
Lecture 5: Decidability and Undecidability

Mika Göös

School of Computer and Communication Sciences

Lecture 5

290 15 Turing Machines

Figure 1: Alan Turing’s “light bulb moment” – Prof. Geo↵ Draper drew this cartoon for my book

never halt; it may keep zigzagging on the tape, writing symbols all over, and running amok, much like many
tricky programs do in real life. A Turing machine cannot manufacture new symbols ad infinitum - so all the
symbols written by a Turing machine on its tape do belong to a finite tape alphabet, �. Notice that ⌃ ⇢ �,
since � includes the blank symbol B that is not allowed within ⌃. We assume that a Turing machine begins its
operation scanning cell number 0 of a doubly-infinite tape (meaning that there are tape cells numbered +x or
�x for any x 2 Nat); more on this is in the following section. A fact to remember is this: in order to feed the
string " to a TM, one must present to the Turing machine a tape filled with blanks (B). However, some authors
alter this convention slightly, allowing " to be fed to a Turing machine by ensuring that, in the initial state, the
symbol under the tape head is blank (B) (i.e., the rest of the tape could contain non-blank symbols). In any
case, a normal Turing machine input is such that for every i 2 length(w), w[i] 6= B is presented on tape cell i,
with all remaining tape cells containing B, and the head of the Turing machine faces w[1] at the beginning of
a computation.

A TM may be deterministic or nondeterministic. The signature of � for a deterministic Turing machine
(DTM) is

� : Q ⇥ � ! Q ⇥ �⇥ {L, R}.

This signature captures the fact that a TM can be in a certain state q 2 Q and looking at a 2 �. It can then
write a

0
on the tape in lieu of a, move to a state q

0
, and move its head left (L), or right (R), depending on

whether �(q, a) = hq0
, a

0
, Li or �(q, a) = hq0

, a
0
, Ri, respectively.

For an NDTM, �(q, a) returns a set of next control states, tape symbol replacements, and head move
directions. The signature of � for a nondeterministic Turing machine (NDTM) is

� : Q ⇥ � ! 2Q⇥�⇥{L,R}.

Think of a nondeterministic Turing machine as a C program where instead of the standard if-then-else construct,
we have an if/fi construct of the following form:

2

Recall

Lecture 5

The Turing Machine

q0
Head (with current state)

1 0 0 1

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q0
Head (with current state)

1 0 0 1

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q1
Head (with current state)

0 0 1

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q1
Head (with current state)

0 0 1

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q1
Head (with current state)

0 0 1

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q1
Head (with current state)

0 0 1

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q2
Head (with current state)

0 0 1

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q3
Head (with current state)

0 0

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q3
Head (with current state)

0 0

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q3
Head (with current state)

0 0

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q0
Head (with current state)

0 0

Infinite Tape

q0q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q4
Head (with current state)

0

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q4
Head (with current state)

0

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q5
Head (with current state)

0

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q3
Head (with current state)

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

q0
Head (with current state)

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

qaccept
Head (with current state)

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

Lecture 5

The Turing Machine

qaccept
Head (with current state)

Infinite Tape

q0 q1

q2q3

q4

q5

qreject

qaccept

1→ t, R
0, 1→ R

t → L

1→ t, L

0,t → R0, 1→ L

t → R

0→ t, R
0, 1→ R

t → L

0→ t, L

1,t → R

t → R

Finite state control
(the algorithm)

This Turing machine
accepts even length
binary palindromes

Lecture 5

Turing Machine

3.1 TURING MACHINES 169

FIGURE 3.4

A Turing machine with configuration 1011q701111

Here we formalize our intuitive understanding of the way that a Turing ma-
chine computes. Say that configuration C1 yields configuration C2 if the Turing
machine can legally go from C1 to C2 in a single step. We define this notion
formally as follows.

Suppose that we have a, b, and c in Γ, as well as u and v in Γ∗ and states qi

and qj . In that case, ua qi bv and u qj acv are two configurations. Say that

ua qi bv yields u qj acv

if in the transition function δ(qi, b) = (qj , c,L). That handles the case where the
Turing machine moves leftward. For a rightward move, say that

ua qi bv yields uac qj v

if δ(qi, b) = (qj , c,R).
Special cases occur when the head is at one of the ends of the configuration.

For the left-hand end, the configuration qi bv yields qj cv if the transition is left-
moving (because we prevent the machine from going off the left-hand end of the
tape), and it yields c qjv for the right-moving transition. For the right-hand end,
the configuration ua qi is equivalent to ua qi ␣ because we assume that blanks
follow the part of the tape represented in the configuration. Thus we can handle
this case as before, with the head no longer at the right-hand end.

The start configuration of M on input w is the configuration q0 w, which
indicates that the machine is in the start state q0 with its head at the leftmost
position on the tape. In an accepting configuration, the state of the configuration
is qaccept. In a rejecting configuration, the state of the configuration is qreject.
Accepting and rejecting configurations are halting configurations and do not
yield further configurations. Because the machine is defined to halt when in the
states qaccept and qreject, we equivalently could have defined the transition function
to have the more complicated form δ : Q′×Γ−→Q×Γ×{L,R}, where Q′ is Q
without qaccept and qreject. A Turing machine M accepts input w if a sequence of
configurations C1, C2, . . . , Ck exists, where

1. C1 is the start configuration of M on input w,

2. each Ci yields Ci+1, and

3. Ck is an accepting configuration.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

I Infinite tape
I Tape alphabet contains input alphabet plus t (blank symbol) plus maybe

more symbols
I Head has states (corresponding to the finite control automata)
I Exactly one Accept state and exactly one Reject state (where

computation immediately ends)
I Remaining states “computation in progress”
I May never reach an accept state. May never halt!

q0

1 0 q0 q1

1→ R

0→ L

Lecture 5

Formal Definition of a TM

A Turing Machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject), where Q,Σ, Γ are
all finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol t,
3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4 δ : Q × Γ→ Q × Γ× {L,R} is the transition function,
5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state, where qaccept , qreject .

Lecture 5

Formal Definition of a TM

A Turing Machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject), where Q,Σ, Γ are
all finite sets and

1 Q is the set of states,

2 Σ is the input alphabet not containing the blank symbol t,
3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4 δ : Q × Γ→ Q × Γ× {L,R} is the transition function,
5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state, where qaccept , qreject .

Lecture 5

Formal Definition of a TM

A Turing Machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject), where Q,Σ, Γ are
all finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol t,

3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4 δ : Q × Γ→ Q × Γ× {L,R} is the transition function,
5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state, where qaccept , qreject .

Lecture 5

Formal Definition of a TM

A Turing Machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject), where Q,Σ, Γ are
all finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol t,
3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,

4 δ : Q × Γ→ Q × Γ× {L,R} is the transition function,
5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state, where qaccept , qreject .

Lecture 5

Formal Definition of a TM

A Turing Machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject), where Q,Σ, Γ are
all finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol t,
3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4 δ : Q × Γ→ Q × Γ× {L,R} is the transition function,

5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state, where qaccept , qreject .

Lecture 5

Formal Definition of a TM

A Turing Machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject), where Q,Σ, Γ are
all finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol t,
3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4 δ : Q × Γ→ Q × Γ× {L,R} is the transition function,
5 q0 ∈ Q is the start state,

6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state, where qaccept , qreject .

Lecture 5

Formal Definition of a TM

A Turing Machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject), where Q,Σ, Γ are
all finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol t,
3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4 δ : Q × Γ→ Q × Γ× {L,R} is the transition function,
5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and

7 qreject ∈ Q is the reject state, where qaccept , qreject .

Lecture 5

Formal Definition of a TM

A Turing Machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject), where Q,Σ, Γ are
all finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol t,
3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4 δ : Q × Γ→ Q × Γ× {L,R} is the transition function,
5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state, where qaccept , qreject .

Lecture 5

Turing-Recognizable/Decidable Languages

A TM machine M recognizes a language L ⊆ Σ∗ iff for all inputs w ∈ Σ∗:
1 If w ∈ L then M accepts w and
2 If w < L then M either rejects w or never halts

Such languages are called (Turing)-Recognizable

A TM machine M decides a language L ⊆ Σ∗ iff for all inputs w ∈ Σ∗:
1 M halts on w , and
2 M accepts w iff w ∈ L

Such languages are called (Turing)-Decidable

Lecture 5

Turing-Recognizable/Decidable Languages

A TM machine M recognizes a language L ⊆ Σ∗ iff for all inputs w ∈ Σ∗:
1 If w ∈ L then M accepts w and
2 If w < L then M either rejects w or never halts

Such languages are called (Turing)-Recognizable

A TM machine M decides a language L ⊆ Σ∗ iff for all inputs w ∈ Σ∗:
1 M halts on w , and
2 M accepts w iff w ∈ L

Such languages are called (Turing)-Decidable

Lecture 5

Church-Turing Thesis

3.3 THE DEFINITION OF ALGORITHM 183

constant, called a coefficient. For example,

6 · x · x · x · y · z · z = 6x3yz2

is a term with coefficient 6, and

6x3yz2 + 3xy2 − x3 − 10

is a polynomial with four terms, over the variables x, y, and z. For this discus-
sion, we consider only coefficients that are integers. A root of a polynomial is an
assignment of values to its variables so that the value of the polynomial is 0. This
polynomial has a root at x = 5, y = 3, and z = 0. This root is an integral root
because all the variables are assigned integer values. Some polynomials have an
integral root and some do not.

Hilbert’s tenth problem was to devise an algorithm that tests whether a poly-
nomial has an integral root. He did not use the term algorithm but rather “a
process according to which it can be determined by a finite number of oper-
ations.”4 Interestingly, in the way he phrased this problem, Hilbert explicitly
asked that an algorithm be “devised.” Thus he apparently assumed that such an
algorithm must exist—someone need only find it.

As we now know, no algorithm exists for this task; it is algorithmically unsolv-
able. For mathematicians of that period to come to this conclusion with their
intuitive concept of algorithm would have been virtually impossible. The intu-
itive concept may have been adequate for giving algorithms for certain tasks, but
it was useless for showing that no algorithm exists for a particular task. Proving
that an algorithm does not exist requires having a clear definition of algorithm.
Progress on the tenth problem had to wait for that definition.

The definition came in the 1936 papers of Alonzo Church and Alan Tur-
ing. Church used a notational system called the λ-calculus to define algorithms.
Turing did it with his “machines.” These two definitions were shown to be
equivalent. This connection between the informal notion of algorithm and the
precise definition has come to be called the Church–Turing thesis.

The Church–Turing thesis provides the definition of algorithm necessary to
resolve Hilbert’s tenth problem. In 1970, Yuri Matijasevic̆, building on the work
of Martin Davis, Hilary Putnam, and Julia Robinson, showed that no algorithm
exists for testing whether a polynomial has integral roots. In Chapter 4 we de-
velop the techniques that form the basis for proving that this and other problems
are algorithmically unsolvable.

Intuitive notion Turing machine
of algorithms

equals
algorithms

FIGURE 3.22

The Church–Turing thesis

4Translated from the original German.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

I All algorithms we know of can be executed on TMs
I Anything you write in C, Java, Scala, Python and so on
I The definition is also robust to variations: if we allow for many tapes

instead of one, then nothing changes

To show language decidable or recognizable it sufficient to describe an
algorithm in a high level language (Since by above any such algorithm can be run
on a TM)

Lecture 5

Church-Turing Thesis

3.3 THE DEFINITION OF ALGORITHM 183

constant, called a coefficient. For example,

6 · x · x · x · y · z · z = 6x3yz2

is a term with coefficient 6, and

6x3yz2 + 3xy2 − x3 − 10

is a polynomial with four terms, over the variables x, y, and z. For this discus-
sion, we consider only coefficients that are integers. A root of a polynomial is an
assignment of values to its variables so that the value of the polynomial is 0. This
polynomial has a root at x = 5, y = 3, and z = 0. This root is an integral root
because all the variables are assigned integer values. Some polynomials have an
integral root and some do not.

Hilbert’s tenth problem was to devise an algorithm that tests whether a poly-
nomial has an integral root. He did not use the term algorithm but rather “a
process according to which it can be determined by a finite number of oper-
ations.”4 Interestingly, in the way he phrased this problem, Hilbert explicitly
asked that an algorithm be “devised.” Thus he apparently assumed that such an
algorithm must exist—someone need only find it.

As we now know, no algorithm exists for this task; it is algorithmically unsolv-
able. For mathematicians of that period to come to this conclusion with their
intuitive concept of algorithm would have been virtually impossible. The intu-
itive concept may have been adequate for giving algorithms for certain tasks, but
it was useless for showing that no algorithm exists for a particular task. Proving
that an algorithm does not exist requires having a clear definition of algorithm.
Progress on the tenth problem had to wait for that definition.

The definition came in the 1936 papers of Alonzo Church and Alan Tur-
ing. Church used a notational system called the λ-calculus to define algorithms.
Turing did it with his “machines.” These two definitions were shown to be
equivalent. This connection between the informal notion of algorithm and the
precise definition has come to be called the Church–Turing thesis.

The Church–Turing thesis provides the definition of algorithm necessary to
resolve Hilbert’s tenth problem. In 1970, Yuri Matijasevic̆, building on the work
of Martin Davis, Hilary Putnam, and Julia Robinson, showed that no algorithm
exists for testing whether a polynomial has integral roots. In Chapter 4 we de-
velop the techniques that form the basis for proving that this and other problems
are algorithmically unsolvable.

Intuitive notion Turing machine
of algorithms

equals
algorithms

FIGURE 3.22

The Church–Turing thesis

4Translated from the original German.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

I All algorithms we know of can be executed on TMs
I Anything you write in C, Java, Scala, Python and so on
I The definition is also robust to variations: if we allow for many tapes

instead of one, then nothing changes

To show language decidable or recognizable it sufficient to describe an
algorithm in a high level language (Since by above any such algorithm can be run
on a TM)

Lecture 5

Decidable Languages

Lecture 5

What can TMs compute?
What can TMs do?

𝑇𝑀𝐿
001011 Accept

Equal number of 1’s and 0’s

And more…

𝑇𝑀𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 Reject

Checking connectedness

Shortest path problem

1,6
3

21

5
6

4 𝑇𝑀𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ

21

5
6

4 3

What can TMs do?

𝑇𝑀𝐿
001011 Accept

Equal number of 1’s and 0’s

And more…

𝑇𝑀𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 Reject

Checking connectedness

Shortest path problem

1,6
3

21

5
6

4 𝑇𝑀𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ

21

5
6

4 3

What can TMs do?

𝑇𝑀𝐿
001011 Accept

Equal number of 1’s and 0’s

And more…

𝑇𝑀𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 Reject

Checking connectedness

Shortest path problem

1,6
3

21

5
6

4 𝑇𝑀𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ

21

5
6

4 3

Lecture 5

What can TMs compute?
What can TMs do?

𝑇𝑀𝐿
001011 Accept

Equal number of 1’s and 0’s

And more…

𝑇𝑀𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 Reject

Checking connectedness

Shortest path problem

1,6
3

21

5
6

4 𝑇𝑀𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ

21

5
6

4 3

What can TMs do?

𝑇𝑀𝐿
001011 Accept

Equal number of 1’s and 0’s

And more…

𝑇𝑀𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 Reject

Checking connectedness

Shortest path problem

1,6
3

21

5
6

4 𝑇𝑀𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ

21

5
6

4 3

What can TMs do?

𝑇𝑀𝐿
001011 Accept

Equal number of 1’s and 0’s

And more…

𝑇𝑀𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 Reject

Checking connectedness

Shortest path problem

1,6
3

21

5
6

4 𝑇𝑀𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ

21

5
6

4 3

Lecture 5

What can TMs compute?
What can TMs do?

𝑇𝑀𝐿
001011 Accept

Equal number of 1’s and 0’s

And more…

𝑇𝑀𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 Reject

Checking connectedness

Shortest path problem

1,6
3

21

5
6

4 𝑇𝑀𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ

21

5
6

4 3

What can TMs do?

𝑇𝑀𝐿
001011 Accept

Equal number of 1’s and 0’s

And more…

𝑇𝑀𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 Reject

Checking connectedness

Shortest path problem

1,6
3

21

5
6

4 𝑇𝑀𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ

21

5
6

4 3

What can TMs do?

𝑇𝑀𝐿
001011 Accept

Equal number of 1’s and 0’s

And more…

𝑇𝑀𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 Reject

Checking connectedness

Shortest path problem

1,6
3

21

5
6

4 𝑇𝑀𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ

21

5
6

4 3

Lecture 5

How to encode inputs
How to encode inputs?

𝚺 𝑸 𝑭 𝒒𝟎 ∗

𝑞0 1 𝑞2 ∗
𝑞0 0 𝑞1 ∗
𝑞1 0 𝑞2 ∗
⋮ …

Q Σ 𝐹 𝑞0 * 𝑞0 1 𝑞2 * 𝑞0 0 …

𝑫 ∈ 𝟎, 𝟏 ⋆:

1

𝑞0

𝑞2
0

0

0
𝑞1

1

1𝐷

0 1 … 1 1 … 0 0 1 0 1 1 0 0 0 1 0 … 0 0 1 …

Lecture 5

How to encode inputs
How to encode inputs?

𝚺 𝑸 𝑭 𝒒𝟎 ∗

𝑞0 1 𝑞2 ∗
𝑞0 0 𝑞1 ∗
𝑞1 0 𝑞2 ∗
⋮ …

Q Σ 𝐹 𝑞0 * 𝑞0 1 𝑞2 * 𝑞0 0 …

𝑫 ∈ 𝟎, 𝟏 ⋆:

1

𝑞0

𝑞2
0

0

0
𝑞1

1

1𝐷

0 1 … 1 1 … 0 0 1 0 1 1 0 0 0 1 0 … 0 0 1 …

Lecture 5

How to encode inputs
How to encode inputs?

𝚺 𝑸 𝑭 𝒒𝟎 ∗

𝑞0 1 𝑞2 ∗
𝑞0 0 𝑞1 ∗
𝑞1 0 𝑞2 ∗
⋮ …

Q Σ 𝐹 𝑞0 * 𝑞0 1 𝑞2 * 𝑞0 0 …

𝑫 ∈ 𝟎, 𝟏 ⋆:

1

𝑞0

𝑞2
0

0

0
𝑞1

1

1𝐷

0 1 … 1 1 … 0 0 1 0 1 1 0 0 0 1 0 … 0 0 1 …

Lecture 5

How to encode inputs
How to encode inputs?

𝚺 𝑸 𝑭 𝒒𝟎 ∗

𝑞0 1 𝑞2 ∗
𝑞0 0 𝑞1 ∗
𝑞1 0 𝑞2 ∗
⋮ …

Q Σ 𝐹 𝑞0 * 𝑞0 1 𝑞2 * 𝑞0 0 …

𝑫 ∈ 𝟎, 𝟏 ⋆:

1

𝑞0

𝑞2
0

0

0
𝑞1

1

1𝐷

0 1 … 1 1 … 0 0 1 0 1 1 0 0 0 1 0 … 0 0 1 …

Lecture 5

How to encode inputs
How to encode inputs?

𝚺 𝑸 𝑭 𝒒𝟎 ∗

𝑞0 1 𝑞2 ∗
𝑞0 0 𝑞1 ∗
𝑞1 0 𝑞2 ∗
⋮ …

Q Σ 𝐹 𝑞0 * 𝑞0 1 𝑞2 * 𝑞0 0 …

𝑫 ∈ 𝟎, 𝟏 ⋆:

1

𝑞0

𝑞2
0

0

0
𝑞1

1

1𝐷

0 1 … 1 1 … 0 0 1 0 1 1 0 0 0 1 0 … 0 0 1 …

Anything can be encoded using binary strings!
Lecture 5

Checking Emptiness of a DFA

EDFA = {〈D〉 : L(D) = ∅}

First approach:
1 For each string s ∈ {ε, 0, 1, 00, 01, 10, 11, 000, . . .}

2 Simulate D on s
I If D accepts s, THEN reject
I ELSE, pick the next string and go to 2.

Checking Emptiness
𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 = ∅}

First approach:

1. For each word 𝐰 ∈ {𝜀, 0,1,00,01,10,11,000,⋯ }
2. Simulate𝐃 on 𝐰

IF 𝐃 accepts𝒘, THEN reject,
ELSE, pick the next word and go to 2.

If 𝐿 𝐷 = ∅, then this TM will never halt! If L(D) = ∅, then this TM will never halt!

Checking Emptiness
𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 = ∅}

First approach:

1. For each word 𝐰 ∈ {𝜀, 0,1,00,01,10,11,000,⋯ }
2. Simulate𝐃 on 𝐰

IF 𝐃 accepts𝒘, THEN reject,
ELSE, pick the next word and go to 2.

If 𝐿 𝐷 = ∅, then this TM will never halt!

Lecture 5

Checking Emptiness of a DFA

EDFA = {〈D〉 : L(D) = ∅}

First approach:
1 For each string s ∈ {ε, 0, 1, 00, 01, 10, 11, 000, . . .}

2 Simulate D on s
I If D accepts s, THEN reject
I ELSE, pick the next string and go to 2.

Checking Emptiness
𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 = ∅}

First approach:

1. For each word 𝐰 ∈ {𝜀, 0,1,00,01,10,11,000,⋯ }
2. Simulate𝐃 on 𝐰

IF 𝐃 accepts𝒘, THEN reject,
ELSE, pick the next word and go to 2.

If 𝐿 𝐷 = ∅, then this TM will never halt! If L(D) = ∅, then this TM will never halt!

Checking Emptiness
𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 = ∅}

First approach:

1. For each word 𝐰 ∈ {𝜀, 0,1,00,01,10,11,000,⋯ }
2. Simulate𝐃 on 𝐰

IF 𝐃 accepts𝒘, THEN reject,
ELSE, pick the next word and go to 2.

If 𝐿 𝐷 = ∅, then this TM will never halt!

Lecture 5

Checking Emptiness of a DFA

EDFA = {〈D〉 : L(D) = ∅}

First approach:
1 For each string s ∈ {ε, 0, 1, 00, 01, 10, 11, 000, . . .}

2 Simulate D on s
I If D accepts s, THEN reject
I ELSE, pick the next string and go to 2.

Checking Emptiness
𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 = ∅}

First approach:

1. For each word 𝐰 ∈ {𝜀, 0,1,00,01,10,11,000,⋯ }
2. Simulate𝐃 on 𝐰

IF 𝐃 accepts𝒘, THEN reject,
ELSE, pick the next word and go to 2.

If 𝐿 𝐷 = ∅, then this TM will never halt! If L(D) = ∅, then this TM will never halt!

Checking Emptiness
𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 = ∅}

First approach:

1. For each word 𝐰 ∈ {𝜀, 0,1,00,01,10,11,000,⋯ }
2. Simulate𝐃 on 𝐰

IF 𝐃 accepts𝒘, THEN reject,
ELSE, pick the next word and go to 2.

If 𝐿 𝐷 = ∅, then this TM will never halt!

Lecture 5

Checking Emptiness of a DFA (2nd attempt)

EDFA = {〈D〉 : L(D) = ∅}

Checking Emptiness: Second Attempt

Language accepted by a DFA is non-empty iff there is an accepting
state that can be reached from the starting state by a sequence of
transitions!

Given 〈𝑫〉 with 𝑫 = 𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭

1. Initialize, 𝑹 ≔ 𝒒𝟎
2. For each 𝒒 ∈ 𝑹 and 𝒒′ ∈ 𝑸\𝑹, check if there exists a transition of the form

𝜹 𝒒, 𝒂 = 𝒒′ for some 𝒂 ∈ 𝚺.

3. If at least one such 𝒒′ is found, add 𝒒′ to 𝑹 and go back to Step 2

4. Accept iff 𝑹 ∩ 𝑭 = ∅

𝑞2𝑞0

𝑞11
0

01
1

0

1 𝐷1

𝑞2𝑞0

𝑞11
0

0

1
0

𝐷21

𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 = ∅}

Language accepted by a DFA is non-empty iff there is an accepting state that
can be reached from the starting state by a sequence of transitions

Given 〈D〉 with D = (Q,Σ, δ, q0,F)
1 Initialize, R = {q0}
2 For each q ∈ R and q′ ∈ Q \ R, check if there exists a transition of the form

δ(q, a) = q′ for some a ∈ Σ
3 If at least one such q′ is found, add q′ to R and go back to Step 2
4 Accept iff R ∩ F = ∅

Lecture 5

Checking Emptiness of a DFA (2nd attempt)

EDFA = {〈D〉 : L(D) = ∅}

Checking Emptiness: Second Attempt

Language accepted by a DFA is non-empty iff there is an accepting
state that can be reached from the starting state by a sequence of
transitions!

Given 〈𝑫〉 with 𝑫 = 𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭

1. Initialize, 𝑹 ≔ 𝒒𝟎
2. For each 𝒒 ∈ 𝑹 and 𝒒′ ∈ 𝑸\𝑹, check if there exists a transition of the form

𝜹 𝒒, 𝒂 = 𝒒′ for some 𝒂 ∈ 𝚺.

3. If at least one such 𝒒′ is found, add 𝒒′ to 𝑹 and go back to Step 2

4. Accept iff 𝑹 ∩ 𝑭 = ∅

𝑞2𝑞0

𝑞11
0

01
1

0

1 𝐷1

𝑞2𝑞0

𝑞11
0

0

1
0

𝐷21

𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 = ∅}

Language accepted by a DFA is non-empty iff there is an accepting state that
can be reached from the starting state by a sequence of transitions

Given 〈D〉 with D = (Q,Σ, δ, q0,F)
1 Initialize, R = {q0}
2 For each q ∈ R and q′ ∈ Q \ R, check if there exists a transition of the form

δ(q, a) = q′ for some a ∈ Σ
3 If at least one such q′ is found, add q′ to R and go back to Step 2
4 Accept iff R ∩ F = ∅

Lecture 5

Checking Emptiness of a DFA (2nd attempt)

EDFA = {〈D〉 : L(D) = ∅}

Checking Emptiness: Second Attempt

Language accepted by a DFA is non-empty iff there is an accepting
state that can be reached from the starting state by a sequence of
transitions!

Given 〈𝑫〉 with 𝑫 = 𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭

1. Initialize, 𝑹 ≔ 𝒒𝟎
2. For each 𝒒 ∈ 𝑹 and 𝒒′ ∈ 𝑸\𝑹, check if there exists a transition of the form

𝜹 𝒒, 𝒂 = 𝒒′ for some 𝒂 ∈ 𝚺.

3. If at least one such 𝒒′ is found, add 𝒒′ to 𝑹 and go back to Step 2

4. Accept iff 𝑹 ∩ 𝑭 = ∅

𝑞2𝑞0

𝑞11
0

01
1

0

1 𝐷1

𝑞2𝑞0

𝑞11
0

0

1
0

𝐷21

𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 = ∅}

Language accepted by a DFA is non-empty iff there is an accepting state that
can be reached from the starting state by a sequence of transitions

Given 〈D〉 with D = (Q,Σ, δ, q0,F)
1 Initialize, R = {q0}
2 For each q ∈ R and q′ ∈ Q \ R, check if there exists a transition of the form

δ(q, a) = q′ for some a ∈ Σ
3 If at least one such q′ is found, add q′ to R and go back to Step 2
4 Accept iff R ∩ F = ∅

Lecture 5

Checking Emptiness of a DFA (2nd attempt)

EDFA = {〈D〉 : L(D) = ∅}

Checking Emptiness: Second Attempt

Language accepted by a DFA is non-empty iff there is an accepting
state that can be reached from the starting state by a sequence of
transitions!

Given 〈𝑫〉 with 𝑫 = 𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭

1. Initialize, 𝑹 ≔ 𝒒𝟎
2. For each 𝒒 ∈ 𝑹 and 𝒒′ ∈ 𝑸\𝑹, check if there exists a transition of the form

𝜹 𝒒, 𝒂 = 𝒒′ for some 𝒂 ∈ 𝚺.

3. If at least one such 𝒒′ is found, add 𝒒′ to 𝑹 and go back to Step 2

4. Accept iff 𝑹 ∩ 𝑭 = ∅

𝑞2𝑞0

𝑞11
0

01
1

0

1 𝐷1

𝑞2𝑞0

𝑞11
0

0

1
0

𝐷21

𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 = ∅}

Language accepted by a DFA is non-empty iff there is an accepting state that
can be reached from the starting state by a sequence of transitions

Given 〈D〉 with D = (Q,Σ, δ, q0,F)
1 Initialize, R = {q0}
2 For each q ∈ R and q′ ∈ Q \ R, check if there exists a transition of the form

δ(q, a) = q′ for some a ∈ Σ
3 If at least one such q′ is found, add q′ to R and go back to Step 2
4 Accept iff R ∩ F = ∅

Lecture 5

Checking Emptiness of a DFA (2nd attempt)

EDFA = {〈D〉 : L(D) = ∅}

Checking Emptiness: Second Attempt

Language accepted by a DFA is non-empty iff there is an accepting
state that can be reached from the starting state by a sequence of
transitions!

Given 〈𝑫〉 with 𝑫 = 𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭

1. Initialize, 𝑹 ≔ 𝒒𝟎
2. For each 𝒒 ∈ 𝑹 and 𝒒′ ∈ 𝑸\𝑹, check if there exists a transition of the form

𝜹 𝒒, 𝒂 = 𝒒′ for some 𝒂 ∈ 𝚺.

3. If at least one such 𝒒′ is found, add 𝒒′ to 𝑹 and go back to Step 2

4. Accept iff 𝑹 ∩ 𝑭 = ∅

𝑞2𝑞0

𝑞11
0

01
1

0

1 𝐷1

𝑞2𝑞0

𝑞11
0

0

1
0

𝐷21

𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 = ∅}

Language accepted by a DFA is non-empty iff there is an accepting state that
can be reached from the starting state by a sequence of transitions

Given 〈D〉 with D = (Q,Σ, δ, q0,F)
1 Initialize, R = {q0}
2 For each q ∈ R and q′ ∈ Q \ R, check if there exists a transition of the form

δ(q, a) = q′ for some a ∈ Σ
3 If at least one such q′ is found, add q′ to R and go back to Step 2
4 Accept iff R ∩ F = ∅

Lecture 5

Checking Emptiness of a DFA (2nd attempt)

EDFA = {〈D〉 : L(D) = ∅}

Checking Emptiness: Second Attempt

Language accepted by a DFA is non-empty iff there is an accepting
state that can be reached from the starting state by a sequence of
transitions!

Given 〈𝑫〉 with 𝑫 = 𝑸, 𝚺, 𝜹, 𝒒𝟎, 𝑭

1. Initialize, 𝑹 ≔ 𝒒𝟎
2. For each 𝒒 ∈ 𝑹 and 𝒒′ ∈ 𝑸\𝑹, check if there exists a transition of the form

𝜹 𝒒, 𝒂 = 𝒒′ for some 𝒂 ∈ 𝚺.

3. If at least one such 𝒒′ is found, add 𝒒′ to 𝑹 and go back to Step 2

4. Accept iff 𝑹 ∩ 𝑭 = ∅

𝑞2𝑞0

𝑞11
0

01
1

0

1 𝐷1

𝑞2𝑞0

𝑞11
0

0

1
0

𝐷21

𝐸𝐷𝐹𝐴 ≔ 𝐷 𝐿 𝐷 = ∅}

Language accepted by a DFA is non-empty iff there is an accepting state that
can be reached from the starting state by a sequence of transitions

Given 〈D〉 with D = (Q,Σ, δ, q0,F)
1 Initialize, R = {q0}
2 For each q ∈ R and q′ ∈ Q \ R, check if there exists a transition of the form

δ(q, a) = q′ for some a ∈ Σ
3 If at least one such q′ is found, add q′ to R and go back to Step 2
4 Accept iff R ∩ F = ∅

Lecture 5

Two DFAs recognize the same language?

EQDFA = {〈D,D′〉 : L(D) = L(D′)}

Fact: L(D) = L(D′) if and only if L(D)⊕ L(D′) = ∅ L(D) L(D′)

I Here L(D)⊕ L(D′) =
(
L(D) ∩ L(D′)

)
∪

(
L(D) ∩ L(D′)

)
I Thus L(D)⊕ L(D′) is regular
I Let D⊕ be DFA accepting L(D)⊕ L(D′)

Two DFAs recognize the same
Language?

𝐸𝑄𝐷𝐹𝐴 = 𝐷,𝐷′ 𝐿 𝐷 = 𝐿(𝐷′)}

Fact: 𝐿 𝐷 ⊕ 𝐿 𝐷′ = 𝐿 𝐷 ∩ 𝐿 𝐷′ ∪ (𝐿(𝐷) ∩ 𝐿 𝐷′)

𝑇𝑀𝐸𝑚𝑝𝑡𝑦

𝐷

𝐷′
𝐷, 𝐷′ 〈𝐷⊕〉

ACCEPT→ ACCEPT

REJECT → REJECT
⊕

𝑇𝑀𝐸𝑄

Thus, 𝐿 𝐷 ⊕ 𝐿 𝐷′ is regular. Let 𝐷⊕ be DFA accepting 𝐿 𝐷 ⊕ 𝐿(𝐷′)

Fact: 𝑳 𝑫 = 𝑳(𝑫′) if and only if 𝑳 𝑫 ⊕𝑳 𝑫′ = ∅

Encodes pairs of DFAs as strings
More generally: 𝒐𝒃𝒋 returns an

encoding of 𝒐𝒃𝒋 as a string

Lecture 5

Two DFAs recognize the same language?

EQDFA = {〈D,D′〉 : L(D) = L(D′)}

Fact: L(D) = L(D′) if and only if L(D)⊕ L(D′) = ∅ L(D) L(D′)

I Here L(D)⊕ L(D′) =
(
L(D) ∩ L(D′)

)
∪

(
L(D) ∩ L(D′)

)
I Thus L(D)⊕ L(D′) is regular
I Let D⊕ be DFA accepting L(D)⊕ L(D′)

Two DFAs recognize the same
Language?

𝐸𝑄𝐷𝐹𝐴 = 𝐷,𝐷′ 𝐿 𝐷 = 𝐿(𝐷′)}

Fact: 𝐿 𝐷 ⊕ 𝐿 𝐷′ = 𝐿 𝐷 ∩ 𝐿 𝐷′ ∪ (𝐿(𝐷) ∩ 𝐿 𝐷′)

𝑇𝑀𝐸𝑚𝑝𝑡𝑦

𝐷

𝐷′
𝐷, 𝐷′ 〈𝐷⊕〉

ACCEPT→ ACCEPT

REJECT → REJECT
⊕

𝑇𝑀𝐸𝑄

Thus, 𝐿 𝐷 ⊕ 𝐿 𝐷′ is regular. Let 𝐷⊕ be DFA accepting 𝐿 𝐷 ⊕ 𝐿(𝐷′)

Fact: 𝑳 𝑫 = 𝑳(𝑫′) if and only if 𝑳 𝑫 ⊕𝑳 𝑫′ = ∅

Encodes pairs of DFAs as strings
More generally: 𝒐𝒃𝒋 returns an

encoding of 𝒐𝒃𝒋 as a string

Lecture 5

Two DFAs recognize the same language?

EQDFA = {〈D,D′〉 : L(D) = L(D′)}

Fact: L(D) = L(D′) if and only if L(D)⊕ L(D′) = ∅ L(D) L(D′)

I Here L(D)⊕ L(D′) =
(
L(D) ∩ L(D′)

)
∪

(
L(D) ∩ L(D′)

)

I Thus L(D)⊕ L(D′) is regular
I Let D⊕ be DFA accepting L(D)⊕ L(D′)

Two DFAs recognize the same
Language?

𝐸𝑄𝐷𝐹𝐴 = 𝐷,𝐷′ 𝐿 𝐷 = 𝐿(𝐷′)}

Fact: 𝐿 𝐷 ⊕ 𝐿 𝐷′ = 𝐿 𝐷 ∩ 𝐿 𝐷′ ∪ (𝐿(𝐷) ∩ 𝐿 𝐷′)

𝑇𝑀𝐸𝑚𝑝𝑡𝑦

𝐷

𝐷′
𝐷, 𝐷′ 〈𝐷⊕〉

ACCEPT→ ACCEPT

REJECT → REJECT
⊕

𝑇𝑀𝐸𝑄

Thus, 𝐿 𝐷 ⊕ 𝐿 𝐷′ is regular. Let 𝐷⊕ be DFA accepting 𝐿 𝐷 ⊕ 𝐿(𝐷′)

Fact: 𝑳 𝑫 = 𝑳(𝑫′) if and only if 𝑳 𝑫 ⊕𝑳 𝑫′ = ∅

Encodes pairs of DFAs as strings
More generally: 𝒐𝒃𝒋 returns an

encoding of 𝒐𝒃𝒋 as a string

Lecture 5

Two DFAs recognize the same language?

EQDFA = {〈D,D′〉 : L(D) = L(D′)}

Fact: L(D) = L(D′) if and only if L(D)⊕ L(D′) = ∅ L(D) L(D′)

I Here L(D)⊕ L(D′) =
(
L(D) ∩ L(D′)

)
∪

(
L(D) ∩ L(D′)

)
I Thus L(D)⊕ L(D′) is regular

I Let D⊕ be DFA accepting L(D)⊕ L(D′)

Two DFAs recognize the same
Language?

𝐸𝑄𝐷𝐹𝐴 = 𝐷,𝐷′ 𝐿 𝐷 = 𝐿(𝐷′)}

Fact: 𝐿 𝐷 ⊕ 𝐿 𝐷′ = 𝐿 𝐷 ∩ 𝐿 𝐷′ ∪ (𝐿(𝐷) ∩ 𝐿 𝐷′)

𝑇𝑀𝐸𝑚𝑝𝑡𝑦

𝐷

𝐷′
𝐷, 𝐷′ 〈𝐷⊕〉

ACCEPT→ ACCEPT

REJECT → REJECT
⊕

𝑇𝑀𝐸𝑄

Thus, 𝐿 𝐷 ⊕ 𝐿 𝐷′ is regular. Let 𝐷⊕ be DFA accepting 𝐿 𝐷 ⊕ 𝐿(𝐷′)

Fact: 𝑳 𝑫 = 𝑳(𝑫′) if and only if 𝑳 𝑫 ⊕𝑳 𝑫′ = ∅

Encodes pairs of DFAs as strings
More generally: 𝒐𝒃𝒋 returns an

encoding of 𝒐𝒃𝒋 as a string

Lecture 5

Two DFAs recognize the same language?

EQDFA = {〈D,D′〉 : L(D) = L(D′)}

Fact: L(D) = L(D′) if and only if L(D)⊕ L(D′) = ∅ L(D) L(D′)

I Here L(D)⊕ L(D′) =
(
L(D) ∩ L(D′)

)
∪

(
L(D) ∩ L(D′)

)
I Thus L(D)⊕ L(D′) is regular
I Let D⊕ be DFA accepting L(D)⊕ L(D′)

Two DFAs recognize the same
Language?

𝐸𝑄𝐷𝐹𝐴 = 𝐷,𝐷′ 𝐿 𝐷 = 𝐿(𝐷′)}

Fact: 𝐿 𝐷 ⊕ 𝐿 𝐷′ = 𝐿 𝐷 ∩ 𝐿 𝐷′ ∪ (𝐿(𝐷) ∩ 𝐿 𝐷′)

𝑇𝑀𝐸𝑚𝑝𝑡𝑦

𝐷

𝐷′
𝐷, 𝐷′ 〈𝐷⊕〉

ACCEPT→ ACCEPT

REJECT → REJECT
⊕

𝑇𝑀𝐸𝑄

Thus, 𝐿 𝐷 ⊕ 𝐿 𝐷′ is regular. Let 𝐷⊕ be DFA accepting 𝐿 𝐷 ⊕ 𝐿(𝐷′)

Fact: 𝑳 𝑫 = 𝑳(𝑫′) if and only if 𝑳 𝑫 ⊕𝑳 𝑫′ = ∅

Encodes pairs of DFAs as strings
More generally: 𝒐𝒃𝒋 returns an

encoding of 𝒐𝒃𝒋 as a string

Lecture 5

Two DFAs recognize the same language?

EQDFA = {〈D,D′〉 : L(D) = L(D′)}

Fact: L(D) = L(D′) if and only if L(D)⊕ L(D′) = ∅ L(D) L(D′)

I Here L(D)⊕ L(D′) =
(
L(D) ∩ L(D′)

)
∪

(
L(D) ∩ L(D′)

)
I Thus L(D)⊕ L(D′) is regular
I Let D⊕ be DFA accepting L(D)⊕ L(D′)

Two DFAs recognize the same
Language?

𝐸𝑄𝐷𝐹𝐴 = 𝐷,𝐷′ 𝐿 𝐷 = 𝐿(𝐷′)}

Fact: 𝐿 𝐷 ⊕ 𝐿 𝐷′ = 𝐿 𝐷 ∩ 𝐿 𝐷′ ∪ (𝐿(𝐷) ∩ 𝐿 𝐷′)

𝑇𝑀𝐸𝑚𝑝𝑡𝑦

𝐷

𝐷′
𝐷, 𝐷′ 〈𝐷⊕〉

ACCEPT→ ACCEPT

REJECT → REJECT
⊕

𝑇𝑀𝐸𝑄

Thus, 𝐿 𝐷 ⊕ 𝐿 𝐷′ is regular. Let 𝐷⊕ be DFA accepting 𝐿 𝐷 ⊕ 𝐿(𝐷′)

Fact: 𝑳 𝑫 = 𝑳(𝑫′) if and only if 𝑳 𝑫 ⊕𝑳 𝑫′ = ∅

Encodes pairs of DFAs as strings
More generally: 𝒐𝒃𝒋 returns an

encoding of 𝒐𝒃𝒋 as a string

Lecture 5

Mika, we get it: Turing machines can compute a lot

but can they compute anything?

NO

Theorem (Turing 1936): Halting problem

HALT = {〈M,w〉 : M is a TM and M halts on input w}

is undecidable

Intuitively the difficulty of is to conclude in a finite number of steps whether M
loops forever or is just slow to halt . . .

Lecture 5

Mika, we get it: Turing machines can compute a lot

but can they compute anything? NO

Theorem (Turing 1936): Halting problem

HALT = {〈M,w〉 : M is a TM and M halts on input w}

is undecidable

Intuitively the difficulty of is to conclude in a finite number of steps whether M
loops forever or is just slow to halt . . .

Lecture 5

Halting problem is recognizable

HALT = {〈M,w〉 : M is a TM and M halts on input w}

HALT is recognizable! The following TM U recognizes HALT

U = On input 〈M,w〉 where M is a TM and w is a string:
1 Simulate M on input w .
2 If M ever halts (enters accept/reject state), accept.

I Note that U loops on input 〈M,w〉 if M loops on w , which is why this machine
does not decide HALT

I Since we will show that HALT is undecidable this shows that recognizers are
more powerful than deciders

Lecture 5

Halting problem is recognizable

HALT = {〈M,w〉 : M is a TM and M halts on input w}

HALT is recognizable! The following TM U recognizes HALT

U = On input 〈M,w〉 where M is a TM and w is a string:
1 Simulate M on input w .
2 If M ever halts (enters accept/reject state), accept.

I Note that U loops on input 〈M,w〉 if M loops on w , which is why this machine
does not decide HALT

I Since we will show that HALT is undecidable this shows that recognizers are
more powerful than deciders

Lecture 5

Halting problem is recognizable

HALT = {〈M,w〉 : M is a TM and M halts on input w}

HALT is recognizable! The following TM U recognizes HALT

U = On input 〈M,w〉 where M is a TM and w is a string:
1 Simulate M on input w .
2 If M ever halts (enters accept/reject state), accept.

I Note that U loops on input 〈M,w〉 if M loops on w , which is why this machine
does not decide HALT

I Since we will show that HALT is undecidable this shows that recognizers are
more powerful than deciders

Lecture 5

Halting problem is recognizable

HALT = {〈M,w〉 : M is a TM and M halts on input w}

HALT is recognizable! The following TM U recognizes HALT

U = On input 〈M,w〉 where M is a TM and w is a string:
1 Simulate M on input w .
2 If M ever halts (enters accept/reject state), accept.

I Note that U loops on input 〈M,w〉 if M loops on w , which is why this machine
does not decide HALT

I Since we will show that HALT is undecidable this shows that recognizers are
more powerful than deciders

Lecture 5

George Cantor (1845–1918)

Diagonalization

Lecture 5

Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets

I Is the set of natural numbers N = {1, 2, 3, . . . , } of the same size as the set of
even numbers {2, 4, 6, . . . , . . .}?

I Is the size of N equal to the size of the set of rational numbers
Q = {m

n : m, n ∈ N}?
I Is the size of N equal to the size of the set of real numbers R?

Lecture 5

Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
I Is the set of natural numbers N = {1, 2, 3, . . . , } of the same size as the set of

even numbers {2, 4, 6, . . . , . . .}?

I Is the size of N equal to the size of the set of rational numbers
Q = {m

n : m, n ∈ N}?
I Is the size of N equal to the size of the set of real numbers R?

Lecture 5

Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
I Is the set of natural numbers N = {1, 2, 3, . . . , } of the same size as the set of

even numbers {2, 4, 6, . . . , . . .}?
I Is the size of N equal to the size of the set of rational numbers
Q = {m

n : m, n ∈ N}?

I Is the size of N equal to the size of the set of real numbers R?

Lecture 5

Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
I Is the set of natural numbers N = {1, 2, 3, . . . , } of the same size as the set of

even numbers {2, 4, 6, . . . , . . .}?
I Is the size of N equal to the size of the set of rational numbers
Q = {m

n : m, n ∈ N}?
I Is the size of N equal to the size of the set of real numbers R?

Lecture 5

Comparing the size of infinite sets

Recall that a function f : X → Y is bijective if it is
one-to-one it never maps two different elements to the same place – that is,

f (a) , f (a′) whenever a , a′

onto it hits every element of Y – that is, for every b ∈ Y there is an
a ∈ X such that f (a) = b

Definition. A set A is countable if either it is finite or it has the same
size as N (i.e., there is a bijection between A and N)

Lecture 5

Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
I Is the set of natural numbers N = {1, 2, 3, . . . , } of the same size as the set of

even numbers {2, 4, 6, . . . , . . .}?

I Is the size of N equal to the size of the set of rational numbers
Q = {m

n : m, n ∈ N}?
I Is the size of N equal to the size of the set of real numbers R?

Lecture 5

Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
I Is the set of natural numbers N = {1, 2, 3, . . . , } of the same size as the set of

even numbers {2, 4, 6, . . . , . . .}? YES

I Is the size of N equal to the size of the set of rational numbers
Q = {m

n : m, n ∈ N}?
I Is the size of N equal to the size of the set of real numbers R?

N and the set of even numbers are of the same size by the bijection f (n) = 2n:

4.2 UNDECIDABILITY 203

DEFINITION 4.12

Assume that we have sets A and B and a function f from A to B.
Say that f is one-to-one if it never maps two different elements to
the same place—that is, if f(a) ̸= f(b) whenever a ̸= b. Say that
f is onto if it hits every element of B—that is, if for every b ∈ B
there is an a ∈ A such that f(a) = b. Say that A and B are the same
size if there is a one-to-one, onto function f : A−→B. A function
that is both one-to-one and onto is called a correspondence. In a
correspondence, every element of A maps to a unique element of
B and each element of B has a unique element of A mapping to it.
A correspondence is simply a way of pairing the elements of A with
the elements of B.

Alternative common terminology for these types of functions is injective for
one-to-one, surjective for onto, and bijective for one-to-one and onto.

EXAMPLE 4.13

Let N be the set of natural numbers {1, 2, 3, . . .} and let E be the set of even
natural numbers {2, 4, 6, . . .}. Using Cantor’s definition of size, we can see that
N and E have the same size. The correspondence f mapping N to E is simply
f(n) = 2n. We can visualize f more easily with the help of a table.

n f(n)
1 2
2 4
3 6
...

...

Of course, this example seems bizarre. Intuitively, E seems smaller than N be-
cause E is a proper subset of N . But pairing each member of N with its own
member of E is possible, so we declare these two sets to be the same size.

DEFINITION 4.14

A set A is countable if either it is finite or it has the same size as N .

EXAMPLE 4.15

Now we turn to an even stranger example. If we let Q = {m
n | m, n ∈ N} be the

set of positive rational numbers, Q seems to be much larger than N . Yet these
two sets are the same size according to our definition. We give a correspondence
with N to show that Q is countable. One easy way to do so is to list all the

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Lecture 5

Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
I Is the set of natural numbers N = {1, 2, 3, . . . , } of the same size as the set of

even numbers {2, 4, 6, . . . , . . .}? YES
I Is the size of N equal to the size of the set of rational numbers
Q = {m

n : m, n ∈ N}?

I Is the size of N equal to the size of the set of real numbers R?

Lecture 5

Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
I Is the set of natural numbers N = {1, 2, 3, . . . , } of the same size as the set of

even numbers {2, 4, 6, . . . , . . .}? YES
I Is the size of N equal to the size of the set of rational numbers
Q = {m

n : m, n ∈ N}? YES

I Is the size of N equal to the size of the set of real numbers R?

N and Q are of the same size by a bit more complex bijection (see book).

Lecture 5

Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
I Is the set of natural numbers N = {1, 2, 3, . . . , } of the same size as the set of

even numbers {2, 4, 6, . . . , . . .}? YES
I Is the size of N equal to the size of the set of rational numbers
Q = {m

n : m, n ∈ N}? YES

I Is the size of N equal to the size of the set of real numbers R?

N and Q are of the same size by a bit more complex bijection (see book).

May seem bizzarre at first but incredibly influential!

“No one shall expel us from the paradise which Cantor has created for us.”

some space – David Hilbert

Lecture 5

Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
I Is the set of natural numbers N = {1, 2, 3, . . . , } of the same size as the set of

even numbers {2, 4, 6, . . . , . . .}? YES
I Is the size of N equal to the size of the set of rational numbers
Q = {m

n : m, n ∈ N}? YES
I Is the size of N equal to the size of the set of real numbers R?

Lecture 5

Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
I Is the set of natural numbers N = {1, 2, 3, . . . , } of the same size as the set of

even numbers {2, 4, 6, . . . , . . .}? YES
I Is the size of N equal to the size of the set of rational numbers
Q = {m

n : m, n ∈ N}? YES
I Is the size of N equal to the size of the set of real numbers R? NO

Diagonalization

Lecture 5

The reals are uncountable

I Suppose toward contradiction that there is a bijection f : N→ R

I We reach a contradiction by defining an x ∈ R such that no number a ∈ N maps
to x , i.e., f (a) = x

I For every n ∈ N, the n-th fractional digit of x is selected to be different from
the n-th digit of f (n)

I Example:
206 CHAPTER 4 / DECIDABILITY

n f(n)
1 3.14159 . . .
2 55.55555 . . .
3 0.12345 . . .
4 0.50000 . . .

...
...

x = 0.4641 . . .

The preceding theorem has an important application to the theory of com-
putation. It shows that some languages are not decidable or even Turing-
recognizable, for the reason that there are uncountably many languages yet only
countably many Turing machines. Because each Turing machine can recognize
a single language and there are more languages than Turing machines, some
languages are not recognized by any Turing machine. Such languages are not
Turing-recognizable, as we state in the following corollary.

COROLLARY 4.18

Some languages are not Turing-recognizable.

PROOF To show that the set of all Turing machines is countable, we first
observe that the set of all strings Σ∗ is countable for any alphabet Σ. With only
finitely many strings of each length, we may form a list of Σ∗ by writing down
all strings of length 0, length 1, length 2, and so on.

The set of all Turing machines is countable because each Turing machine M
has an encoding into a string ⟨M⟩. If we simply omit those strings that are not
legal encodings of Turing machines, we can obtain a list of all Turing machines.

To show that the set of all languages is uncountable, we first observe that the
set of all infinite binary sequences is uncountable. An infinite binary sequence is an
unending sequence of 0s and 1s. Let B be the set of all infinite binary sequences.
We can show that B is uncountable by using a proof by diagonalization similar
to the one we used in Theorem 4.17 to show that R is uncountable.

Let L be the set of all languages over alphabet Σ. We show that L is un-
countable by giving a correspondence with B, thus showing that the two sets are
the same size. Let Σ∗ = {s1, s2, s3, . . .}. Each language A ∈ L has a unique
sequence in B. The ith bit of that sequence is a 1 if si ∈ A and is a 0 if si ̸∈ A,
which is called the characteristic sequence of A. For example, if A were the lan-
guage of all strings starting with a 0 over the alphabet {0,1}, its characteristic
sequence χA would be

Σ∗ = { ε, 0, 1, 00, 01, 10, 11, 000, 001, · · · } ;
A = { 0, 00, 01, 000, 001, · · · } ;

χA = 0 1 0 1 1 0 0 1 1 · · · .

The function f : L−→B, where f(A) equals the characteristic sequence of
A, is one-to-one and onto, and hence is a correspondence. Therefore, as B is
uncountable, L is uncountable as well.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

I By definition there is no n ∈ N such that f (n) = x which contradicts that f is
onto.

Lecture 5

We now use Diagonalization to

I First prove that there is a language that is not decidable
I Then prove that the specific language

HALT = {〈M,w〉 : M is a TM and M halts on w}

is not decidable

Lecture 5

There are undecidable languages
I Turing machines are countable: enumerate all encodings

〈M1〉 〈M2〉 〈M3〉 〈M4〉 〈M5〉 〈M6〉 . . .

M1 A ∞ R A A R . . .

M2 R R A A ∞ A . . .

M3 R ∞ A ∞ R R . . .

M4 A ∞ R R R ∞ . . .

M5 ∞ ∞ A A A A . . .

M6 R A R ∞ A ∞ . . .

...
...

...
...

...
...

...
. . .

Let DIAG = {〈Mi〉 : Mi doesn’t accept 〈Mi〉} = {〈M2〉, 〈M4〉, 〈M6〉, . . .}

Theorem DIAG is undecidable

Proof by contradiction
I Suppose M decided DIAG
I Then M = Mi for some i ∈ N
I We have L(Mi) = DIAG

Does 〈Mi 〉 ∈ L(Mi)? Two cases
I If 〈Mi 〉 ∈ L(Mi) then by def. of

DIAG, 〈Mi 〉 < DIAG – contradiction
I If 〈Mi 〉 < L(Mi) then by def. of

DIAG, 〈Mi 〉 ∈ DIAG – contradiction

Lecture 5

There are undecidable languages
I Turing machines are countable: enumerate all encodings

〈M1〉 〈M2〉 〈M3〉 〈M4〉 〈M5〉 〈M6〉 . . .

M1 A ∞ R A A R . . .

M2 R R A A ∞ A . . .

M3 R ∞ A ∞ R R . . .

M4 A ∞ R R R ∞ . . .

M5 ∞ ∞ A A A A . . .

M6 R A R ∞ A ∞ . . .

...
...

...
...

...
...

...
. . .

Let DIAG = {〈Mi〉 : Mi doesn’t accept 〈Mi〉} = {〈M2〉, 〈M4〉, 〈M6〉, . . .}

Theorem DIAG is undecidable

Proof by contradiction
I Suppose M decided DIAG
I Then M = Mi for some i ∈ N
I We have L(Mi) = DIAG

Does 〈Mi 〉 ∈ L(Mi)? Two cases
I If 〈Mi 〉 ∈ L(Mi) then by def. of

DIAG, 〈Mi 〉 < DIAG – contradiction
I If 〈Mi 〉 < L(Mi) then by def. of

DIAG, 〈Mi 〉 ∈ DIAG – contradiction

Lecture 5

There are undecidable languages
I Turing machines are countable: enumerate all encodings

〈M1〉 〈M2〉 〈M3〉 〈M4〉 〈M5〉 〈M6〉 . . .

M1 A ∞ R A A R . . .

M2 R R A A ∞ A . . .

M3 R ∞ A ∞ R R . . .

M4 A ∞ R R R ∞ . . .

M5 ∞ ∞ A A A A . . .

M6 R A R ∞ A ∞ . . .

...
...

...
...

...
...

...
. . .

Let DIAG = {〈Mi〉 : Mi doesn’t accept 〈Mi〉} = {〈M2〉, 〈M4〉, 〈M6〉, . . .}

Theorem DIAG is undecidable

Proof by contradiction
I Suppose M decided DIAG
I Then M = Mi for some i ∈ N
I We have L(Mi) = DIAG

Does 〈Mi 〉 ∈ L(Mi)? Two cases
I If 〈Mi 〉 ∈ L(Mi) then by def. of

DIAG, 〈Mi 〉 < DIAG – contradiction
I If 〈Mi 〉 < L(Mi) then by def. of

DIAG, 〈Mi 〉 ∈ DIAG – contradiction

Lecture 5

There are undecidable languages
I Turing machines are countable: enumerate all encodings

〈M1〉 〈M2〉 〈M3〉 〈M4〉 〈M5〉 〈M6〉 . . .

M1 A ∞ R A A R . . .

M2 R R A A ∞ A . . .

M3 R ∞ A ∞ R R . . .

M4 A ∞ R R R ∞ . . .

M5 ∞ ∞ A A A A . . .

M6 R A R ∞ A ∞ . . .

...
...

...
...

...
...

...
. . .

Let DIAG = {〈Mi〉 : Mi doesn’t accept 〈Mi〉} = {〈M2〉, 〈M4〉, 〈M6〉, . . .}

Theorem DIAG is undecidable

Proof by contradiction
I Suppose M decided DIAG
I Then M = Mi for some i ∈ N
I We have L(Mi) = DIAG

Does 〈Mi 〉 ∈ L(Mi)? Two cases
I If 〈Mi 〉 ∈ L(Mi) then by def. of

DIAG, 〈Mi 〉 < DIAG – contradiction
I If 〈Mi 〉 < L(Mi) then by def. of

DIAG, 〈Mi 〉 ∈ DIAG – contradiction

Lecture 5

There are undecidable languages
I Turing machines are countable: enumerate all encodings

〈M1〉 〈M2〉 〈M3〉 〈M4〉 〈M5〉 〈M6〉 . . .

M1 A ∞ R A A R . . .

M2 R R A A ∞ A . . .

M3 R ∞ A ∞ R R . . .

M4 A ∞ R R R ∞ . . .

M5 ∞ ∞ A A A A . . .

M6 R A R ∞ A ∞ . . .

...
...

...
...

...
...

...
. . .

Let DIAG = {〈Mi〉 : Mi doesn’t accept 〈Mi〉} = {〈M2〉, 〈M4〉, 〈M6〉, . . .}

Theorem DIAG is undecidable

Proof by contradiction
I Suppose M decided DIAG
I Then M = Mi for some i ∈ N
I We have L(Mi) = DIAG

Does 〈Mi 〉 ∈ L(Mi)? Two cases
I If 〈Mi 〉 ∈ L(Mi) then by def. of

DIAG, 〈Mi 〉 < DIAG – contradiction
I If 〈Mi 〉 < L(Mi) then by def. of

DIAG, 〈Mi 〉 ∈ DIAG – contradiction
Lecture 5

Thm: HALT = {〈M,w〉 : M is a TM and M halts on w} is undecidable

Proof by contradiction

Assume on the contrary that H is a decider for HALT

We construct a decider D for DIAG = {〈M〉 : M doesn’t accept 〈M〉}

I D: On input 〈M〉, run H on input 〈M, 〈M〉〉
1 If H rejects (i.e., M loops on 〈M〉), accept
2 If H accepts (i.e., M halts on 〈M〉), run M on input 〈M〉.

When M accepts/rejects, output the opposite.

Need to prove that D decides DIAG :
1 D halts on all inputs
2 D accepts 〈M〉 ⇐⇒ M does not accept 〈M〉 ⇐⇒ 〈M〉 ∈ DIAG

Lecture 5

Thm: HALT = {〈M,w〉 : M is a TM and M halts on w} is undecidable

Proof by contradiction

Assume on the contrary that H is a decider for HALT

We construct a decider D for DIAG = {〈M〉 : M doesn’t accept 〈M〉}
I D: On input 〈M〉, run H on input 〈M, 〈M〉〉

1 If H rejects (i.e., M loops on 〈M〉), accept
2 If H accepts (i.e., M halts on 〈M〉), run M on input 〈M〉.

When M accepts/rejects, output the opposite.

Need to prove that D decides DIAG :
1 D halts on all inputs
2 D accepts 〈M〉 ⇐⇒ M does not accept 〈M〉 ⇐⇒ 〈M〉 ∈ DIAG

Lecture 5

Thm: HALT = {〈M,w〉 : M is a TM and M halts on w} is undecidable

Proof by contradiction

Assume on the contrary that H is a decider for HALT

We construct a decider D for DIAG = {〈M〉 : M doesn’t accept 〈M〉}
I D: On input 〈M〉, run H on input 〈M, 〈M〉〉

1 If H rejects (i.e., M loops on 〈M〉), accept

2 If H accepts (i.e., M halts on 〈M〉), run M on input 〈M〉.
When M accepts/rejects, output the opposite.

Need to prove that D decides DIAG :
1 D halts on all inputs
2 D accepts 〈M〉 ⇐⇒ M does not accept 〈M〉 ⇐⇒ 〈M〉 ∈ DIAG

Lecture 5

Thm: HALT = {〈M,w〉 : M is a TM and M halts on w} is undecidable

Proof by contradiction

Assume on the contrary that H is a decider for HALT

We construct a decider D for DIAG = {〈M〉 : M doesn’t accept 〈M〉}
I D: On input 〈M〉, run H on input 〈M, 〈M〉〉

1 If H rejects (i.e., M loops on 〈M〉), accept
2 If H accepts (i.e., M halts on 〈M〉), run M on input 〈M〉.

When M accepts/rejects, output the opposite.

Need to prove that D decides DIAG :

1 D halts on all inputs
2 D accepts 〈M〉 ⇐⇒ M does not accept 〈M〉 ⇐⇒ 〈M〉 ∈ DIAG

Lecture 5

Thm: HALT = {〈M,w〉 : M is a TM and M halts on w} is undecidable

Proof by contradiction

Assume on the contrary that H is a decider for HALT

We construct a decider D for DIAG = {〈M〉 : M doesn’t accept 〈M〉}
I D: On input 〈M〉, run H on input 〈M, 〈M〉〉

1 If H rejects (i.e., M loops on 〈M〉), accept
2 If H accepts (i.e., M halts on 〈M〉), run M on input 〈M〉.

When M accepts/rejects, output the opposite.

Need to prove that D decides DIAG :
1 D halts on all inputs

2 D accepts 〈M〉 ⇐⇒ M does not accept 〈M〉 ⇐⇒ 〈M〉 ∈ DIAG

Lecture 5

Thm: HALT = {〈M,w〉 : M is a TM and M halts on w} is undecidable

Proof by contradiction

Assume on the contrary that H is a decider for HALT

We construct a decider D for DIAG = {〈M〉 : M doesn’t accept 〈M〉}
I D: On input 〈M〉, run H on input 〈M, 〈M〉〉

1 If H rejects (i.e., M loops on 〈M〉), accept
2 If H accepts (i.e., M halts on 〈M〉), run M on input 〈M〉.

When M accepts/rejects, output the opposite.

Need to prove that D decides DIAG :
1 D halts on all inputs
2 D accepts 〈M〉 ⇐⇒ M does not accept 〈M〉 ⇐⇒ 〈M〉 ∈ DIAG

Lecture 5

Thm: ATM = {〈M,w〉 : M is a TM and M accepts w} is undecidable

Proof by contradiction Assume on the contrary that H is a decider for ATM

Thm:𝐴𝑇𝑀 is Undecidable.

Assume on the contrary that 𝑯 is a decider for 𝐴𝑇𝑀

𝐻〈𝑀, 𝑤〉

Accept
(𝑀 accepts 𝑤)

Reject
(𝑀 doesn’t accept 𝑤)

We construct a decider 𝑫 for 𝑳𝑫𝑰𝑨𝑮 using 𝑯
and encoder/decoder functions for strings/TMs.

Accept

𝑤 𝑖

𝑤𝑖 (= 𝑤)

〈𝑀𝑖, 𝑤𝑖〉 𝐻

𝐷
Accept

Reject𝑀𝑖
Reject

STR-DEC

STR-ENC

TM-DEC

Proof: (by contradiction)

Need to prove that 𝑫 decides 𝑳𝑫𝑰𝑨𝑮!

We construct a decider D for DIAG = {〈Mi 〉 : M doesn’t accept 〈Mi 〉} using H:

w 2 {0, 1}⇤
<latexit sha1_base64="kLQXTNA20UKi4EHQhjXIsU+PQ3Y=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCiJSkHhRPBS8eK9gPaGLZbDft0s0m7G4qJfSfePGgiFf/iTf/jds2B60+GHi8N8PMvCDhTGnH+bIKK6tr6xvFzdLW9s7unr1/0FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+e0xlYrF4l5PEupHeCBYyAjWRurZduXRYwJ5mXPuetOHs0rPLjtVZw70l7g5KUOORs/+9PoxSSMqNOFYqa7rJNrPsNSMcDoteamiCSYjPKBdQwWOqPKz+eVTdGKUPgpjaUpoNFd/TmQ4UmoSBaYzwnqolr2Z+J/XTXV45WdMJKmmgiwWhSlHOkazGFCfSUo0nxiCiWTmVkSGWGKiTVglE4K7/PJf0qpV3Ytq7a5Wrl/ncRThCI7hFFy4hDrcQgOaQGAMT/ACr1ZmPVtv1vuitWDlM4fwC9bHN01xkhw=</latexit>

Let Mi be TM with

encoding w, i.e., hMii = w
<latexit sha1_base64="+sdWX7toMZuvj55n0g/8TEEnQgs=">AAACPXicbVBNSxxBFOzRJJqNSVY95vLITsCDDDPrISIIgpccFBR2VdgZlp6et7uN/TF097gsi3/Mi//BW25ePCji1au9HwejKWgoqt6jX1VeCm5dHP8NFhY/fPy0tPy59mXl67fv9dW1E6srw7DNtNDmLKcWBVfYdtwJPCsNUpkLPM3P9yf+6QUay7VquVGJmaR9xXucUeelbr2VKs1VgcrBAToID7s8hByhdQhD7gZp2mlKmQEqpguu+hAOw03gEUabEKaCqr5A8DuQmhmHXRiG3XojjuIp4D1J5qRB5jjq1m/SQrNK+jOYoNZ2krh02Zgax5nAy1paWSwpO6d97HiqqESbjafpL+GXVwroaeOfjzFVX2+MqbR2JHM/Kakb2LfeRPyf16lcbzsbc1VWzueffdSrBDgNkyqh4AaZEyNPKDPc3wpsQA1lzhde8yUkbyO/JyfNKNmKmsfNxt7OvI5l8oP8JBskIb/JHvlDjkibMHJFbsk9eQiug7vgMXiajS4E85118g+C5xfy3KrH</latexit>

Mi, hMii
<latexit sha1_base64="aeAU0Hqg7ho2+SfqUHUFDpMUEyQ=">AAACA3icbZDLSgMxFIYz9VbrbdSdboKt4ELKTF0orgpu3AgV7AU6Q8mkZ9rQTGZIMkIpBTe+ihsXirj1Jdz5NqbTWWj1h8CX/5xDcv4g4Uxpx/myCkvLK6trxfXSxubW9o69u9dScSopNGnMY9kJiALOBDQ10xw6iQQSBRzawehqVm/fg1QsFnd6nIAfkYFgIaNEG6tnH1RueuwUe5yIAQdsLtiTGVd6dtmpOpnwX3BzKKNcjZ796fVjmkYgNOVEqa7rJNqfEKkZ5TAteamChNARGUDXoCARKH+S7TDFx8bp4zCW5giNM/fnxIRESo2jwHRGRA/VYm1m/lfrpjq88CdMJKkGQecPhSnHOsazQHCfSaCajw0QKpn5K6ZDIgnVJraSCcFdXPkvtGpV96xau62V65d5HEV0iI7QCXLROaqja9RATUTRA3pCL+jVerSerTfrfd5asPKZffRL1sc3wneWSw==</latexit>

H

Accept

Reject

Accept

Reject

Need to prove that D decides DIAG:
1 D halts on all inputs
2 D accepts 〈M〉 ⇐⇒ M does not accept 〈M〉 ⇐⇒ 〈M〉 ∈ DIAG

Lecture 5

Thm: ATM = {〈M,w〉 : M is a TM and M accepts w} is undecidable

Proof by contradiction Assume on the contrary that H is a decider for ATM

Thm:𝐴𝑇𝑀 is Undecidable.

Assume on the contrary that 𝑯 is a decider for 𝐴𝑇𝑀

𝐻〈𝑀, 𝑤〉

Accept
(𝑀 accepts 𝑤)

Reject
(𝑀 doesn’t accept 𝑤)

We construct a decider 𝑫 for 𝑳𝑫𝑰𝑨𝑮 using 𝑯
and encoder/decoder functions for strings/TMs.

Accept

𝑤 𝑖

𝑤𝑖 (= 𝑤)

〈𝑀𝑖, 𝑤𝑖〉 𝐻

𝐷
Accept

Reject𝑀𝑖
Reject

STR-DEC

STR-ENC

TM-DEC

Proof: (by contradiction)

Need to prove that 𝑫 decides 𝑳𝑫𝑰𝑨𝑮!

We construct a decider D for DIAG = {〈Mi 〉 : M doesn’t accept 〈Mi 〉} using H:

w 2 {0, 1}⇤
<latexit sha1_base64="kLQXTNA20UKi4EHQhjXIsU+PQ3Y=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCiJSkHhRPBS8eK9gPaGLZbDft0s0m7G4qJfSfePGgiFf/iTf/jds2B60+GHi8N8PMvCDhTGnH+bIKK6tr6xvFzdLW9s7unr1/0FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+e0xlYrF4l5PEupHeCBYyAjWRurZduXRYwJ5mXPuetOHs0rPLjtVZw70l7g5KUOORs/+9PoxSSMqNOFYqa7rJNrPsNSMcDoteamiCSYjPKBdQwWOqPKz+eVTdGKUPgpjaUpoNFd/TmQ4UmoSBaYzwnqolr2Z+J/XTXV45WdMJKmmgiwWhSlHOkazGFCfSUo0nxiCiWTmVkSGWGKiTVglE4K7/PJf0qpV3Ytq7a5Wrl/ncRThCI7hFFy4hDrcQgOaQGAMT/ACr1ZmPVtv1vuitWDlM4fwC9bHN01xkhw=</latexit>

Let Mi be TM with

encoding w, i.e., hMii = w
<latexit sha1_base64="+sdWX7toMZuvj55n0g/8TEEnQgs=">AAACPXicbVBNSxxBFOzRJJqNSVY95vLITsCDDDPrISIIgpccFBR2VdgZlp6et7uN/TF097gsi3/Mi//BW25ePCji1au9HwejKWgoqt6jX1VeCm5dHP8NFhY/fPy0tPy59mXl67fv9dW1E6srw7DNtNDmLKcWBVfYdtwJPCsNUpkLPM3P9yf+6QUay7VquVGJmaR9xXucUeelbr2VKs1VgcrBAToID7s8hByhdQhD7gZp2mlKmQEqpguu+hAOw03gEUabEKaCqr5A8DuQmhmHXRiG3XojjuIp4D1J5qRB5jjq1m/SQrNK+jOYoNZ2krh02Zgax5nAy1paWSwpO6d97HiqqESbjafpL+GXVwroaeOfjzFVX2+MqbR2JHM/Kakb2LfeRPyf16lcbzsbc1VWzueffdSrBDgNkyqh4AaZEyNPKDPc3wpsQA1lzhde8yUkbyO/JyfNKNmKmsfNxt7OvI5l8oP8JBskIb/JHvlDjkibMHJFbsk9eQiug7vgMXiajS4E85118g+C5xfy3KrH</latexit>

Mi, hMii
<latexit sha1_base64="aeAU0Hqg7ho2+SfqUHUFDpMUEyQ=">AAACA3icbZDLSgMxFIYz9VbrbdSdboKt4ELKTF0orgpu3AgV7AU6Q8mkZ9rQTGZIMkIpBTe+ihsXirj1Jdz5NqbTWWj1h8CX/5xDcv4g4Uxpx/myCkvLK6trxfXSxubW9o69u9dScSopNGnMY9kJiALOBDQ10xw6iQQSBRzawehqVm/fg1QsFnd6nIAfkYFgIaNEG6tnH1RueuwUe5yIAQdsLtiTGVd6dtmpOpnwX3BzKKNcjZ796fVjmkYgNOVEqa7rJNqfEKkZ5TAteamChNARGUDXoCARKH+S7TDFx8bp4zCW5giNM/fnxIRESo2jwHRGRA/VYm1m/lfrpjq88CdMJKkGQecPhSnHOsazQHCfSaCajw0QKpn5K6ZDIgnVJraSCcFdXPkvtGpV96xau62V65d5HEV0iI7QCXLROaqja9RATUTRA3pCL+jVerSerTfrfd5asPKZffRL1sc3wneWSw==</latexit>

H

Accept

Reject

Accept

Reject

Need to prove that D decides DIAG:
1 D halts on all inputs
2 D accepts 〈M〉 ⇐⇒ M does not accept 〈M〉 ⇐⇒ 〈M〉 ∈ DIAG

Lecture 5

Thm: ATM = {〈M,w〉 : M is a TM and M accepts w} is undecidable

Proof by contradiction Assume on the contrary that H is a decider for ATM

Thm:𝐴𝑇𝑀 is Undecidable.

Assume on the contrary that 𝑯 is a decider for 𝐴𝑇𝑀

𝐻〈𝑀, 𝑤〉

Accept
(𝑀 accepts 𝑤)

Reject
(𝑀 doesn’t accept 𝑤)

We construct a decider 𝑫 for 𝑳𝑫𝑰𝑨𝑮 using 𝑯
and encoder/decoder functions for strings/TMs.

Accept

𝑤 𝑖

𝑤𝑖 (= 𝑤)

〈𝑀𝑖, 𝑤𝑖〉 𝐻

𝐷
Accept

Reject𝑀𝑖
Reject

STR-DEC

STR-ENC

TM-DEC

Proof: (by contradiction)

Need to prove that 𝑫 decides 𝑳𝑫𝑰𝑨𝑮!

We construct a decider D for DIAG = {〈Mi 〉 : M doesn’t accept 〈Mi 〉} using H:

w 2 {0, 1}⇤
<latexit sha1_base64="kLQXTNA20UKi4EHQhjXIsU+PQ3Y=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCiJSkHhRPBS8eK9gPaGLZbDft0s0m7G4qJfSfePGgiFf/iTf/jds2B60+GHi8N8PMvCDhTGnH+bIKK6tr6xvFzdLW9s7unr1/0FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+e0xlYrF4l5PEupHeCBYyAjWRurZduXRYwJ5mXPuetOHs0rPLjtVZw70l7g5KUOORs/+9PoxSSMqNOFYqa7rJNrPsNSMcDoteamiCSYjPKBdQwWOqPKz+eVTdGKUPgpjaUpoNFd/TmQ4UmoSBaYzwnqolr2Z+J/XTXV45WdMJKmmgiwWhSlHOkazGFCfSUo0nxiCiWTmVkSGWGKiTVglE4K7/PJf0qpV3Ytq7a5Wrl/ncRThCI7hFFy4hDrcQgOaQGAMT/ACr1ZmPVtv1vuitWDlM4fwC9bHN01xkhw=</latexit>

Let Mi be TM with

encoding w, i.e., hMii = w
<latexit sha1_base64="+sdWX7toMZuvj55n0g/8TEEnQgs=">AAACPXicbVBNSxxBFOzRJJqNSVY95vLITsCDDDPrISIIgpccFBR2VdgZlp6et7uN/TF097gsi3/Mi//BW25ePCji1au9HwejKWgoqt6jX1VeCm5dHP8NFhY/fPy0tPy59mXl67fv9dW1E6srw7DNtNDmLKcWBVfYdtwJPCsNUpkLPM3P9yf+6QUay7VquVGJmaR9xXucUeelbr2VKs1VgcrBAToID7s8hByhdQhD7gZp2mlKmQEqpguu+hAOw03gEUabEKaCqr5A8DuQmhmHXRiG3XojjuIp4D1J5qRB5jjq1m/SQrNK+jOYoNZ2krh02Zgax5nAy1paWSwpO6d97HiqqESbjafpL+GXVwroaeOfjzFVX2+MqbR2JHM/Kakb2LfeRPyf16lcbzsbc1VWzueffdSrBDgNkyqh4AaZEyNPKDPc3wpsQA1lzhde8yUkbyO/JyfNKNmKmsfNxt7OvI5l8oP8JBskIb/JHvlDjkibMHJFbsk9eQiug7vgMXiajS4E85118g+C5xfy3KrH</latexit>

Mi, hMii
<latexit sha1_base64="aeAU0Hqg7ho2+SfqUHUFDpMUEyQ=">AAACA3icbZDLSgMxFIYz9VbrbdSdboKt4ELKTF0orgpu3AgV7AU6Q8mkZ9rQTGZIMkIpBTe+ihsXirj1Jdz5NqbTWWj1h8CX/5xDcv4g4Uxpx/myCkvLK6trxfXSxubW9o69u9dScSopNGnMY9kJiALOBDQ10xw6iQQSBRzawehqVm/fg1QsFnd6nIAfkYFgIaNEG6tnH1RueuwUe5yIAQdsLtiTGVd6dtmpOpnwX3BzKKNcjZ796fVjmkYgNOVEqa7rJNqfEKkZ5TAteamChNARGUDXoCARKH+S7TDFx8bp4zCW5giNM/fnxIRESo2jwHRGRA/VYm1m/lfrpjq88CdMJKkGQecPhSnHOsazQHCfSaCajw0QKpn5K6ZDIgnVJraSCcFdXPkvtGpV96xau62V65d5HEV0iI7QCXLROaqja9RATUTRA3pCL+jVerSerTfrfd5asPKZffRL1sc3wneWSw==</latexit>

H

Accept

Reject

Accept

Reject

Need to prove that D decides DIAG:

1 D halts on all inputs
2 D accepts 〈M〉 ⇐⇒ M does not accept 〈M〉 ⇐⇒ 〈M〉 ∈ DIAG

Lecture 5

Thm: ATM = {〈M,w〉 : M is a TM and M accepts w} is undecidable

Proof by contradiction Assume on the contrary that H is a decider for ATM

Thm:𝐴𝑇𝑀 is Undecidable.

Assume on the contrary that 𝑯 is a decider for 𝐴𝑇𝑀

𝐻〈𝑀, 𝑤〉

Accept
(𝑀 accepts 𝑤)

Reject
(𝑀 doesn’t accept 𝑤)

We construct a decider 𝑫 for 𝑳𝑫𝑰𝑨𝑮 using 𝑯
and encoder/decoder functions for strings/TMs.

Accept

𝑤 𝑖

𝑤𝑖 (= 𝑤)

〈𝑀𝑖, 𝑤𝑖〉 𝐻

𝐷
Accept

Reject𝑀𝑖
Reject

STR-DEC

STR-ENC

TM-DEC

Proof: (by contradiction)

Need to prove that 𝑫 decides 𝑳𝑫𝑰𝑨𝑮!

We construct a decider D for DIAG = {〈Mi 〉 : M doesn’t accept 〈Mi 〉} using H:

w 2 {0, 1}⇤
<latexit sha1_base64="kLQXTNA20UKi4EHQhjXIsU+PQ3Y=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCiJSkHhRPBS8eK9gPaGLZbDft0s0m7G4qJfSfePGgiFf/iTf/jds2B60+GHi8N8PMvCDhTGnH+bIKK6tr6xvFzdLW9s7unr1/0FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+e0xlYrF4l5PEupHeCBYyAjWRurZduXRYwJ5mXPuetOHs0rPLjtVZw70l7g5KUOORs/+9PoxSSMqNOFYqa7rJNrPsNSMcDoteamiCSYjPKBdQwWOqPKz+eVTdGKUPgpjaUpoNFd/TmQ4UmoSBaYzwnqolr2Z+J/XTXV45WdMJKmmgiwWhSlHOkazGFCfSUo0nxiCiWTmVkSGWGKiTVglE4K7/PJf0qpV3Ytq7a5Wrl/ncRThCI7hFFy4hDrcQgOaQGAMT/ACr1ZmPVtv1vuitWDlM4fwC9bHN01xkhw=</latexit>

Let Mi be TM with

encoding w, i.e., hMii = w
<latexit sha1_base64="+sdWX7toMZuvj55n0g/8TEEnQgs=">AAACPXicbVBNSxxBFOzRJJqNSVY95vLITsCDDDPrISIIgpccFBR2VdgZlp6et7uN/TF097gsi3/Mi//BW25ePCji1au9HwejKWgoqt6jX1VeCm5dHP8NFhY/fPy0tPy59mXl67fv9dW1E6srw7DNtNDmLKcWBVfYdtwJPCsNUpkLPM3P9yf+6QUay7VquVGJmaR9xXucUeelbr2VKs1VgcrBAToID7s8hByhdQhD7gZp2mlKmQEqpguu+hAOw03gEUabEKaCqr5A8DuQmhmHXRiG3XojjuIp4D1J5qRB5jjq1m/SQrNK+jOYoNZ2krh02Zgax5nAy1paWSwpO6d97HiqqESbjafpL+GXVwroaeOfjzFVX2+MqbR2JHM/Kakb2LfeRPyf16lcbzsbc1VWzueffdSrBDgNkyqh4AaZEyNPKDPc3wpsQA1lzhde8yUkbyO/JyfNKNmKmsfNxt7OvI5l8oP8JBskIb/JHvlDjkibMHJFbsk9eQiug7vgMXiajS4E85118g+C5xfy3KrH</latexit>

Mi, hMii
<latexit sha1_base64="aeAU0Hqg7ho2+SfqUHUFDpMUEyQ=">AAACA3icbZDLSgMxFIYz9VbrbdSdboKt4ELKTF0orgpu3AgV7AU6Q8mkZ9rQTGZIMkIpBTe+ihsXirj1Jdz5NqbTWWj1h8CX/5xDcv4g4Uxpx/myCkvLK6trxfXSxubW9o69u9dScSopNGnMY9kJiALOBDQ10xw6iQQSBRzawehqVm/fg1QsFnd6nIAfkYFgIaNEG6tnH1RueuwUe5yIAQdsLtiTGVd6dtmpOpnwX3BzKKNcjZ796fVjmkYgNOVEqa7rJNqfEKkZ5TAteamChNARGUDXoCARKH+S7TDFx8bp4zCW5giNM/fnxIRESo2jwHRGRA/VYm1m/lfrpjq88CdMJKkGQecPhSnHOsazQHCfSaCajw0QKpn5K6ZDIgnVJraSCcFdXPkvtGpV96xau62V65d5HEV0iI7QCXLROaqja9RATUTRA3pCL+jVerSerTfrfd5asPKZffRL1sc3wneWSw==</latexit>

H

Accept

Reject

Accept

Reject

Need to prove that D decides DIAG:
1 D halts on all inputs

2 D accepts 〈M〉 ⇐⇒ M does not accept 〈M〉 ⇐⇒ 〈M〉 ∈ DIAG

Lecture 5

Thm: ATM = {〈M,w〉 : M is a TM and M accepts w} is undecidable

Proof by contradiction Assume on the contrary that H is a decider for ATM

Thm:𝐴𝑇𝑀 is Undecidable.

Assume on the contrary that 𝑯 is a decider for 𝐴𝑇𝑀

𝐻〈𝑀, 𝑤〉

Accept
(𝑀 accepts 𝑤)

Reject
(𝑀 doesn’t accept 𝑤)

We construct a decider 𝑫 for 𝑳𝑫𝑰𝑨𝑮 using 𝑯
and encoder/decoder functions for strings/TMs.

Accept

𝑤 𝑖

𝑤𝑖 (= 𝑤)

〈𝑀𝑖, 𝑤𝑖〉 𝐻

𝐷
Accept

Reject𝑀𝑖
Reject

STR-DEC

STR-ENC

TM-DEC

Proof: (by contradiction)

Need to prove that 𝑫 decides 𝑳𝑫𝑰𝑨𝑮!

We construct a decider D for DIAG = {〈Mi 〉 : M doesn’t accept 〈Mi 〉} using H:

w 2 {0, 1}⇤
<latexit sha1_base64="kLQXTNA20UKi4EHQhjXIsU+PQ3Y=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCiJSkHhRPBS8eK9gPaGLZbDft0s0m7G4qJfSfePGgiFf/iTf/jds2B60+GHi8N8PMvCDhTGnH+bIKK6tr6xvFzdLW9s7unr1/0FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+e0xlYrF4l5PEupHeCBYyAjWRurZduXRYwJ5mXPuetOHs0rPLjtVZw70l7g5KUOORs/+9PoxSSMqNOFYqa7rJNrPsNSMcDoteamiCSYjPKBdQwWOqPKz+eVTdGKUPgpjaUpoNFd/TmQ4UmoSBaYzwnqolr2Z+J/XTXV45WdMJKmmgiwWhSlHOkazGFCfSUo0nxiCiWTmVkSGWGKiTVglE4K7/PJf0qpV3Ytq7a5Wrl/ncRThCI7hFFy4hDrcQgOaQGAMT/ACr1ZmPVtv1vuitWDlM4fwC9bHN01xkhw=</latexit>

Let Mi be TM with

encoding w, i.e., hMii = w
<latexit sha1_base64="+sdWX7toMZuvj55n0g/8TEEnQgs=">AAACPXicbVBNSxxBFOzRJJqNSVY95vLITsCDDDPrISIIgpccFBR2VdgZlp6et7uN/TF097gsi3/Mi//BW25ePCji1au9HwejKWgoqt6jX1VeCm5dHP8NFhY/fPy0tPy59mXl67fv9dW1E6srw7DNtNDmLKcWBVfYdtwJPCsNUpkLPM3P9yf+6QUay7VquVGJmaR9xXucUeelbr2VKs1VgcrBAToID7s8hByhdQhD7gZp2mlKmQEqpguu+hAOw03gEUabEKaCqr5A8DuQmhmHXRiG3XojjuIp4D1J5qRB5jjq1m/SQrNK+jOYoNZ2krh02Zgax5nAy1paWSwpO6d97HiqqESbjafpL+GXVwroaeOfjzFVX2+MqbR2JHM/Kakb2LfeRPyf16lcbzsbc1VWzueffdSrBDgNkyqh4AaZEyNPKDPc3wpsQA1lzhde8yUkbyO/JyfNKNmKmsfNxt7OvI5l8oP8JBskIb/JHvlDjkibMHJFbsk9eQiug7vgMXiajS4E85118g+C5xfy3KrH</latexit>

Mi, hMii
<latexit sha1_base64="aeAU0Hqg7ho2+SfqUHUFDpMUEyQ=">AAACA3icbZDLSgMxFIYz9VbrbdSdboKt4ELKTF0orgpu3AgV7AU6Q8mkZ9rQTGZIMkIpBTe+ihsXirj1Jdz5NqbTWWj1h8CX/5xDcv4g4Uxpx/myCkvLK6trxfXSxubW9o69u9dScSopNGnMY9kJiALOBDQ10xw6iQQSBRzawehqVm/fg1QsFnd6nIAfkYFgIaNEG6tnH1RueuwUe5yIAQdsLtiTGVd6dtmpOpnwX3BzKKNcjZ796fVjmkYgNOVEqa7rJNqfEKkZ5TAteamChNARGUDXoCARKH+S7TDFx8bp4zCW5giNM/fnxIRESo2jwHRGRA/VYm1m/lfrpjq88CdMJKkGQecPhSnHOsazQHCfSaCajw0QKpn5K6ZDIgnVJraSCcFdXPkvtGpV96xau62V65d5HEV0iI7QCXLROaqja9RATUTRA3pCL+jVerSerTfrfd5asPKZffRL1sc3wneWSw==</latexit>

H

Accept

Reject

Accept

Reject

Need to prove that D decides DIAG:
1 D halts on all inputs
2 D accepts 〈M〉 ⇐⇒ M does not accept 〈M〉 ⇐⇒ 〈M〉 ∈ DIAG

Lecture 5

Regular Decidable Recognizable

?

Unrecognizable languages?

Lecture 5

Unrecognizable languages exist!

Thm: HALT is not recognizable

Lecture 5

Step 1

Thm: A language L is decidable iff it is recognizable and its complement is
also recognizable

Proof:

I Easy direction: If L is decidable ⇒ L, L are recognizable
I Harder direction: Assume L, L are recognizable
I Let M1,M2 be the corresponding recognizers

Thm: A language 𝑳 is decidable iff it is recognizable and its
complement is also recognizable

Easy Direction: If 𝐿 is decidable ⇒ 𝐿, ത𝐿 are recognizable

Harder Direction: Assume 𝐿, ത𝐿 are recognizable
• Let 𝑀1,𝑀2 be the corresponding recognizers

• 𝑴 decides 𝑳
• For all 𝒘, either 𝒘 ∈ 𝑳 or 𝒘 ∈ ഥ𝑳
• Either 𝑴𝟏 accepts 𝒘 or 𝑴𝟐 accepts 𝒘
• 𝑴 halts once one of them stops ⇒ 𝑴 must always halt!

𝑴 = "On input w:
1- Run both 𝑴𝟏 and 𝑴𝟐 on input 𝒘, in parallel
2- If 𝑴𝟏 accepts, accept; if 𝑴𝟐 accepts, reject"

Proof:

Step 1

Formally: we alternate
between running 1 step of
𝑴𝟏 and 1 step of 𝑴𝟐

I M decides L
I For all w , either w ∈ L or w ∈ L̄
I Either M1 accepts w or M2 accepts w
I M halts once one of them stops ⇒ M must always halt!

Lecture 5

Step 1

Thm: A language L is decidable iff it is recognizable and its complement is
also recognizable

Proof:
I Easy direction: If L is decidable ⇒ L, L are recognizable

I Harder direction: Assume L, L are recognizable
I Let M1,M2 be the corresponding recognizers

Thm: A language 𝑳 is decidable iff it is recognizable and its
complement is also recognizable

Easy Direction: If 𝐿 is decidable ⇒ 𝐿, ത𝐿 are recognizable

Harder Direction: Assume 𝐿, ത𝐿 are recognizable
• Let 𝑀1,𝑀2 be the corresponding recognizers

• 𝑴 decides 𝑳
• For all 𝒘, either 𝒘 ∈ 𝑳 or 𝒘 ∈ ഥ𝑳
• Either 𝑴𝟏 accepts 𝒘 or 𝑴𝟐 accepts 𝒘
• 𝑴 halts once one of them stops ⇒ 𝑴 must always halt!

𝑴 = "On input w:
1- Run both 𝑴𝟏 and 𝑴𝟐 on input 𝒘, in parallel
2- If 𝑴𝟏 accepts, accept; if 𝑴𝟐 accepts, reject"

Proof:

Step 1

Formally: we alternate
between running 1 step of
𝑴𝟏 and 1 step of 𝑴𝟐

I M decides L
I For all w , either w ∈ L or w ∈ L̄
I Either M1 accepts w or M2 accepts w
I M halts once one of them stops ⇒ M must always halt!

Lecture 5

Step 1

Thm: A language L is decidable iff it is recognizable and its complement is
also recognizable

Proof:
I Easy direction: If L is decidable ⇒ L, L are recognizable
I Harder direction: Assume L, L are recognizable

I Let M1,M2 be the corresponding recognizers

Thm: A language 𝑳 is decidable iff it is recognizable and its
complement is also recognizable

Easy Direction: If 𝐿 is decidable ⇒ 𝐿, ത𝐿 are recognizable

Harder Direction: Assume 𝐿, ത𝐿 are recognizable
• Let 𝑀1,𝑀2 be the corresponding recognizers

• 𝑴 decides 𝑳
• For all 𝒘, either 𝒘 ∈ 𝑳 or 𝒘 ∈ ഥ𝑳
• Either 𝑴𝟏 accepts 𝒘 or 𝑴𝟐 accepts 𝒘
• 𝑴 halts once one of them stops ⇒ 𝑴 must always halt!

𝑴 = "On input w:
1- Run both 𝑴𝟏 and 𝑴𝟐 on input 𝒘, in parallel
2- If 𝑴𝟏 accepts, accept; if 𝑴𝟐 accepts, reject"

Proof:

Step 1

Formally: we alternate
between running 1 step of
𝑴𝟏 and 1 step of 𝑴𝟐

I M decides L
I For all w , either w ∈ L or w ∈ L̄
I Either M1 accepts w or M2 accepts w
I M halts once one of them stops ⇒ M must always halt!

Lecture 5

Step 1

Thm: A language L is decidable iff it is recognizable and its complement is
also recognizable

Proof:
I Easy direction: If L is decidable ⇒ L, L are recognizable
I Harder direction: Assume L, L are recognizable
I Let M1,M2 be the corresponding recognizers

Thm: A language 𝑳 is decidable iff it is recognizable and its
complement is also recognizable

Easy Direction: If 𝐿 is decidable ⇒ 𝐿, ത𝐿 are recognizable

Harder Direction: Assume 𝐿, ത𝐿 are recognizable
• Let 𝑀1,𝑀2 be the corresponding recognizers

• 𝑴 decides 𝑳
• For all 𝒘, either 𝒘 ∈ 𝑳 or 𝒘 ∈ ഥ𝑳
• Either 𝑴𝟏 accepts 𝒘 or 𝑴𝟐 accepts 𝒘
• 𝑴 halts once one of them stops ⇒ 𝑴 must always halt!

𝑴 = "On input w:
1- Run both 𝑴𝟏 and 𝑴𝟐 on input 𝒘, in parallel
2- If 𝑴𝟏 accepts, accept; if 𝑴𝟐 accepts, reject"

Proof:

Step 1

Formally: we alternate
between running 1 step of
𝑴𝟏 and 1 step of 𝑴𝟐

I M decides L
I For all w , either w ∈ L or w ∈ L̄
I Either M1 accepts w or M2 accepts w
I M halts once one of them stops ⇒ M must always halt!

Lecture 5

Step 1

Thm: A language L is decidable iff it is recognizable and its complement is
also recognizable

Proof:
I Easy direction: If L is decidable ⇒ L, L are recognizable
I Harder direction: Assume L, L are recognizable
I Let M1,M2 be the corresponding recognizers

Thm: A language 𝑳 is decidable iff it is recognizable and its
complement is also recognizable

Easy Direction: If 𝐿 is decidable ⇒ 𝐿, ത𝐿 are recognizable

Harder Direction: Assume 𝐿, ത𝐿 are recognizable
• Let 𝑀1,𝑀2 be the corresponding recognizers

• 𝑴 decides 𝑳
• For all 𝒘, either 𝒘 ∈ 𝑳 or 𝒘 ∈ ഥ𝑳
• Either 𝑴𝟏 accepts 𝒘 or 𝑴𝟐 accepts 𝒘
• 𝑴 halts once one of them stops ⇒ 𝑴 must always halt!

𝑴 = "On input w:
1- Run both 𝑴𝟏 and 𝑴𝟐 on input 𝒘, in parallel
2- If 𝑴𝟏 accepts, accept; if 𝑴𝟐 accepts, reject"

Proof:

Step 1

Formally: we alternate
between running 1 step of
𝑴𝟏 and 1 step of 𝑴𝟐

I M decides L
I For all w , either w ∈ L or w ∈ L̄
I Either M1 accepts w or M2 accepts w
I M halts once one of them stops ⇒ M must always halt!

Lecture 5

Step 1

Thm: A language L is decidable iff it is recognizable and its complement is
also recognizable

Proof:
I Easy direction: If L is decidable ⇒ L, L are recognizable
I Harder direction: Assume L, L are recognizable
I Let M1,M2 be the corresponding recognizers

Thm: A language 𝑳 is decidable iff it is recognizable and its
complement is also recognizable

Easy Direction: If 𝐿 is decidable ⇒ 𝐿, ത𝐿 are recognizable

Harder Direction: Assume 𝐿, ത𝐿 are recognizable
• Let 𝑀1,𝑀2 be the corresponding recognizers

• 𝑴 decides 𝑳
• For all 𝒘, either 𝒘 ∈ 𝑳 or 𝒘 ∈ ഥ𝑳
• Either 𝑴𝟏 accepts 𝒘 or 𝑴𝟐 accepts 𝒘
• 𝑴 halts once one of them stops ⇒ 𝑴 must always halt!

𝑴 = "On input w:
1- Run both 𝑴𝟏 and 𝑴𝟐 on input 𝒘, in parallel
2- If 𝑴𝟏 accepts, accept; if 𝑴𝟐 accepts, reject"

Proof:

Step 1

Formally: we alternate
between running 1 step of
𝑴𝟏 and 1 step of 𝑴𝟐

I M decides L
I For all w , either w ∈ L or w ∈ L̄
I Either M1 accepts w or M2 accepts w
I M halts once one of them stops ⇒ M must always halt!

Lecture 5

Step 2

Corollary: Language HALT is unrecognizable

I Recall that
I HALT is undecidable
I HALT is recognizable

I So by previous Thm we must have that HALT is unrecognizable

Lecture 5

Next week: Reductions

Lecture 5

