On input w :

1 Compute f (w)
2 Run M on input f (w) and output whatever M outputs”

• Assume that 𝑴 is a decider for 𝑩 and 𝑓 is a reduction from 𝐴 to 𝐵

• Let 𝑁 be a TM as follows:

• 𝑁 =“On input 𝑤:
1. Compute 𝑓(𝑤)
2. Run 𝑀 on input 𝑓(𝑤) and output whatever 𝑀 outputs"

𝑤 𝑓(𝑤) 𝑀

𝑁

𝑓

Computability of 𝑓 ⇒
N is a decider 

Correctness 
of 𝑓 ⇒

N decides A

Theorem: If 𝐴 ≤𝑚 𝐵 and 𝐵 is decidable, then 𝐴 is decidable

Corollary: If 𝐴 ≤𝑚 𝐵 and 𝐴 is undecidable, then 𝐵 is undecidable

Proof:
• Assume that 𝑴 is a decider for 𝑩 and 𝑓 is a reduction from 𝐴 to 𝐵

• Let 𝑁 be a TM as follows:

• 𝑁 =“On input 𝑤:
1. Compute 𝑓(𝑤)
2. Run 𝑀 on input 𝑓(𝑤) and output whatever 𝑀 outputs"

𝑤 𝑓(𝑤) 𝑀

𝑁

𝑓

Computability of 𝑓 ⇒
N is a decider 

Correctness 
of 𝑓 ⇒

N decides A

Theorem: If 𝐴 ≤𝑚 𝐵 and 𝐵 is decidable, then 𝐴 is decidable

Corollary: If 𝐴 ≤𝑚 𝐵 and 𝐴 is undecidable, then 𝐵 is undecidable

Proof:

Corollary: If A ≤m B and A is undecidable, then B is undecidable
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Examples of Reductions
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HALTTM = {〈M, w〉 | M halts on w}
ATM = {〈M, w〉 | M accepts w}

Theorem: ATM ≤m HALTTM

Proof idea:
TMATM

TMHALTreduction f〈M, w〉 ∈ {0, 1}∗ 〈M ′, w ′〉
accept

reject

Define computable f such that

ATM

ATM

HALTTM

HALTTM

f
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Theorem: ATM ≤m HALT (⇒ HALT is undecidable)

I Let us define a function f as follows
I Given an input x = 〈M, w〉, return f (x) = 〈M ′, w〉, where

I M ′ =“On input y :
1 Run M on y ;
2 If M rejects y , enter infinite loop. If M accepts y , accept y .

I Check that f is computable

• Let us define a function 𝑓 as follows

• Given an input 𝑥 ≔ 𝑀,𝑤 , return 𝑓 𝑥 ≔ 𝑀′, 𝑤 where

• 𝑀’ =“On input 𝑦 ∶
(1)  Run 𝑀 on 𝑤;
(2)  If 𝑴 rejects 𝒘, enter infinite loop. Otherwise, accept y"

• Check that 𝑓 is computable

Theorem: 𝐴𝑇𝑀 ≤𝑚 𝐻𝐴𝐿𝑇𝑇𝑀 (⇒ 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable)

• ⇒ If 𝑀,𝑤 ∈ 𝐴𝑇𝑀 then 𝑀′ halts on 𝑤. 
Thus, 𝑀′, 𝑤 ∈ 𝐻𝐴𝐿𝑇𝑇𝑀

• ֚ If 𝑀,𝑤 ∉ 𝐴𝑇𝑀 then either (1) will never halt or 𝑀 rejects 
𝑤 and (2) will ensure no halting. Thus, 𝑀′, 𝑤 ∉ 𝐻𝐴𝐿𝑇𝑇𝑀

𝑓 has to write down the code of 𝑀′ only.
It does not run 𝑀′! 

(𝑀′ might loop for some inputs.)

I ⇒ If 〈M, w〉 ∈ ATM then M ′ halts on w .
Thus, 〈M ′, w〉 ∈ HALT

I ⇐ If 〈M, w〉 < ATM then either (1) will never halt or M rejects w
and (2) will ensure no halting. Thus, 〈M ′, w〉 < HALT
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Theorem: ATM ≤m REGTM (⇒ REGTM is undecidable)

I Let us define a function f as follows
I Given an input x = 〈M, w〉, return f (x) = 〈M ′〉, where

I M ′ =“On input y :
1 if y ∈ B = {0n1n : n ≥ 0}, then accept y
2 Run M on w , and accept y iff M accepts w”

I Check that f is computable

I ⇒ If 〈M, w〉 ∈ ATM then M ′ accepts all inputs.
Thus, L(M ′) = {0, 1}∗ is regular — 〈M ′〉 ∈ REGTM

I ⇐ If 〈M, w〉 < ATM then M does not accept w .
Thus L(M ′) = B is non-regular — 〈M ′〉 < REGTM
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Theorem: If A ≤m B and B is recognizable then A is recognizableTheorem: If 𝐴 ≤𝑚 𝐵 and 𝐵 is recognizable, then 𝐴 is recognizable

𝑀 accepts 𝑤 ⟺ 𝑅𝐵 accepts 𝑓 𝑤 ⟺ 𝑓 𝑤 ∈ 𝐵 ⟺ 𝑤 ∈ 𝐴

Definition 
of 𝑀

𝐴 ≤𝑚 𝐵

𝑅𝐵 is a 
recognizer

for 𝐵

⇒ 𝑴 is a recognizer for 𝑨

𝑤 𝑓 𝑤 𝑅𝐵

𝑀

𝑓

Corollary: If 𝐴 ≤𝑚 𝐵 and A is unrecognizable, then 𝐵 is unrecognizable

Proof.

Corollary: If A ≤m B and A is unrecognizable then B is unrecognizable
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EQTM = {〈M1, M2〉 | M1, M2 are TMs s.t. L(M1) = L(M2)}

Theorem: ATM ≤m EQTM (⇒ EQTM is unrecognizable)

I Let us define a function f as follows
I Given an input x = 〈M, w〉, return f (x) = 〈M1, M2〉, where

I M1 =“On input y :
1 Run M on w (ignore the input y)
2 If M accepts then accept, else enter an infinite loop

I M2 =“On input y :
1 Reject y

I ⇒ If 〈M, w〉 ∈ ATM then M1 loops on all inputs.
Thus, L(M1) = ∅ = L(M2) — 〈M1, M2〉 ∈ EQTM

I ⇐ If 〈M, w〉 < ATM then M accepts w and hence M1 accepts every
string. Thus L(M1) = Σ∗ , ∅ = L(M2) — 〈M1, M2〉 < EQTM
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Summary Summary
Definition: 𝑓: Σ1⋆ → Σ2⋆ is a computable function
if some TM 𝑀, on every input 𝑤 halts with just
𝑓(𝑤) on its tape

Definition: 𝐴 is mapping reducible to 𝐵, (𝐴 ≤𝑚 𝐵), if there exists 𝑓: Σ1⋆ → Σ2⋆,
𝑓 computable, s.t. 

∀𝑤 ∈ Σ⋆: 𝑤 ∈ A ⟺ 𝑓 𝑤 ∈ 𝐵
𝑓 is called a reduction of 𝐴 to 𝐵

Theorem: If 𝐴 ≤𝑚 𝐵 and 𝐵 is recognizable (decidable), then 𝐴 is 
recognizable (decidable)

Theorem: If 𝐴 ≤𝑚 𝐵 and A is unrecognizable (undecidable) , then 𝐵 is 
unrecognizable (undecidable) 

𝐴 𝐵𝑓

𝑓

Σ⋆ Σ⋆

Definition: A function f : Σ∗ → Σ∗ is a computable function
if some TM M, on every input w halts with just f (w) on its tape

Definition: Language A is mapping reducible to language B, written A ≤m B, if
there is a computable function f : Σ∗ → Σ∗, such that for every w ∈ Σ∗:

w ∈ A⇔ f (w) ∈ B

f is called a reduction from A to B

Theorem: If A ≤m B and B is decidable (recognizable), then A is decidable
(recognizable)

Corollary: If A ≤m B and A is undecidable (unrecognizable) then B is undecidable
(unrecognizable)
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Next week: Recap of reductions!
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