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GReAT. A
WAREHOUSE FILLED
WITH MILES AND
MILES OF
REWRITABLE TAPE!
WHAT ARE WE
EVER GOING To DO
WITH THIS, ALAN?
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(the algorithm)
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The Turing Machine

Head (with current state)
gs

Infinite Tape
Gaccept]

Uu—R

0— LU,R 1—LU,R
0,1 >R qa qo0 q1 0,1 >R

Finite state control
(the algorithm)




The Turing Machine

Head (with current state)

a3
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Head (with current state)
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The Turing Machine

Head (with current state)

Qaccept

0,1 =R 0,1 =R

Finite state control
(the algorithm)




The Turing Machine

Head (with current state)

Qaccept l
HEEEEEEEEEEEEEEEN
Infinite Tape
U—R

0—LU,R 1—U,R

0,1 =R 0,1 =R

Finite state control
(the algorithm)

This Turing machine
accepts even length
binary palindromes
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[tJofa]tfoa]ae]a]u]u]ufk. ..

Infinite tape

Tape alphabet contains input alphabet plus U (blank symbol) plus maybe
more symbols

Head has states (corresponding to the finite control automata)

Exactly one Accept state and exactly one Reject state (where
computation immediately ends)

Remaining states “computation in progress”

May never reach an accept state. May never halt!

do
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Formal Definition of a TM

A Turing Machine is a 7-tuple (Q, X, T, 4, qo, Qaccept, Greject), Where Q, X, T are
all finite sets and

Q is the set of states,

¥ is the input alphabet not containing the blank symbol L,
I is the tape alphabet, where LI€ T and X C T,

B 6:QxTI— QxT x{L,R} is the transition function,

o € Q is the start state,

A gaccepr € Q is the accept state, and

Greject € Q is the reject state, where Gaccept # Greject-
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Turing-Recognizable /Decidable Languages

A TM machine M recognizes a language L C X" iff for all inputs w € £*:
If w e L then M accepts w and
If w ¢ L then M either rejects w or never halts

Such languages are called (Turing)-Recognizable
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Turing-Recognizable /Decidable Languages

A TM machine M recognizes a language L C X" iff for all inputs w € X™:
If w e L then M accepts w and
If w ¢ L then M either rejects w or never halts

Such languages are called (Turing)-Recognizable

A TM machine M decides a language L C X iff for all inputs w € £*:
M halts on w, and
M accepts w iff w € L

Such languages are called (Turing)-Decidable
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Church-Turing Thesis

Intuitive notion
of algorithms

Turing machine

equals algorithms
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Intuitive notion
of algorithms

equals

Turing machine
algorithms

> All algorithms we know of can be executed on TMs

> Anything you write in C, Java, Scala, Python and so on

> The definition is also robust to variations: if we allow for many tapes
instead of one, then nothing changes

To show language decidable or recognizable it sufficient to describe an

algorithm in a high level language (Since by above any such algorithm can be run

on a TM)




Decidable Languages
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What can TMs compute?

001011 - - Accept

Equal number of 1’s and 0’s
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What can TMs compute?

001011 - - Accept

Equal number of 1’s and 0’s

O G)—@)
eo‘g - TMconnectea N Reject

Checking connectedness
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What can TMs compute?

Lecture 5

001011 - - Accept

Equal number of 1’s and 0’s

O G)—@)
99‘8 - TMconnectea N Reject

Checking connectedness

TMShortestpath -

Shortest path problem

And more...



How to encode inputs
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How to encode inputs

Q

EARER AR

* ot (@]t o]0 |-
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How to encode inputs

Q

Qo F o
(D) € {0,1}*:

B i 5o 01 0 00 01 o NG

* ot (@]t o]0 |-
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How to encode inputs

Q

EIEIRar
(D) € {0,1}*:
B i 5o 01 0 00 01 o NG

Anything can be encoded using binary strings!

* ot (@]t o]0 |-
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Checking Emptiness of a DFA

EDFA = {<D> . L(D) == @}



Checking Emptiness of a DFA

EDFA = {<D> . L(D) = @}

First approach:
For each string s € {¢,0,1, 00,01, 10,11, 000, ...}
Simulate D on s

> If D accepts s, THEN reject
> ELSE, pick the next string and go to 2.
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Checking Emptiness of a DFA

EDFA = {<D> . L(D) = @}

First approach:
For each string s € {¢,0,1, 00,01, 10,11, 000, ...}
Simulate D on s

> If D accepts s, THEN reject
> ELSE, pick the next string and go to 2.

A If L(D) = 0, then this TM will never halt! &
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Checking Emptiness of a DFA (2nd attempt)

Epra = {(D) : L(D) = 0}
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Checking Emptiness of a DFA (2nd attempt)

Epra = =0}

FoX



Checking Emptiness of a DFA (2nd attempt)

Language accepted by a DFA is non-empty iff there is an accepting state that
can be reached from the starting state by a sequence of transitions
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Epra = : L(D) =0}

o)( Fho ¥

Language accepted by a DFA is non-empty iff there is an accepting state that
can be reached from the starting state by a sequence of transitions

Given (D) with D = (Q, X, 4, qo, F)
Initialize, R = {qo}

For each g € R and ¢’ € Q \ R, check if there exists a transition of the form
6(g,a) = g’ forsomeac ™

If at least one such ¢’ is found, add ¢’ to R and go back to Step 2
Accept iff RNF =10



Two DFAs recognize the same language?

EQpra = {(D,D') : L(D) = L(D")}
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Two DFAs recognize the same language?

EQpra = {(D,D') : L(D) = L(D")}

Fact: L(D) = L(D') if and only if L(D)® L(D') =0
> Here L(D)® L(D') = (L(D)N L(D")) U (L(D) N L(D"))

> Thus L(D) & L(D') is regular
> Let D® be DFA accepting L(D) & L(D’)

D
(D,D") —(D®
D

TMpgq

ACCEPT— ACCEPT

REJECT — REJECT
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Mika, we get it: Turing machines can compute a lot

but can they compute anything?



Mika, we get it: Turing machines can compute a lot

but can they compute anything? NO

Theorem (Turing 1936): Halting problem
HALT = {{M,w) : M is a TM and M halts on input w}

is undecidable

Intuitively the difficulty of is to conclude in a finite number of steps whether M
loops forever or is just slow to halt ...



Halting problem is recognizable

HALT = {(M,w) : M is a TM and M halts on input w}
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Halting problem is recognizable

HALT = {(M,w) : M is a TM and M halts on input w}

HALT is recognizable! The following TM U recognizes HALT

U = On input (M, w) where M is a TM and w is a string:

Simulate M on input w.
If M ever halts (enters accept/reject state), accept.
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Halting problem is recognizable

HALT = {(M,w) : M is a TM and M halts on input w}

HALT is recognizable! The following TM U recognizes HALT
U = On input (M, w) where M is a TM and w is a string:

Simulate M on input w.
If M ever halts (enters accept/reject state), accept.

> Note that U loops on input (M, w) if M loops on w, which is why this machine
does not decide HALT

> Since we will show that HALT is undecidable this shows that recognizers are
more powerful than deciders
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George Cantor (1845-1918)

Diagonalization
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Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
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Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets

> Is the set of natural numbers N = {1,2,3,...,} of the same size as the set of
even numbers {2,4,6,...,...}7
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Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
> Is the set of natural numbers N = {1,2,3,...,} of the same size as the set of
even numbers {2,4,6,...,...}7
> s the size of N equal to the size of the set of rational numbers
Q={Z:mneN}?

> |s the size of N equal to the size of the set of real numbers R?
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Comparing the size of infinite sets

Recall that a function f: X — Y is bijective if it is

one-to-one it never maps two different elements to the same place — that is,
f(a) # f(a’) whenever a # 2’

onto it hits every element of Y — that is, for every b € Y there is an
a € X such that f(a) = b

X

Y
‘D

'B

,C
‘A

Definition. A set A is countable if either it is finite or it has the same
size as N (i.e., there is a bijection between A and N)

Lecture 5



Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets

> Is the set of natural numbers N = {1,2,3,...,} of the same size as the set of
even numbers {2,4,6,...,...}7

Lecture 5



Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets

> Is the set of natural numbers N = {1,2,3,...,} of the same size as the set of
even numbers {2,4,6,...,...}? YES

N and the set of even numbers are of the same size by the bijection f(n) = 2n:
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Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets
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Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets

> Is the set of natural numbers N = {1,2,3,...,} of the same size as the set of
even numbers {2,4,6,...,...}? YES

> s the size of N equal to the size of the set of rational numbers
Q={%:m,n€N}? YES

N and Q are of the same size by a bit more complex bijection (see book).

Lecture 5



Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets

> Is the set of natural numbers N = {1,2,3,...,} of the same size as the set of
even numbers {2,4,6,...,...}? YES

> s the size of N equal to the size of the set of rational numbers
Q={%:m,n€N}? YES

N and Q are of the same size by a bit more complex bijection (see book).

May seem bizzarre at first but incredibly influential!

“No one shall expel us from the paradise which Cantor has created for us.”

— David Hilbert
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Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets

> Is the set of natural numbers N = {1,2,3,...,} of the same size as the set of
even numbers {2,4,6,...,...}? YES

> s the size of N equal to the size of the set of rational numbers
Q={%:m,n€N}? YES

> |s the size of N equal to the size of the set of real numbers R?
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Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets

> Is the set of natural numbers N = {1,2,3,...,} of the same size as the set of
even numbers {2,4,6,...,...}? YES

> s the size of N equal to the size of the set of rational numbers
Q={%:m,n€N}? YES
> |s the size of N equal to the size of the set of real numbers R? NO

Diagonalization
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> Suppose toward contradiction that there is a bijection f: N — R

> We reach a contradiction by defining an x € R such that no number a € N maps
to x, i.e,, f(a) = x

> For every n € N, the n-th fractional digit of x is selected to be different from
the n-th digit of f(n)

> Example:
n| I
1 3.14159...
2 | b5.555655. ..
3 0.12345... r=0.4641 ...
4 0.50000...

> By definition there is no n € N such that f(n) = x which contradicts that f is
onto.



We now use Diagonalization to

> First prove that there is a language that is not decidable

> Then prove that the specific language

HALT = {{M,w) : Mis a TM and M halts on w}

is not decidable



There are undecidable languages

> Turing machines are countable: enumerate all encodings
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There are undecidable languages

> Turing machines are countable: enumerate all encodings

(M1) (M) (Ms3) (Ma) (Ms) (Ms)
M; A 9] R A A R
M, R R A A 0 A
M3 R [e%s) A [e%s) R R
My A 0o R R R e’}
Ms oo 00 A A A A
M R A R 00 A 00
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There are undecidable languages

> Turing machines are countable: enumerate all encodings

(M1) (M) (Ms3) (Ma) (Ms) (Ms)
M; A 9] R A A R
M, R R A A 0 A
M3 R [e%s) A [e%s) R R
My A 0o R R R e’}
Ms oo 00 A A A A
M R A R 00 A o0

Let DIAG = {(M;) : M; doesn’t accept (M)} = {(M>), (Ms), (Ms), ...}
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> Turing machines are countable: enumerate all encodings

(M1)  (M2) (M3) (Ms) (Ms) (Ms)

M A 9] R A A

M, R R A A [eS) A
M3 R 00 A (%) R R
My A %) R R R e’}
Ms o) 00 A A A A
Ms R A R 00 A oS)

Let DIAG = {(M;) : M; doesn’t accept (M;)} = {(Ma), (Mas), (Ms), ...}

Theorem DIAG is undecidable Does (M;) € L(M;)? Two cases

Proof by contradiction > If (M;) € L(M;) then by def. of
DIAG, (M;) ¢ DIAG — tradicti
> Suppose M decided DIAG - (M) ¢ contradiction

> Then M = M; for some i € N > If (M;) ¢ L(M;) then by def. Of. .
DIAG, (M;) € DIAG — contradiction
> We have L(M;) = DIAG



Thm: HALT = {{M,w) : M is a TM and M halts on w} is undecidable

Proof by contradiction

Assume on the contrary that H is a decider for HALT
We construct a decider D for DIAG = {(M) : M doesn’t accept (M)}
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Thm: HALT = {{M,w) : M is a TM and M halts on w} is undecidable

Proof by contradiction

Assume on the contrary that H is a decider for HALT
We construct a decider D for DIAG = {(M) : M doesn’t accept (M)}
> D: On input (M), run H on input (M, (M))
If H rejects (i.e., M loops on (M)), accept

If H accepts (i.e., M halts on (M)), run M on input (M).
When M accepts/rejects, output the opposite.

Need to prove that D decides DIAG:
D halts on all inputs
D accepts (M) <= M does not accept (M) < (M) € DIAG
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Thm: Ary = {(M,w) : M is a TM and M accepts w} is undecidable
Proof by contradiction Assume on the contrary that H is a for Aty

Accept

(M accepts w)
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Thm: Ary = {(M,w) : M is a TM and M accepts w} is undecidable

Proof by contradiction Assume on the contrary that H is a for Aty

Accept

(M accepts w)
<M, W) —_— H —_
Reject

(M doesn’t accept w)

We construct a decider D for DIAG = {(M;) : M doesn't accept (M;)} using

w € {0,1}* | Let M; be TM with
- > — M;, (M;)
encoding w, i.e., (M;) = w

Need to prove that D decides DIAG:
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Thm: Ary = {(M,w) : M is a TM and M accepts w} is undecidable

Proof by contradiction Assume on the contrary that H is a decider for Aty

Accept

(M accepts w)
<M, W) —_— H —_
Reject

(M doesn’t accept w)

We construct a decider D for DIAG = {(M;) : M doesn’t accept (M;)} using H:

w € {0,1}* | Let M; be TM with
- > — M;, (M;)
encoding w, i.e., (M;) = w

Need to prove that D decides DIAG:
D halts on all inputs
D accepts (M) <= M does not accept (M) <= (M) € DIAG



Unrecognizable languages?
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Unrecognizable languages exist!

Thm: HALT is not recognizable



Thm: A language L is decidable iff it is recognizable and its complement is
also recognizable

Proof:
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Thm: A language L is decidable iff it is recognizable and its complement is
also recognizable

Proof:

> Easy direction: If L is decidable = L, L are recognizable

> Harder direction: Assume L, L are recognizable
Formally: we alternate

between running 1 step of
M, and 1 step of M,

> Let My, My be the corresponding recognizers
M = "On input w:

1- Run both M, and M, on input w, in parallel
2- If M4 accepts, accept; if M, accepts, reject"
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Thm: A language L is decidable iff it is recognizable and its complement is
also recognizable

Proof:

> Easy direction: If L is decidable = L, L are recognizable

> Harder direction: Assume L, L are recognizable

Formally: we alternate
between running 1 step of
M, and 1 step of M,

> Let Mi, Ms be the corresponding recognizers

M = "On input w:
1- Run both M, and M on input w, in parallel
2- If M4 accepts, accept; if M, accepts, reject"

> M decides L

> For all w, eitherwe Lorwe L
> Either My accepts w or M, accepts w
> M halts once one of them stops = M must always halt!



Corollary: Language HALT is unrecognizable

> Recall that

> HALT is undecidable
> HALT is recognizable

> So by previous Thm we must have that HALT is unrecognizable
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Next week: Reductions



