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Recall: Pumping Lemma

(and how to prove that a language is not regular)
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Pumping Lemma and its Proof Sketch

If A is a regular language, then there is a number p (the pumping length)
such that, for every string s in A of length at least p, there exists a division
of s into three pieces, s = xyz s.t.

1 for each i ≥ 0, xy iz ∈ A

2 |y | ≥ 1, and

3 |xy | ≤ p.

I Let M = (Q,Σ, δ, q0,F ) s.t.
L(M) = A

I Consider a string s ∈ A s.t.
|s| ≥ |Q| = p

I Stop once in a state for the
2nd time, say at times j, k

I s = xyz where x is the first
j letters, y is letter j + 1 to
k, z is from k + 1 to end

x

y

z
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F = {ww | w ∈ {0, 1}∗}
F is not regular!

Proof: (by contradiction)
I Assume F is regular, let p be its pumping length

I Pick s = 0p1p0p1p ∈ F
All strings don’t work! Fun part is guessing which string to pick

I Pumping lemma: s = xyz , |xy | ≤ p, |y | ≥ 1, xy iz ∈ F for all i ≥ 0
Pumping lemma tells us there is such a decomposition – we can’t choose
it! Your reasoning should work for any decomposition

I Since |xy | ≤ p and |y | ≥ 1, y = 0k for some k > 0
I According to pumping lemma, xy2z ∈ F
I xy2z = 0p+k1p0p1p < F
I Contradiction!
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Part I of course

Lec 1: DFA and Regular Languages

Lec 2: NFA and its equivalence to DFA

Lec 3: Non-regular languages and the Pumping Lemma

I {w ∈ {0, 1}∗ : w has the same number of 0’s and 1’s} cannot be
recognized by DFAs

I This seems like a problem with DFAs

What’s missing?
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What is a computer?

Program

Output

Memory

Input

Program

Output

Memory

Input

finite size (independent of input)

amount depends on input
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Abstractly
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More abstractly

Read Tape Write Tape

Memory Tape

Program

Lecture 4



Single tape seems enough. . .

Input

#

Memory

#

Output

Program
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The Turing Machine

q0q1q2q3q4q5q3q0qaccept

Head (with current state)

1 0 0 1
Infinite Tape

q0q0 q1q1

q2q2q3q3

q4q4

q5q5

qreject

qacceptqaccept

1 → t, R
0, 1 → R

t → L

1 → t, L

0 → R0, 1 → L

t → R

0 → t, R
0, 1 → R

t → L

0 → t, L

1 → R

t → R

Finite state control
(the algorithm)

This Turing machine
accepts even length
binary palindromes
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Finite size program, larger and larger instances
⇒ Infinite Tape!

290 15 Turing Machines

Figure 1: Alan Turing’s “light bulb moment” – Prof. Geo↵ Draper drew this cartoon for my book

never halt; it may keep zigzagging on the tape, writing symbols all over, and running amok, much like many
tricky programs do in real life. A Turing machine cannot manufacture new symbols ad infinitum - so all the
symbols written by a Turing machine on its tape do belong to a finite tape alphabet, �. Notice that ⌃ ⇢ �,
since � includes the blank symbol B that is not allowed within ⌃. We assume that a Turing machine begins its
operation scanning cell number 0 of a doubly-infinite tape (meaning that there are tape cells numbered +x or
�x for any x 2 Nat); more on this is in the following section. A fact to remember is this: in order to feed the
string " to a TM, one must present to the Turing machine a tape filled with blanks (B). However, some authors
alter this convention slightly, allowing " to be fed to a Turing machine by ensuring that, in the initial state, the
symbol under the tape head is blank (B) (i.e., the rest of the tape could contain non-blank symbols). In any
case, a normal Turing machine input is such that for every i 2 length(w), w[i] 6= B is presented on tape cell i,
with all remaining tape cells containing B, and the head of the Turing machine faces w[1] at the beginning of
a computation.

A TM may be deterministic or nondeterministic. The signature of � for a deterministic Turing machine
(DTM) is

� : Q ⇥ � ! Q ⇥ �⇥ {L, R}.

This signature captures the fact that a TM can be in a certain state q 2 Q and looking at a 2 �. It can then
write a

0
on the tape in lieu of a, move to a state q

0
, and move its head left (L), or right (R), depending on

whether �(q, a) = hq0
, a

0
, Li or �(q, a) = hq0

, a
0
, Ri, respectively.

For an NDTM, �(q, a) returns a set of next control states, tape symbol replacements, and head move
directions. The signature of � for a nondeterministic Turing machine (NDTM) is

� : Q ⇥ � ! 2Q⇥�⇥{L,R}.

Think of a nondeterministic Turing machine as a C program where instead of the standard if-then-else construct,
we have an if/fi construct of the following form:

2
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Finite automata vs Turing machines

1 A Turing machine can both write on the tape and read from it

2 The read-write head can move both to the left and to the right

3 The tape is infinite

4 The special states for rejecting and accepting take effect
immediately
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Turing Machine

3.1 TURING MACHINES 169

FIGURE 3.4

A Turing machine with configuration 1011q701111

Here we formalize our intuitive understanding of the way that a Turing ma-
chine computes. Say that configuration C1 yields configuration C2 if the Turing
machine can legally go from C1 to C2 in a single step. We define this notion
formally as follows.

Suppose that we have a, b, and c in Γ, as well as u and v in Γ∗ and states qi

and qj . In that case, ua qi bv and u qj acv are two configurations. Say that

ua qi bv yields u qj acv

if in the transition function δ(qi, b) = (qj , c,L). That handles the case where the
Turing machine moves leftward. For a rightward move, say that

ua qi bv yields uac qj v

if δ(qi, b) = (qj , c,R).
Special cases occur when the head is at one of the ends of the configuration.

For the left-hand end, the configuration qi bv yields qj cv if the transition is left-
moving (because we prevent the machine from going off the left-hand end of the
tape), and it yields c qjv for the right-moving transition. For the right-hand end,
the configuration ua qi is equivalent to ua qi ␣ because we assume that blanks
follow the part of the tape represented in the configuration. Thus we can handle
this case as before, with the head no longer at the right-hand end.

The start configuration of M on input w is the configuration q0 w, which
indicates that the machine is in the start state q0 with its head at the leftmost
position on the tape. In an accepting configuration, the state of the configuration
is qaccept. In a rejecting configuration, the state of the configuration is qreject.
Accepting and rejecting configurations are halting configurations and do not
yield further configurations. Because the machine is defined to halt when in the
states qaccept and qreject, we equivalently could have defined the transition function
to have the more complicated form δ : Q′×Γ−→Q×Γ×{L,R}, where Q′ is Q
without qaccept and qreject. A Turing machine M accepts input w if a sequence of
configurations C1, C2, . . . , Ck exists, where

1. C1 is the start configuration of M on input w,

2. each Ci yields Ci+1, and

3. Ck is an accepting configuration.
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I Infinite tape
I Tape alphabet contains input alphabet plus t (blank symbol) plus

maybe more symbols
I Head has states (corresponding to the finite control automata)
I Exactly one Accept state and exactly one Reject state (where

computation immediately ends)
I Remaining states “computation in progress”
I May never reach an accept state. May never halt!

q0

1 0 q0 q1

1 → R

0 → L
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Formal Definition of a TM

A Turing Machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject), where
Q,Σ, Γ are all finite sets and

1 Q is the set of states,

2 Σ is the input alphabet not containing the blank symbol t,

3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,

4 δ : Q × Γ→ Q × Γ× {L,R} is the transition function,

5 q0 ∈ Q is the start state,

6 qaccept ∈ Q is the accept state, and

7 qreject ∈ Q is the reject state, where qaccept , qreject .
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{w : w has an equal number of 0’s and 1’s}
Easy (efficient) to write an algorithm to count number of 1s and 0’s —
let’s try to implement on a TM

(In this Part II of the course, we do not care about running time. . . )

Our approach: check for each 0 (or 1) there is a corresponding 1 (or 0)
I Scan the input from left to right

I Whenever we encounter an uncrossed 0 or 1, we “remove” it and proceed right
to find a corresponding 1 or 0 that we cross

I We keep doing this (2) until either we cross off all the letters (accept) or we fail
to find a pair for one of the letters (reject)
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{w : w has an equal number of 0’s and 1’s}
Q = {q0, q1, q2, q3, qA, qR}
Σ = {0, 1}
Γ = {0, 1,t,X} – X crossed off letter

q0

q1

q2

q3

qA qR

X → t, R

0 → t, R

1 → t, R

t → R

X , 0 → R

t → R

1 → X , L

t → R

1, X → R

0 → X , L
t → R

0, 1, X → L

Execution of the TM on 0110

𝑄𝑄 = 𝑞𝑞0,𝑞𝑞1,𝑞𝑞2, 𝑞𝑞3,𝑞𝑞𝐴𝐴, 𝑞𝑞𝑅𝑅
Σ = 0,1
Γ = {0,1,⊔,𝑋𝑋} -- 𝑋𝑋 crossed off letter (we also use ⊔) 

𝑤𝑤 𝑤𝑤 has an equal number of 0’s and 1’s }

Execution of the TM on 0110
Accept state Reject state

Start state
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Configurations of a TM
As a Turing machine computes, changes occur in the current state, the
current tape contents, and the current head location. A setting of these
three items is called a configuration of the Turing machine.

Representation: We write uqv where u, v ∈ Γ∗ and q ∈ Q for the
configuration where
I current state is q
I current tape content is uv
I the current head location is the first symbol of v

(Cells whose contents are unspecified are blank. If u = ε then Head at leftmost cell.)

Example: A TM with configuration 1011q701111
3.1 TURING MACHINES 169

FIGURE 3.4

A Turing machine with configuration 1011q701111

Here we formalize our intuitive understanding of the way that a Turing ma-
chine computes. Say that configuration C1 yields configuration C2 if the Turing
machine can legally go from C1 to C2 in a single step. We define this notion
formally as follows.

Suppose that we have a, b, and c in Γ, as well as u and v in Γ∗ and states qi

and qj . In that case, ua qi bv and u qj acv are two configurations. Say that

ua qi bv yields u qj acv

if in the transition function δ(qi, b) = (qj , c,L). That handles the case where the
Turing machine moves leftward. For a rightward move, say that

ua qi bv yields uac qj v

if δ(qi, b) = (qj , c,R).
Special cases occur when the head is at one of the ends of the configuration.

For the left-hand end, the configuration qi bv yields qj cv if the transition is left-
moving (because we prevent the machine from going off the left-hand end of the
tape), and it yields c qjv for the right-moving transition. For the right-hand end,
the configuration ua qi is equivalent to ua qi ␣ because we assume that blanks
follow the part of the tape represented in the configuration. Thus we can handle
this case as before, with the head no longer at the right-hand end.

The start configuration of M on input w is the configuration q0 w, which
indicates that the machine is in the start state q0 with its head at the leftmost
position on the tape. In an accepting configuration, the state of the configuration
is qaccept. In a rejecting configuration, the state of the configuration is qreject.
Accepting and rejecting configurations are halting configurations and do not
yield further configurations. Because the machine is defined to halt when in the
states qaccept and qreject, we equivalently could have defined the transition function
to have the more complicated form δ : Q′×Γ−→Q×Γ×{L,R}, where Q′ is Q
without qaccept and qreject. A Turing machine M accepts input w if a sequence of
configurations C1, C2, . . . , Ck exists, where

1. C1 is the start configuration of M on input w,

2. each Ci yields Ci+1, and

3. Ck is an accepting configuration.
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Transitions: Given configuration uaqibv where a, b ∈ Γ, u, v ∈ Γ∗ and
state qi ∈ Q, we move to
I uqjacv if δ(qi , b) = (qj , c, L)
I uacqjv if δ(qi , b) = (qj , c,R)

Computation:
I Starting configuration is C1 = q0w on input w ∈ Σ∗

I Obtain new configurations C2,C3, . . . by valid moves/transitions
I Accept and halt if a configuration with the state qaccept is reached
I Reject and halt if a configuration with the state qreject is reached

What if the computation doesn’t halt (i.e., loops)?
Does it mean some configuration is repeated?
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Turing-Recognizable/Decidable Languages

A TM machine M recognizes a language L ⊆ Σ∗ iff for all inputs w ∈ Σ∗:

1 If w ∈ L then M accepts w and

2 If w < L then M doesn’t halt (or it rejects w)

Such languages are called (Turing)-Recognizable

A TM machine M decides a language L ⊆ Σ∗ iff for all inputs w ∈ Σ∗:

1 M halts on w , and

2 M accepts w iff w ∈ L

Such languages are called (Turing)-Decidable
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{02n : n ≥ 0}
TM that decides this language: On input string w

1 Remove first 0

2 Sweep left to right across the tape, crossing off every other 0

3 If in stage 1 the tape contained a single 0, accept

4 If in stage 1, the tape contained more than a single 0 and the
number of 0s that we crossed out was odd, reject

5 Retun the head to the left-hand end of the tape

6 Go to stage 1

Each iteration of stage 1 cuts the number of 0s in half.
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Q = {q1, q2, q3, q4, q5, qaccept , qreject}
Σ = {0}
Γ = {0, x ,t}

172 CHAPTER 3 / THE CHURCH---TURING THESIS

FIGURE 3.8

State diagram for Turing machine M2

In this state diagram, the label 0→␣,R appears on the transition from q1 to q2.
This label signifies that when in state q1 with the head reading 0, the machine
goes to state q2, writes ␣, and moves the head to the right. In other words,
δ(q1,0) = (q2,␣,R). For clarity we use the shorthand 0→R in the transition from
q3 to q4, to mean that the machine moves to the right when reading 0 in state q3

but doesn’t alter the tape, so δ(q3,0) = (q4,0,R).
This machine begins by writing a blank symbol over the leftmost 0 on the

tape so that it can find the left-hand end of the tape in stage 4. Whereas we
would normally use a more suggestive symbol such as # for the left-hand end
delimiter, we use a blank here to keep the tape alphabet, and hence the state
diagram, small. Example 3.11 gives another method of finding the left-hand end
of the tape.

Next we give a sample run of this machine on input 0000. The starting con-
figuration is q10000. The sequence of configurations the machine enters appears
as follows; read down the columns and left to right.

q10000 ␣q5x0x␣ ␣xq5xx␣

␣q2000 q5␣x0x␣ ␣q5xxx␣

␣xq300 ␣q2x0x␣ q5␣xxx␣

␣x0q40 ␣xq20x␣ ␣q2xxx␣

␣x0xq3␣ ␣xxq3x␣ ␣xq2xx␣

␣x0q5x␣ ␣xxxq3␣ ␣xxq2x␣

␣xq50x␣ ␣xxq5x␣ ␣xxxq2␣

␣xxx␣qaccept
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Example on input 0000:
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Equivalence to Other Models and History
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In 1900, David Hilbert raised 23 mathematical
problems
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Hilbert’s tenth problem

Given a Diophantine equation, devise a process according to which it can
be determined in a finite number of operations whether the equation is
soluble in integers.

I A Diophantine equation is a polynomial equation with integer
coefficients and finite number of unknowns.

I E.g. 3x2 − 2xy − y2z − 7 = 0 has solution x = 1, y = 2, z = −2
I E.g. x2025 + y2025 = z2025 with x , y , z ≥ 1? No solution!

(I have a marvelous proof, which this slide is too narrow to contain)

Problem: in 1900 there was not a definition of what an algorithm is!
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Definition of Algorithm

I The definition came in 1936 papers of Alonzo Church and Alan
Turing

I Church used a notational system called λ-calculus to define
algorithms

I Turing did it with his “machines”
I The two definitions were shown to be equivalent

Church-Turing thesis:

3.3 THE DEFINITION OF ALGORITHM 183

constant, called a coefficient. For example,

6 · x · x · x · y · z · z = 6x3yz2

is a term with coefficient 6, and

6x3yz2 + 3xy2 − x3 − 10

is a polynomial with four terms, over the variables x, y, and z. For this discus-
sion, we consider only coefficients that are integers. A root of a polynomial is an
assignment of values to its variables so that the value of the polynomial is 0. This
polynomial has a root at x = 5, y = 3, and z = 0. This root is an integral root
because all the variables are assigned integer values. Some polynomials have an
integral root and some do not.

Hilbert’s tenth problem was to devise an algorithm that tests whether a poly-
nomial has an integral root. He did not use the term algorithm but rather “a
process according to which it can be determined by a finite number of oper-
ations.”4 Interestingly, in the way he phrased this problem, Hilbert explicitly
asked that an algorithm be “devised.” Thus he apparently assumed that such an
algorithm must exist—someone need only find it.

As we now know, no algorithm exists for this task; it is algorithmically unsolv-
able. For mathematicians of that period to come to this conclusion with their
intuitive concept of algorithm would have been virtually impossible. The intu-
itive concept may have been adequate for giving algorithms for certain tasks, but
it was useless for showing that no algorithm exists for a particular task. Proving
that an algorithm does not exist requires having a clear definition of algorithm.
Progress on the tenth problem had to wait for that definition.

The definition came in the 1936 papers of Alonzo Church and Alan Tur-
ing. Church used a notational system called the λ-calculus to define algorithms.
Turing did it with his “machines.” These two definitions were shown to be
equivalent. This connection between the informal notion of algorithm and the
precise definition has come to be called the Church–Turing thesis.

The Church–Turing thesis provides the definition of algorithm necessary to
resolve Hilbert’s tenth problem. In 1970, Yuri Matijasevic̆, building on the work
of Martin Davis, Hilary Putnam, and Julia Robinson, showed that no algorithm
exists for testing whether a polynomial has integral roots. In Chapter 4 we de-
velop the techniques that form the basis for proving that this and other problems
are algorithmically unsolvable.

Intuitive notion Turing machine
of algorithms

equals
algorithms

FIGURE 3.22

The Church–Turing thesis

4Translated from the original German.
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The precise definition of algorithms allowed Yuri Matijasevic in 1970,
building on the work of Martin Davis, Hilary Putnam, and Julia Robinson,
to resolve Hilbert’s tenth problem. No such algorithm can exist!
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Church-Turing Thesis
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I All algorithms we know of can be executed on TMs
I Anything you write in C, Java, Scala, Python and so on
I Anything you would possibly do with a Quantum Computer
I The definition is also robust to variations: if we allow for many

tapes instead of one, then nothing changes
I Any computational process in nature
I And so on
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Next week: Undecidability

Lecture 4


