Lecture 4: Turing machines
Mika Goos

E PF L School of Computer and Communication Sciences

Lecture 4

Recall: Pumping Lemma

(and how to prove that a language is not regular)

If Ais a regular language, then there is a number p (the pumping length)
such that, for every string s in A of length at least p, there exists a division
of s into three pieces, s = xyz s.t.

for each i >0, xy'z € A
ly| > 1, and
B [xy| < p.

v

Let M = (Q,%,4,q0, F) s.t.
L(M)=A

> Consider a string s € A s.t.
sl > QI =p

> Stop once in a state for the
2nd time, say at times j, k

> s = xyz where x is the first
j letters, y is letter j 4+ 1 to
k, z is from k+ 1 to end

F={ww|we{0,1}*}
F is not regular!
Proof: (by contradiction)
> Assume F is regular, let p be its pumping length

» Pick s = 0P1P0P1P € F

All strings don’t work! Fun part is guessing which string to pick

v

Pumping lemma: s = xyz, |xy| < p, |y| > 1,xy'z € F forall i >0

Pumping lemma tells us there is such a decomposition — we can’t choose
it! Your reasoning should work for any decomposition

> Since |xy| < p and |y| > 1, y = 0 for some k >0

v

According to pumping lemma, xy?z € F

> xyz = 0PTK1POP1P ¢ F

v

Contradiction!

Part | of course

Lec 1. DFA and Regular Languages
Lec 2: NFA and its equivalence to DFA

Lec 3: Non-regular languages and the Pumping Lemma

» {w € {0,1}* : w has the same number of 0's and 1's} cannot be
recognized by DFAs

> This seems like a problem with DFAs

What's missing?

What is a computer?

Output

finite size (independent of input)

Program

b
m- I

- <

Memory

amount depends on input

| ecture 4

Abstractly

Lecture 4

More abstractly

T Read Tape Write Tape T

Program

Memory Tape
HEEEEEEEEEEEEEEEEEEn

Lecture 4

Single tape seems enough. ..

Program

17
L L P

Input Memory Output

Lecture 4

The Turing Machine

Head (with current state)

fodert 1111

| L[fafojofaf [P PP T[T][]
Infinite Tape
Uu—R

0—U,R 1—-U,R

0,1 -+ R

0,1 -+ R

U—L U—L o
Finite state control

(the algorithm)

This Turing machine
accepts even length
binary palindromes

Lecture 4

Finite size program, larger and larger instances
= Infinite Tape!

GREAT. A
WAREHOUSE FILLED
WITH MILES AND

WHAT ARE WE
EVER GOING To DO
WITH THIS, ALAN?

Finite automata vs Turing machines

A Turing machine can both write on the tape and read from it
The read-write head can move both to the left and to the right
The tape is infinite

The special states for rejecting and accepting take effect
immediately

Lecture 4

[t]ofa]tfofa]a]e]a]u]u]ufk...

Infinite tape

Tape alphabet contains input alphabet plus U (blank symbol) plus
maybe more symbols

Head has states (corresponding to the finite control automata)

Exactly one Accept state and exactly one Reject state (where
computation immediately ends)

Remaining states “computation in progress”

May never reach an accept state. May never halt!

qo0
1—-R
el L @ _®

Formal Definition of a TM

A Turing Machine is a 7-tuple (Q,X,I,0,qo, Gaccepts Greject): Where
Q,Z,T are all finite sets and

Q@ is the set of states,

Y is the input alphabet not containing the blank symbol U,
I is the tape alphabet, where LI € [and & C T,

§:QxT —= QxT x{L, R} is the transition function,

go € Q is the start state,

@ Gaoccept € Q is the accept state, and

reject € @ is the reject state, where Qaccepr # Greject-

Lecture 4

{w : w has an equal number of 0's and 1's}

Easy (efficient) to write an algorithm to count number of 1s and 0's —
let’s try to implement on a TM

(In this Part 1l of the course, we do not care about running time. . .)

Our approach: check for each 0 (or 1) there is a corresponding 1 (or 0)

>

>

Scan the input from left to right

Whenever we encounter an uncrossed 0 or 1, we “remove” it and proceed right
to find a corresponding 1 or O that we cross

We keep doing this (2) until either we cross off all the letters (accept) or we fail
to find a pair for one of the letters (reject)

{w : w has an equal number of 0's and 1's}

Q = {qu a1, 42,43, 4ga, qR}
T = {0,1}

r={0,1,U, X} — X crossed off letter
Execution of the TM on 0110

X,0 - R

As a Turing machine computes, changes occur in the current state, the
current tape contents, and the current head location. A setting of these
three items is called a configuration of the Turing machine.

Representation: We write ugv where u,v € ['* and g € Q for the
configuration where

> current state is g
> current tape content is uv
> the current head location is the first symbol of v

(Cells whose contents are unspecified are blank. If u = ¢ then Head at leftmost cell.)

Example: A TM with configuration 1011701111

q7

[tfofafafofefafa]a]u]u]uf...

Transitions: Given configuration vaq;bv where a,b €T, u,v € I'* and
state g; € Q, we move to

> ugjacv if 6(qi, b) = (qj, ¢, L)
> uacq;v if 5(qi7 b) = (qj, c, R)

Computation:
» Starting configuration is C; = gow on input w € ¥*
» Obtain new configurations Gy, Gs, ... by valid moves/transitions
> Accept and halt if a configuration with the state gaccept is reached

> Reject and halt if a configuration with the state grejec: is reached

What if the computation doesn't halt (i.e., loops)?
Does it mean some configuration is repeated?

Turing-Recognizable/Decidable Languages

A TM machine M recognizes a language L C ¥* iff for all inputs w € £*:
If w e L then M accepts w and
If w ¢ L then M doesn't halt (or it rejects w)

Such languages are called (Turing)-Recognizable

A TM machine M decides a language L C X* iff for all inputs w € *:
M halts on w, and
M accepts w iff w € L

Such languages are called (Turing)-Decidable

Lecture 4

{0 : n > 0}

TM that decides this language: On input string w

Remove first 0

Sweep left to right across the tape, crossing off every other 0
If in stage 1 the tape contained a single 0, accept

If in stage 1, the tape contained more than a single 0 and the
number of Os that we crossed out was odd, reject

Retun the head to the left-hand end of the tape

@ Go to stage 1

Each iteration of stage 1 cuts the number of Os in half.

Q = {q1, 42,43, qa, g5, Qaccept qreject}

Y = {0}
r={0,x,U}

Example on input 0000:

q10000
ug2000
uxq300
ux0q40
ux0xgau
ux0gsxu
uxqs0xu

ugsx0xu

q5ux0xu
ugox0xu
ux@g20xu
LIXX(g3Xu
LXXXq3U
LUXX(5XU

UX@sXXU
LG5 XXXU
g5UXXXU
g2 XXXU
LUX(g2XXU
UXX(2XU
LXXX(qoU
uxxx‘—'qaccept

Equivalence to Other Models and History

In 1900, David Hilbert raised 23 mathematical
problems

Given a Diophantine equation, devise a process according to which it can

be determined in a finite number of operations whether the equation is
soluble in integers.

> A Diophantine equation is a polynomial equation with integer
coefficients and finite number of unknowns.

» E.g. 3x2 —2xy — y?z— 7 =0 has solution x =1,y =2,z = —2

> E.g. x%0% 4 y2025 — 72025 ith x,y,z > 1? No solution!
(I have a marvelous proof, which this slide is too narrow to contain)

Problem: in 1900 there was not a definition of what an algorithm is!

» The definition came in 1936 papers of Alonzo Church and Alan
Turing

» Church used a notational system called A-calculus to define
algorithms

» Turing did it with his “machines”
» The two definitions were shown to be equivalent

Church-Turing thesis:

Intuitive notion
of algorithms

Turing machine

equals algorithms

The precise definition of algorithms allowed Yuri Matijasevic in 1970,
building on the work of Martin Davis, Hilary Putnam, and Julia Robinson,
to resolve Hilbert's tenth problem. No such algorithm can exist!

Intuitive notion
of algorithms

Turing machine

equals algorithms

All algorithms we know of can be executed on TMs
Anything you write in C, Java, Scala, Python and so on
Anything you would possibly do with a Quantum Computer

The definition is also robust to variations: if we allow for many
tapes instead of one, then nothing changes

Any computational process in nature

And so on

Next week: Undecidability

