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Should I stay or should I go (left or right)

RECALL: NFAs, Subset Construction
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Nondeterminism vs Determinism
48 CHAPTER 1 / REGULAR LANGUAGES

FIGURE 1.27

The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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State diagram of a Nondeterministic Finite Automaton (NFA)

Differences to DFAs:

1 Ability to transition to more than one state on a given symbol
Ex: q1 has two outgoing transitions for symbol 1

2 A state may have no transition on a particular symbol
Ex: q3 has no outgoing transitions for symbol 0

3 Ability to take a step without reading any input symbol (ε-transitions)
Ex: q2 can transition to q3 without reading a symbol
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Formal definitions

A nondeterministic finite automaton (NFA) M is a 5-tuple (Q,Σ, δ, q0,F ),
where
I Q is a finite set called the states,
I Σ is a finite set called the alphabet,
I δ : Q × (Σ ∪ {ε})→ 2Q is the transition function,
I q0 ∈ Q is the start state, and
I F ⊆ Q is the set of accept states. (allow F = ∅)

I Here 2Q denotes the power set of Q. Ex:
Q = {q1, q2}, 2Q = {∅, {q1}, {q2}, {q1, q2}}

I An input is accepted if there exists at least one path that ends at
an accepting state

I An input is rejected if no computation path end at an accepting
state
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EXAMPLE 1.38

Recall the NFA N1:

The formal description of N1 is (Q, Σ, δ, q1, F ), where

1. Q = {q1, q2, q3, q4},
2. Σ = {0,1},
3. δ is given as

0 1 ε
q1 {q1} {q1, q2} ∅
q2 {q3} ∅ {q3}
q3 ∅ {q4} ∅
q4 {q4} {q4} ∅,

4. q1 is the start state, and

5. F = {q4}.

The formal definition of computation for an NFA is similar to that for a DFA.
Let N = (Q, Σ, δ, q0, F ) be an NFA and w a string over the alphabet Σ. Then
we say that N accepts w if we can write w as w = y1y2 · · · ym, where each yi

is a member of Σε and a sequence of states r0, r1, . . . , rm exists in Q with three
conditions:

1. r0 = q0,

2. ri+1 ∈ δ(ri, yi+1), for i = 0, . . . , m− 1, and

3. rm ∈ F .

Condition 1 says that the machine starts out in the start state. Condition 2 says
that state ri+1 is one of the allowable next states when N is in state ri and reading
yi+1. Observe that δ(ri, yi+1) is the set of allowable next states and so we say that
ri+1 is a member of that set. Finally, condition 3 says that the machine accepts
its input if the last state is an accept state.

EQUIVALENCE OF NFAS AND DFAS

Deterministic and nondeterministic finite automata recognize the same class of
languages. Such equivalence is both surprising and useful. It is surprising be-
cause NFAs appear to have more power than DFAs, so we might expect that NFAs
recognize more languages. It is useful because describing an NFA for a given
language sometimes is much easier than describing a DFA for that language.

Say that two machines are equivalent if they recognize the same language.
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FIGURE 1.48

Construction of N to recognize A1 ◦A2

PROOF

Let N1 = (Q1, Σ, δ1, q1, F1) recognize A1, and
N2 = (Q2, Σ, δ2, q2, F2) recognize A2.

Construct N = (Q, Σ, δ, q1, F2) to recognize A1 ◦A2.

1. Q = Q1 ∪Q2.
The states of N are all the states of N1 and N2.

2. The state q1 is the same as the start state of N1.

3. The accept states F2 are the same as the accept states of N2.

4. Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

δ1(q, a) q ∈ Q1 and q ̸∈ F1

δ1(q, a) q ∈ F1 and a ̸= ε

δ1(q, a) ∪ {q2} q ∈ F1 and a = ε

δ2(q, a) q ∈ Q2.
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Theorem. Every nondeterministic finite automaton has an equivalent
deterministic finite automaton.

Corollary. A language is regular if and only if some nondeterministic
finite automaton recognizes it.
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Example
p q r

0,1

1 0,1

δ̃ : 2Q × Σ→ 2Q

δ̃(A, a) =
⋃
q∈A

δ(q, a)

δ̃ 0 1
∅ ∅ ∅

{p} {p} {p, q}
{q} {r} {r}
{r} ∅ ∅

{p, q} {p, r} {p, q, r}
{p, r} {p} {p, q}
{q, r} {r} {r}

{p, q, r} {p, r} {p, q, r}

{q} {r}

{q, r} ∅

0,1

0,10,1

0,1

{p}

{p, q}

{p, r}

{p,q,r}

0
1 1

0

0

1

0

1
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Is every Language Regular?
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What DFAs/NFAs Can Do

I Pattern matching
I L = {w ∈ {0, 1}∗ | w contains 1011011 as a substring}

I Checking parity of numbers, checking divisibility, counting “modulo
some number”
I L = {w ∈ {0, 1}∗ | #ones(w) is divisible by 5}

I Skipping prefixes, suffixes, . . . (e.g. 2nd last bit is 1)
More generally – “regular” expressions
I L = 0∗110∗ − {0n110m | n,m ∈ N}

I Closure under complements, unions, intersections, . . .
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Test your intuition

Are these languages regular?

B = {0n1n | n ≥ 0} = {ε, 01, 0011, 000111, . . .}

C = {w | w has an equal number of 0’s and 1’s}

D = {w | w has an equal number of occurrences of 01 and 10 as substrings}
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B = {0n1n | n ≥ 0} = {ε, 01, 0011, 000111, . . .} is not regular

q0

q1 q2 q3 q4

0 00 00000 000 0000

I Suppose on the contrary that B is recognized by a DFA with p
states (e.g. p = 5)

I Consider what happens when the input is long enough, e.g., 0p

I Thus, for two strings 0i , 0j , i , j we must end up in the same state
I Since 0i1i is accepted 0j1i is also accepted – contradiction!

Thus B is NOT regular!
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Pumping Lemma and its Proof Sketch

If A is a regular language, then there is a number p (the pumping length)
such that, for every string s in A of length at least p, there exists a division
of s into three pieces, s = xyz s.t.

1 for each i ≥ 0, xy iz ∈ A

2 |y | ≥ 1, and

3 |xy | ≤ p. (What if A is finite?)

I Let M = (Q,Σ, δ, q0,F ) s.t.
L(M) = A

I Consider a string s ∈ A s.t.
|s| ≥ |Q| = p

I Stop once in a state for the
2nd time, say at times j, k

I s = xyz where x is the first
j letters, y is letter j + 1 to
k, z is from k + 1 to end

x

y

z
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More formal proof

If A is a regular language, then there is a number p (the pumping length) such that,
for every string s in A of length at least p, there exists a division of s into three pieces,
s = xyz s.t.

1 for each i ≥ 0, xy i z ∈ A
2 |y | ≥ 1, and
3 |xy | ≤ p.

I Let p = |Q| be the number of states in a DFA M = (Q,Σ, δ, q0,F ) accepting A
I Let s be an accepted string of length |s| ≥ p
I Let q be the first state that is repeated when starting at q0 and feeding s and

let x , y , z be the strings s.t. |xy | is minimized and

δ(q0, x) = q and δ(q0, xy) = q and δ(q, z) = r ∈ F

I Then δ(q0, xy i z) = r for all i ≥ 0
I Note that |y | ≥ 1 as there are two distinct occurences of q
I |xy | ≤ p by piqeonhole principle and that |xy | equals the number of steps until

a state is visited twice.
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Applications
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F = {ww | w ∈ {0, 1}∗}
F is not regular!

Proof: (by contradiction)
I Assume F is regular, let p be its pumping length

I Pick s = 0p1p0p1p ∈ F
All strings don’t work! Fun part is guessing which string to pick

I Pumping lemma: s = xyz , |xy | ≤ p, |y | ≥ 1, xy iz ∈ F for all i ≥ 0
Pumping lemma tells us there is such a decomposition – we can’t choose
it! Your reasoning should work for any decomposition

I Since |xy | ≤ p and |y | ≥ 1, y = 0k for some k > 0
I According to pumping lemma, xy2z ∈ F
I xy2z = 0p+k1p0p1p < F
I Contradiction!
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E = {0m1n | m > n}
E is not regular!

Proof: (by contradiction)
I Assume E is regular, let p be its pumping length
I Pick s = 0p+11p ∈ E
I Pumping lemma: s = xyz , |xy | ≤ p, |y | ≥ 1, xy iz ∈ E for all i ≥ 0
I Since s = 0p+11p, |xy | ≤ p, |y | ≥ 1, we have y = 0k for some k > 0
I Need to find a string of the type xy iz < E for some i ≥ 0
I However, xy2z = 0p+k+11p, xy3z = 0p+2k+11p, . . . ∈ E
I Try i = 0. According to pumping lemma, xy0z = xz ∈ E
I But xz = 0p+1−k1p and p + 1− k ≤ p. Thus, xz < E .

Contradiction!
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C = {w | w has equal number of 0’s and 1’s}
C is not regular! Reduction from B = {0n1n | n ≥ 0}

I B ⊆ C and B is non-regular does not imply C is non-regular. . .
I e.g. B ⊆ {0, 1}∗ as well but {0, 1}∗ is regular!
I However we can still use non-regularity of B

Proof: (by contradiction)
I Assume C is regular
I Let 0∗1∗ = {0m1n | m, n ≥ 0}
I 0∗1∗ is regular

𝐵𝐵 ⊆ 𝐶𝐶 and 𝐵𝐵 is non-regular does not imply 𝐶𝐶 is non-regular ...

e.g. 𝐵𝐵 ⊆ {0,1}⋆ as well but {0,1}⋆ is regular! 

However we can still use non-regularity of 𝑩𝑩!

Proof (by CONTRADICTION)

1. Assume 𝐶𝐶 is regular

2. Let 0⋆1⋆ = {0𝑚𝑚1𝑛𝑛:𝑚𝑚,𝑐𝑐 ≥ 0}

3. 0⋆1⋆ is regular

4. Claim: 𝑩𝑩 = 𝑪𝑪 ∩ (𝟎𝟎⋆𝟏𝟏⋆)

5. Intersection of two regular languages is regular

6. Æ 𝐵𝐵 is regular – a contradiction!

𝐶𝐶 = {𝑤𝑤 | 𝑤𝑤 has equal number of 0’s and 1’s }
𝐶𝐶 is not regular! Reduction from 𝐵𝐵 = 0𝑛𝑛1𝑛𝑛 | 𝑐𝑐 ≥ 0

I Claim: B = C ∩ (0∗1∗)
I Intersection of two regular languages is regular
I ⇒ B is regular – a contradiction!
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C = {w | w has equal number of 0’s and 1’s}
C is not regular! (Proof using Pumping Lemma)

Proof: (by contradiction)
I Assume C is regular, let p be the pumping length
I We need to find a string which cannot be “pumped”

I Try s = 010101010101 = (01)p

I s = xyz with |xy | ≤ p, |y | ≥ 1 and xy i z ∈ C for every i ≥ 0
I What if x = ε and y = 01 then indeed xy i z ∈ C?
I Our choice of s gives no contradiction!

I Try s = 0p1p

I s = xyz with |xy | ≤ p, |y | ≥ 1 and xy i z ∈ C for every i ≥ 0
I In every possible case y is composed of 0s only!
I Say y = 0k for some k > 0 then xy2z = 0p+k1p < C
I Contradiction!
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Assume  L is regular

Let’s try to use the Pumping Lemma

Task: Prove that L is not regular ..

p : the pumping length

Pick s in L with |s| ≥ p

s=xyz  s.t.
|xy|≤ p and |y|≥1 and 𝑥𝑥𝑏𝑏𝑖𝑖𝑧𝑧 ∈ 𝐿𝐿 ∀𝑐𝑐 ≥ 0

xz, xyyz,xyyyz,xyyyyz,… If one of them NOT in L – DONE!

If all of them in L – Try again!

Your reasoning should 
work for any 

decomposition

Fun part is 
guessing which 
string to pick!

Lecture 3



Test your intuition. . .

D = {w | w has equal nr of occurrences of 01 and 10 as substrings}

D is regular!Test your intuition ..
𝐷𝐷 = { 𝑤𝑤 | 𝑤𝑤 has an equal number of occurences of 01 and 10 as substrings }

Define 𝑁𝑁1 (w) ∶= number of occurences of 01 in w
𝑁𝑁2 (𝑤𝑤)≔ number of occurences of 10 in 𝑤𝑤

Observation: 𝑁𝑁1 𝑤𝑤 − 𝑁𝑁2(𝑤𝑤) ∈ {0,1}

Example: 
𝑤𝑤 = 001011101001  𝑁𝑁1 𝑤𝑤 = 4, 𝑁𝑁2 𝑤𝑤 = 3
𝑤𝑤′ = 1000101101 𝑁𝑁1 𝑤𝑤𝑤 = 𝑁𝑁2 𝑤𝑤𝑤 = 3

If the starting and the ending symbols are the same then
𝑵𝑵𝟏𝟏 𝒘𝒘 −𝑵𝑵𝟐𝟐 (𝒘𝒘) =0 otherwise 𝑵𝑵𝟏𝟏 𝒘𝒘 − 𝑵𝑵𝟐𝟐(𝒘𝒘) =1
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Beyond Regular Languages
Turing Machines . . .
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