

Lecture 4: Turing machines

Mika Göös

School of Computer and Communication Sciences

Lecture 4

Recall: **Pumping Lemma**

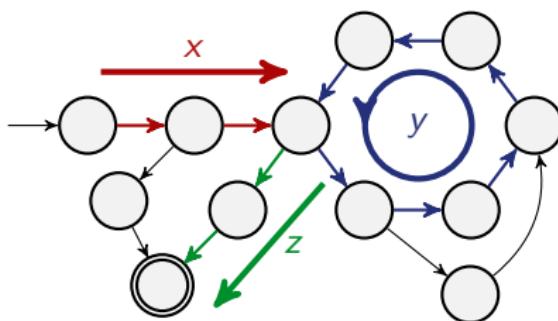
(and how to prove that a language is not regular)

Pumping Lemma and its Proof Sketch

If A is a regular language, then there is a number p (the pumping length) such that, for every string s in A of length at least p , there exists a division of s into three pieces, $s = xyz$ s.t.

- 1 for each $i \geq 0$, $xy^i z \in A$
- 2 $|y| \geq 1$, and
- 3 $|xy| \leq p$.

- ▶ Let $M = (Q, \Sigma, \delta, q_0, F)$ s.t. $L(M) = A$
- ▶ Consider a string $s \in A$ s.t. $|s| \geq |Q| = p$
- ▶ Stop once in a state for the 2nd time, say at times j, k
- ▶ $s = xyz$ where x is the first j letters, y is letter $j + 1$ to k , z is from $k + 1$ to end



$$F = \{ww \mid w \in \{0,1\}^*\}$$

F is not regular!

Proof: (by contradiction)

► Assume F is regular, let p be its pumping length

► Pick $s = 0^p 1^p 0^p 1^p \in F$

All strings don't work! Fun part is guessing which string to pick

► Pumping lemma: $s = xyz, |xy| \leq p, |y| \geq 1, xy^i z \in F$ for all $i \geq 0$

Pumping lemma tells us there is such a decomposition – we can't choose it! Your reasoning should work for any decomposition

► Since $|xy| \leq p$ and $|y| \geq 1$, $y = 0^k$ for some $k > 0$

► According to pumping lemma, $xy^2 z \in F$

$xy^2 z = 0^{p+k} 1^p 0^p 1^p \notin F$

► **Contradiction!**

Part I of course

Lec 1: DFA and Regular Languages

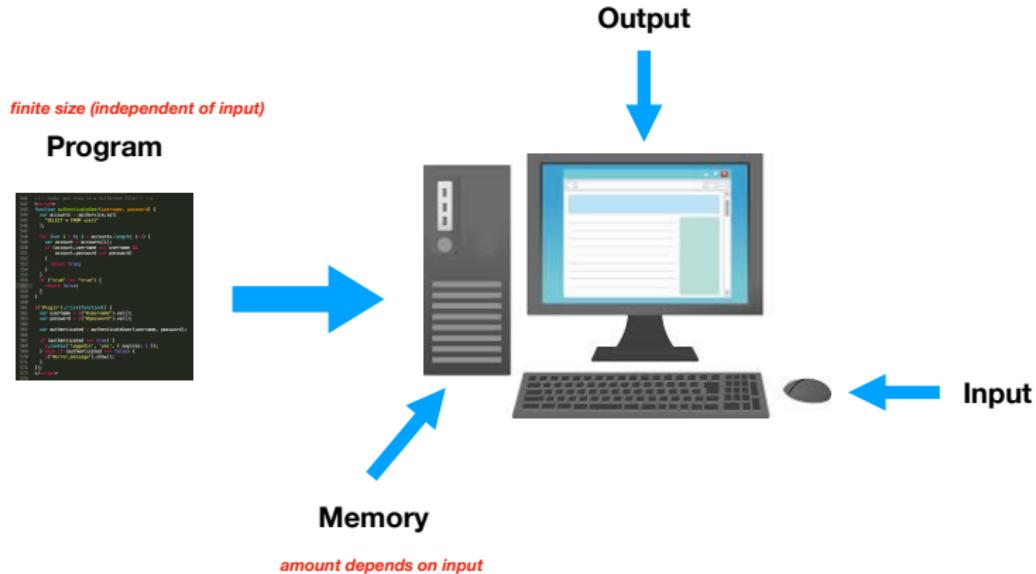
Lec 2: NFA and its equivalence to DFA

Lec 3: Non-regular languages and the Pumping Lemma

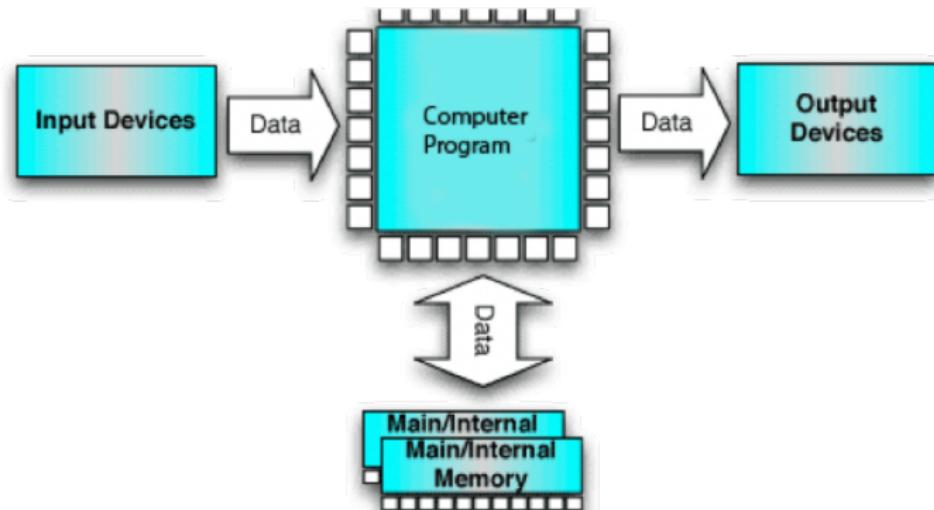
- ▶ $\{w \in \{0,1\}^* : w \text{ has the same number of 0's and 1's}\}$ cannot be recognized by DFAs
- ▶ This seems like a problem with DFAs

What's missing?

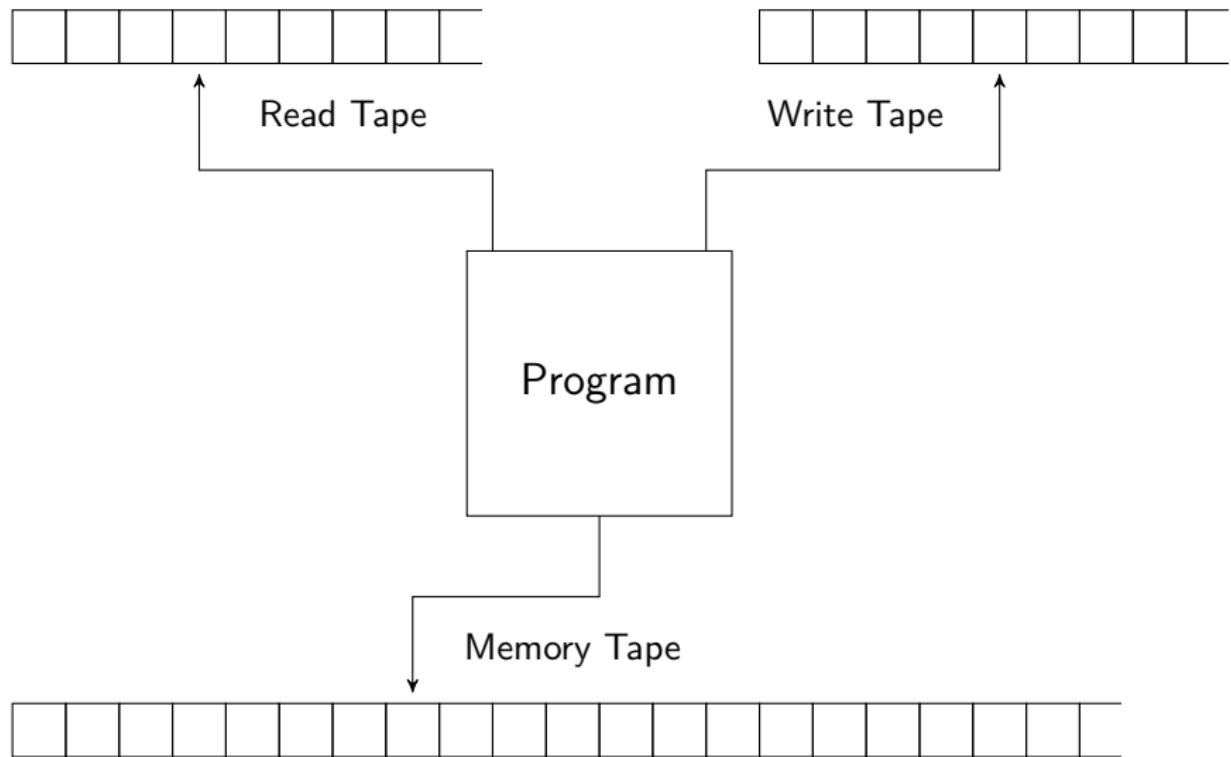
What is a computer?



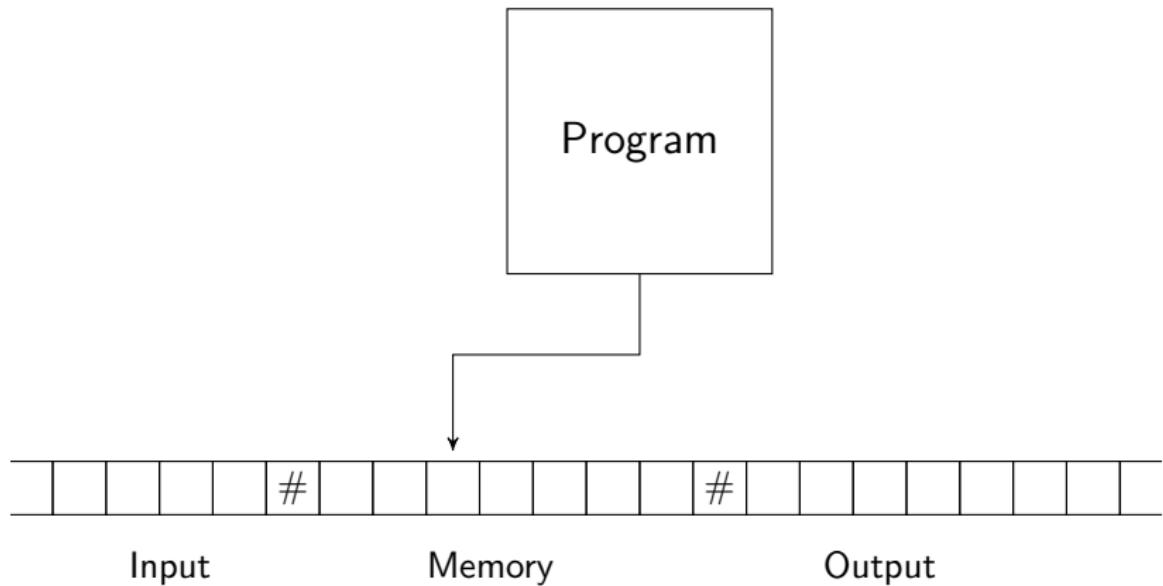
Abstractly



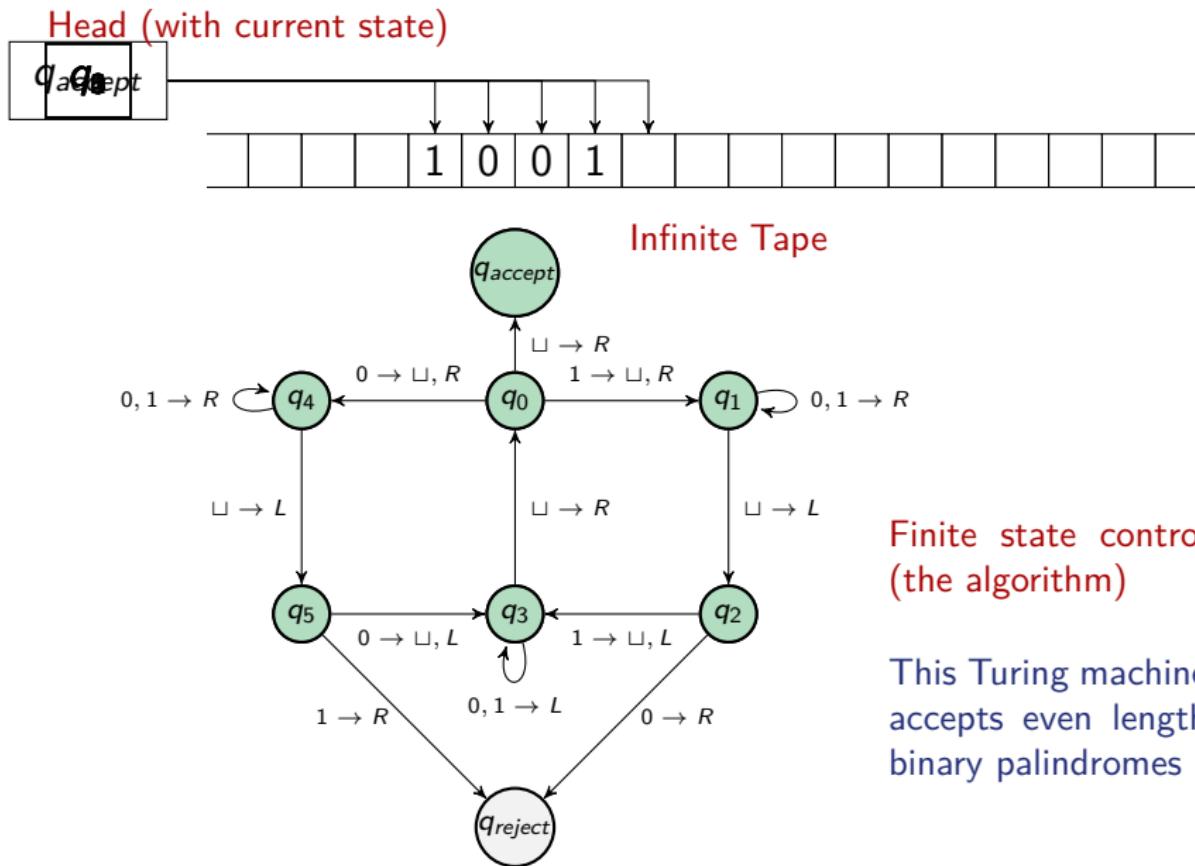
More abstractly



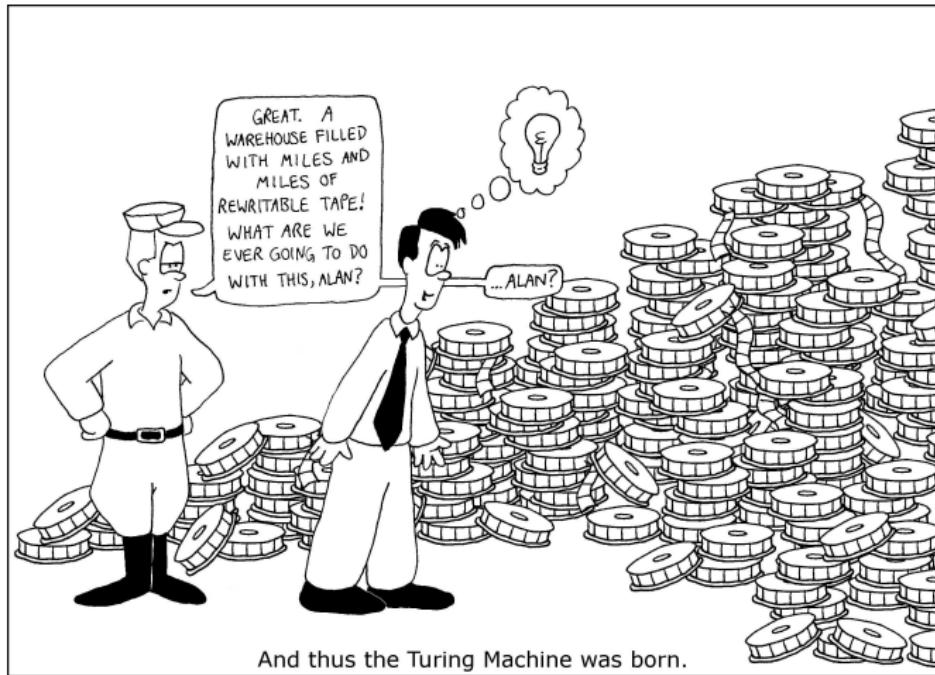
Single tape seems enough...



The Turing Machine



Finite size program, larger and larger instances
⇒ Infinite Tape!

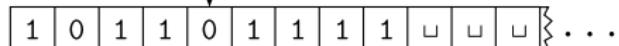


Finite automata vs Turing machines

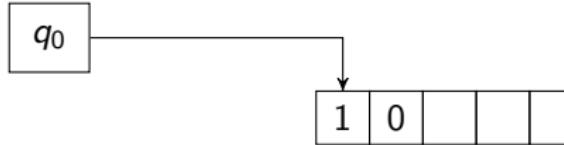
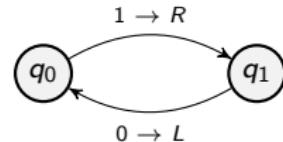
- 1 A Turing machine can both write on the tape and read from it
- 2 The read-write head can move both to the left and to the right
- 3 The tape is infinite
- 4 The special states for rejecting and accepting take effect immediately

Turing Machine

q_7



- ▶ Infinite tape
- ▶ Tape alphabet contains input alphabet plus \sqcup (blank symbol) plus maybe more symbols
- ▶ Head has states (corresponding to the finite control automata)
- ▶ Exactly **one** Accept state and exactly **one** Reject state (*where computation immediately ends*)
- ▶ Remaining states “*computation in progress*”
- ▶ May never reach an accept state. **May never halt!**



Formal Definition of a TM

A **Turing Machine** is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where Q, Σ, Γ are all finite sets and

- 1 Q is the set of states,
- 2 Σ is the input alphabet not containing the blank symbol \sqcup ,
- 3 Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- 4 $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5 $q_0 \in Q$ is the start state,
- 6 $q_{accept} \in Q$ is the accept state, and
- 7 $q_{reject} \in Q$ is the reject state, where $q_{accept} \neq q_{reject}$.

$$\{w : w \text{ has an equal number of 0's and 1's}\}$$

Easy (efficient) to write an algorithm to count number of 1s and 0's —
let's try to implement on a TM

(In this Part II of the course, we do not care about running time...)

Our approach: check for each 0 (or 1) there is a corresponding 1 (or 0)

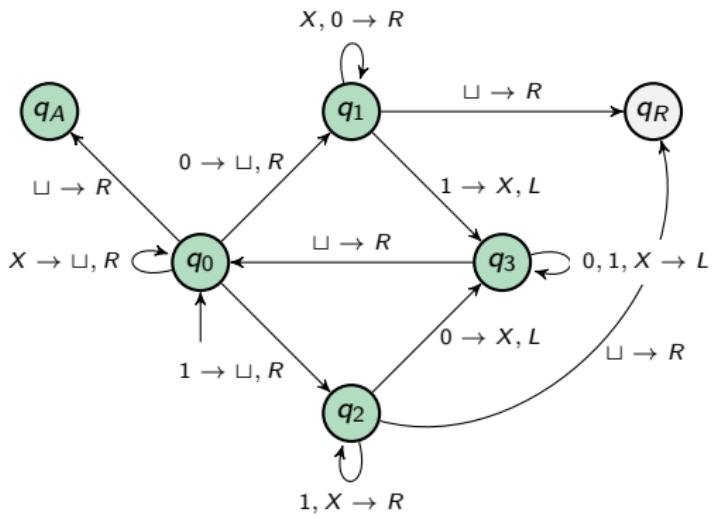
- ▶ Scan the input from left to right
- ▶ Whenever we encounter an uncrossed 0 or 1, we “remove” it and proceed right to find a corresponding 1 or 0 that we cross
- ▶ We keep doing this (2) until either we cross off all the letters (accept) or we fail to find a pair for one of the letters (reject)

$\{w : w \text{ has an equal number of 0's and 1's}\}$

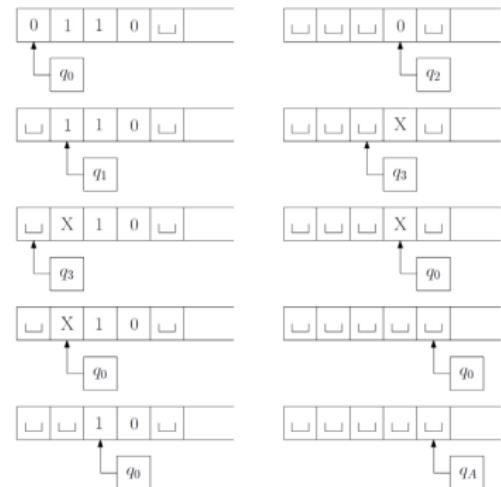
$$Q = \{q_0, q_1, q_2, q_3, q_A, q_R\}$$

$$\Sigma = \{0, 1\}$$

$\Gamma = \{0, 1, \sqcup, X\} - X$ crossed off letter



Execution of the TM on 0110



Configurations of a TM

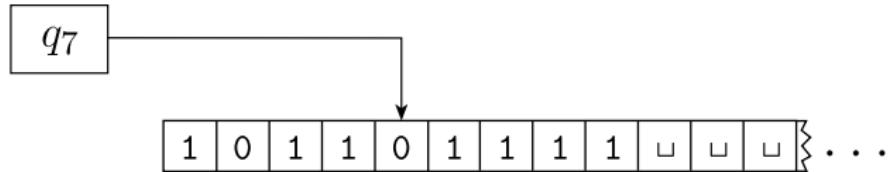
As a Turing machine computes, changes occur in the current state, the current tape contents, and the current head location. A setting of these three items is called a *configuration* of the Turing machine.

Representation: We write uqv where $u, v \in \Gamma^*$ and $q \in Q$ for the configuration where

- ▶ current state is q
- ▶ current tape content is uv
- ▶ the current head location is the first symbol of v

(Cells whose contents are unspecified are blank. If $u = \varepsilon$ then Head at leftmost cell.)

Example: A TM with configuration $1011\textcolor{red}{q}_701111$



Transitions: Given configuration $uaq_i bv$ where $a, b \in \Gamma$, $u, v \in \Gamma^*$ and state $q_i \in Q$, we move to

- ▶ $uq_j acv$ if $\delta(q_i, b) = (q_j, c, L)$
- ▶ $uacq_j v$ if $\delta(q_i, b) = (q_j, c, R)$

Computation:

- ▶ Starting configuration is $C_1 = q_0 w$ on input $w \in \Sigma^*$
- ▶ Obtain new configurations C_2, C_3, \dots by valid moves/transitions
- ▶ Accept and halt if a configuration with the state q_{accept} is reached
- ▶ Reject and halt if a configuration with the state q_{reject} is reached

What if the computation doesn't halt (i.e., loops)?
Does it mean some configuration is repeated?

Turing-Recognizable/Decidable Languages

A TM machine M **recognizes** a language $L \subseteq \Sigma^*$ iff for all inputs $w \in \Sigma^*$:

- 1 If $w \in L$ then M accepts w and
- 2 If $w \notin L$ then M **doesn't halt** (or it rejects w)

Such languages are called **(Turing)-Recognizable**

A TM machine M **decides** a language $L \subseteq \Sigma^*$ iff for all inputs $w \in \Sigma^*$:

- 1 M halts on w , and
- 2 M accepts w iff $w \in L$

Such languages are called **(Turing)-Decidable**

$$\{0^{2^n} : n \geq 0\}$$

TM that decides this language: On input string w

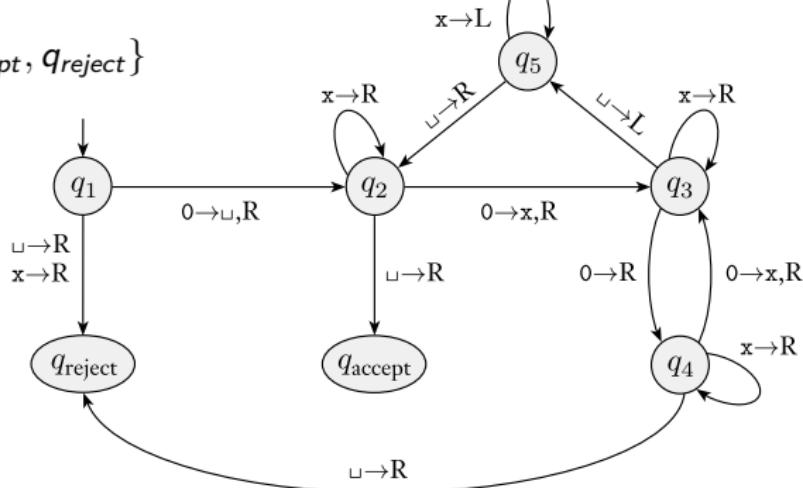
- 1 Remove first 0
- 2 Sweep left to right across the tape, crossing off every other 0
- 3 If in stage 1 the tape contained a single 0, *accept*
- 4 If in stage 1, the tape contained more than a single 0 and the number of 0s that we crossed out was odd, *reject*
- 5 Return the head to the left-hand end of the tape
- 6 Go to stage 1

Each iteration of stage 1 cuts the number of 0s in half.

$$Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$$

$$\Sigma = \{0\}$$

$$\Gamma = \{0, x, \sqcup\}$$



Example on input 0000:

$q_1 0000$

$\sqcup q_2 000$

$\sqcup x q_3 00$

$\sqcup x 0 q_4 0$

$\sqcup x 0 x q_3 \sqcup$

$\sqcup x 0 q_5 x \sqcup$

$\sqcup x q_5 0 x \sqcup$

$\sqcup q_5 x 0 x \sqcup$

$q_5 \sqcup x 0 x \sqcup$

$\sqcup q_2 x 0 x \sqcup$

$\sqcup x q_2 0 x \sqcup$

$\sqcup x x q_3 x \sqcup$

$\sqcup x x x q_3 \sqcup$

$\sqcup x x q_5 x \sqcup$

$\sqcup x q_5 x x \sqcup$

$\sqcup q_5 x x x \sqcup$

$q_5 \sqcup x x x \sqcup$

$\sqcup q_2 x x x \sqcup$

$\sqcup x q_2 x x \sqcup$

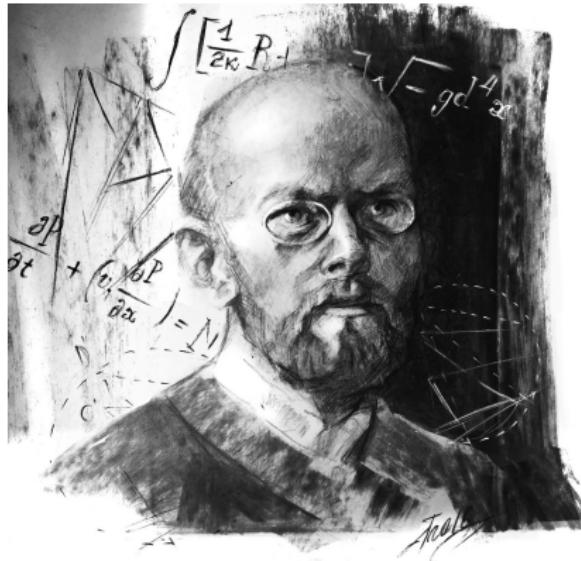
$\sqcup x x q_2 x \sqcup$

$\sqcup x x x q_2 \sqcup$

$\sqcup x x x \sqcup q_{accept}$

Equivalence to Other Models and History

In 1900, David Hilbert raised 23 mathematical problems



Hilbert's tenth problem

Given a Diophantine equation, **devise a process** according to which it can be determined in a **finite number of operations** whether the equation is soluble in integers.

- ▶ A Diophantine equation is a polynomial equation with integer coefficients and finite number of unknowns.
- ▶ E.g. $3x^2 - 2xy - y^2z - 7 = 0$ has solution $x = 1, y = 2, z = -2$
- ▶ E.g. $x^{2025} + y^{2025} = z^{2025}$ with $x, y, z \geq 1$? **No solution!**
(I have a marvelous proof, which this slide is too narrow to contain)

Problem: in 1900 there was not a definition of what an algorithm is!

Definition of Algorithm

- ▶ The definition came in 1936 papers of Alonzo Church and Alan Turing
- ▶ Church used a notational system called λ -calculus to define algorithms
- ▶ Turing did it with his “machines”
- ▶ The two definitions were shown to be equivalent

Church-Turing thesis:

<i>Intuitive notion of algorithms</i>	equals	<i>Turing machine algorithms</i>
---	--------	--------------------------------------

The precise definition of algorithms allowed Yuri Matijasevic in 1970, building on the work of Martin Davis, Hilary Putnam, and Julia Robinson, to resolve Hilbert's tenth problem. **No such algorithm can exist!**

Church-Turing Thesis

*Intuitive notion
of algorithms*

equals

*Turing machine
algorithms*

- ▶ All algorithms we know of can be executed on TMs
- ▶ Anything you write in C, Java, Scala, Python and so on
- ▶ Anything you would possibly do with a Quantum Computer
- ▶ The definition is also robust to variations: if we allow for many tapes instead of one, then nothing changes
- ▶ Any computational process in nature
- ▶ And so on

Next week: **Undecidability**