Lecture 5: Decidability and Undecidability

Mika G6ds

E P F L School of Computer and Communication Sciences

Lecture 5

GReAT. A
WAREHOUSE FILLED
WITH MILES AND
MILES OF
REWRITABLE TAPE!
WHAT ARE WE
EVER GOING To DO
WITH THIS, ALAN?

The Turing Machine

Head (with current state)

Ja6apt

0,1 >R

0,1 -+ R

Finite state control
(the algorithm)

This Turing machine
accepts even length
binary palindromes

|l ecture 5

[t]ofa]tfofa]ae]a]u]u]ufk. ..

Infinite tape

Tape alphabet contains input alphabet plus U (blank symbol) plus maybe
more symbols

Head has states (corresponding to the finite control automata)

Exactly one Accept state and exactly one Reject state (where
computation immediately ends)

Remaining states “computation in progress”

May never reach an accept state. May never halt!

0—L

Formal Definition of a TM

A Turing Machine is a 7-tuple (Q, X, T, 4, qo, Qaccept, Greject), Where Q, X, T are
all finite sets and

Q is the set of states,

Y is the input alphabet not containing the blank symbol LI,
[is the tape alphabet, where U €T and X C T,

0:Q@xT — QxT x{L,R} is the transition function,

qo € Q is the start state,

A gaccept € Q is the accept state, and

Greject € @ is the reject state, where Gaccept # Greject-

Lecture 5

Turing-Recognizable/Decidable Languages

A TM machine M recognizes a language L C X* iff for all inputs w € £*:
If w e L then M accepts w and
If w ¢ L then M either rejects w or never halts

Such languages are called (Turing)-Recognizable

A TM machine M decides a language L C X iff for all inputs w € X*:
M halts on w, and
M accepts w iff w € L

Such languages are called (Turing)-Decidable

Lecture 5

Intuitive notion
of algorithms

equals

Turing machine
algorithms

> All algorithms we know of can be executed on TMs

> Anything you write in C, Java, Scala, Python and so on

> The definition is also robust to variations: if we allow for many tapes
instead of one, then nothing changes

To show language decidable or recognizable it sufficient to describe an

algorithm in a high level language (Since by above any such algorithm can be run

ona TM)

Decidable Languages

Lecture 5

What can TMs compute?

R -

Equal number of 1’s and 0’s

O G-
eo‘g — TMconnectea =) Reject

Checking connectedness

09
’@ ;@ 1,6 ‘ TMShortestpath =)
‘

G,

Shortest path problem
path P And more...

Lecture 5

How to encode inputs

Q

Qe oz Fow
(D) € {0, 1}*:

-11:..001011_00_01_0...-

* ‘%‘1 “h * ‘40‘0 ‘

Lecture 5

Checking Emptiness of a DFA

Eppa = {(D) : L(D) = 0}

First approach:
For each string s € {¢,0, 1,00, 01, 10,11, 000,...}
Simulate D on s

> If D accepts s, THEN reject
> ELSE, pick the next string and go to 2.

& If L(D) = 0, then this TM will never halt! &

Lecture 5

Language accepted by a DFA is non-empty iff there is an accepting state that
can be reached from the starting state by a sequence of transitions

Given (D) with D = (Q, X, 6, qo, F)

Initialize, R = {qo}
For each g € R and q’ € Q \ R, check if there exists a transition of the form
4(g,a) = g’ for some a € ™

If at least one such q’ is found, add ¢’ to R and go back to Step 2
Accept iff RN F = ()

Two DFAs recognize the same language?

EQpra = {(D,D') : L(D) = L(D")}

Fact: L(D) = L(D') if and only if L(D) @& L(D') = 0

> Here L(D) & L(D') = (L(D)N L(D")) U (L(D) N L(D"))
» Thus L(D) @ L(D') is regular
> Let D® be DFA accepting L(D) @ L(D')

D
(D,D") ——(D®
D

TMpgq

ACCEPT— ACCEPT

REJECT — REJECT

| ecture 5

Mika, we get it: Turing machines can compute a lot

but can they compute anything? NO

Theorem (Turing 1936): Halting problem
HALT = {({M,w) : M is a TM and M halts on input w}

is undecidable

Intuitively the difficulty of is to conclude in a finite number of steps whether M
loops forever or is just slow to halt ...

HALT = {(M,w) : M is a TM and M halts on input w}

HALT is recognizable! The following TM U recognizes HALT
V)

On input (M, w) where M is a TM and w is a string:

Simulate M on input w.
If M ever halts (enters accept/reject state), accept.

> Note that U loops on input (M, w) if M loops on w, which is why this machine
does not decide HALT

> Since we will show that HALT is undecidable this shows that recognizers are
more powerful than deciders

George Cantor (1845-1918)

Diagonalization

Lecture 5

Comparing the size of infinite sets

In 1873, Cantor thought about the size of infinite sets

> Is the set of natural numbers N = {1,2,3,...,} of the same size as the set of
even numbers {2,4,6,...,...}?

> |s the size of N equal to the size of the set of rational numbers
Q={%:mneN}?

> Is the size of N equal to the size of the set of real numbers R?

Lecture 5

Comparing the size of infinite sets

Recall that a function 7: X — Y is bijective if it is

one-to-one it never maps two different elements to the same place — that is,
f(a) # f(a’) whenever a # a’

onto it hits every element of Y — that is, for every b € Y there is an
a € X such that f(a) = b

X Y

Definition. A set A is countable if either it is finite or it has the same
size as N (i.e., there is a bijection between A and N)

|l ecture 5

In 1873, Cantor thought about the size of infinite sets

> |s the set of natural numbers N = {1,2,3,...,} of the same size as the set of
even numbers {2,4,6,...,...}7 YES

> s the size of N equal to the size of the set of rational numbers
Q={%:m,necN}? YES

> s the size of N equal to the size of the set of real numbers R? NO

N and the set of even numbers are of the same size by the bijection f(n) = 2n:

N and Q are of the same size by a bit more complex bijection (see book).

May seem bizzarre at first but incredibly influential!

AL mm el Acoommd vim Lomsan hom mmemdimmn sl st o mommdmd £omn o 17

> Suppose toward contradiction that there is a bijection f: N — R

> We reach a contradiction by defining an x € R such that no number a € N maps
to x, i.e,, f(a) = x

> For every n € N, the n-th fractional digit of x is selected to be different from
the n-th digit of f(n)

> Example:
n| i)
1 3.14159...
2 | b5.555655. ..
3 0.12345... r=0.4641 ...
4 0.50000...

> By definition there is no n € N such that f(n) = x which contradicts that f is
onto.

We now use Diagonalization to

> First prove that there is a language that is not decidable

> Then prove that the specific language

HALT = {{M,w) : Mis a TM and M halts on w}

is not decidable

> Turing machines are countable: enumerate all encodings

(M1) (M) (M3) (Ms) (Ms) (Ms)

M A) R A A R
M, R R A A [e%S) A
M3 R 00 A 00 R R
My A 00 R R R o)
Ms o) 00 A A A A
Ms R A R 00 A 9]

Let DIAG = {(M;) : M; doesn’t accept (M;)} = {(Ma), (Mas), (Ms), ...}

Theorem DIAG is undecidable Does (M;) € L(M;)? Two cases

Proof by contradiction > If (M;) € L(M;) then by def. of
DIAG, (M;) ¢ DIAG — tradicti
> Suppose M decided DIAG (Mi) ¢ contradiction

> Then M = M; for some i € N > If </\2> ¢ L(M;) theGn by def. of
DIAG, (M;) € DIAG - contradicti
» We have L(Mi) — DIAG () S contradiction

Thm: HALT = {{M,w) : M is a TM and M halts on w} is undecidable

Proof by contradiction

Assume on the contrary that H is a decider for HALT
We construct a decider D for DIAG = {(M) : M doesn’t accept (M)}
> D: On input (M), run H on input (M, (M))
If H rejects (i.e., M loops on (M)), accept

If H accepts (i.e., M halts on (M)), run M on input (M).
When M accepts/rejects, output the opposite.

Need to prove that D decides DIAG:
D halts on all inputs
D accepts (M) <= M does not accept (M) <= (M) € DIAG

Thm: Ay = {(M,w) : M is a TM and M accepts w} is undecidable

Proof by contradiction Assume on the contrary that H is a decider for Aty

Accept

(M accepts w)
(M,w) — H —
Reject

(M doesn’t accept w)

We construct a decider D for DIAG = {(M;) : M doesn’t accept (M;)} using H:

w € {0,1}* | Let M; be TM with
- > — M;, (M;)
encoding w, i.e., (M;) = w

Need to prove that D decides DIAG:
D halts on all inputs
D accepts (M) <= M does not accept (M) <= (M) € DIAG

Unrecognizable languages?

Lecture 5

Unrecognizable languages exist!

Thm: HALT is not recognizable

Thm: A language L is decidable iff it is recognizable and its complement is
also recognizable

Proof:

> Easy direction: If L is decidable = L, L are recognizable

> Harder direction: Assume L, L are recognizable

Formally: we alternate
between running 1 step of
M4 and 1 step of M,

> Let Mp, M; be the corresponding recognizers

M = "On input w:
1- Run both M, and M; on input w, in parallel
2- If M4 accepts, accept; if M, accepts, reject"

> M decides L

> For all w, either w e Lorw e L
> Either My accepts w or M accepts w
> M halts once one of them stops = M must always halt!

Corollary: Language HALT is unrecognizable

> Recall that

> HALT is undecidable
> HALT is recognizable

> So by previous Thm we must have that HALT is unrecognizable

Lecture 5

Next week: Reductions

