

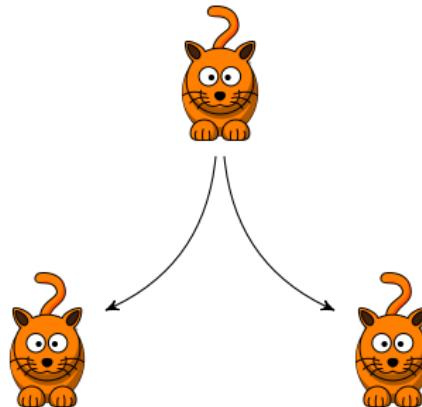
# Non-regular Languages

Mika Göös



School of Computer and Communication Sciences

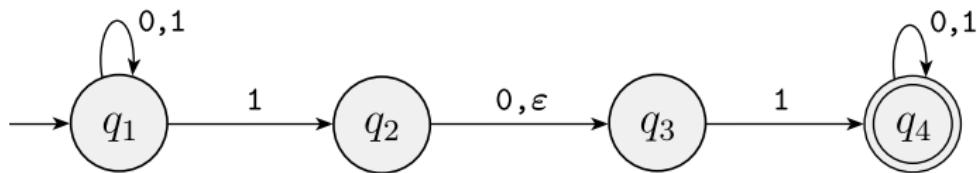
Lecture 3



Should I stay or should I go (left or right)

**RECALL: NFAs, Subset Construction**

# Nondeterminism vs Determinism



State diagram of a **Nondeterministic Finite Automaton (NFA)**

Differences to DFAs:

- 1 Ability to transition to **more than one** state on a given symbol  
Ex:  $q_1$  has two outgoing transitions for symbol 1
- 2 A state may have **no transition** on a particular symbol  
Ex:  $q_3$  has no outgoing transitions for symbol 0
- 3 Ability to take a step **without** reading any input symbol ( $\epsilon$ -transitions)  
Ex:  $q_2$  can transition to  $q_3$  without reading a symbol

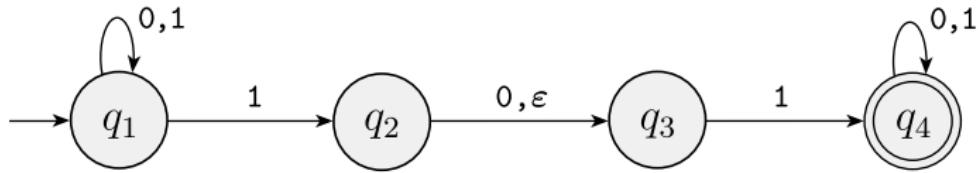
# Formal definitions

A **nondeterministic finite automaton (NFA)**  $M$  is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- ▶  $Q$  is a finite set called the **states**,
- ▶  $\Sigma$  is a finite set called the **alphabet**,
- ▶  $\delta : Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$  is the **transition function**,
- ▶  $q_0 \in Q$  is the **start state**, and
- ▶  $F \subseteq Q$  is the **set of accept states**. (allow  $F = \emptyset$ )

- ▶ Here  $2^Q$  denotes the power set of  $Q$ . Ex:  
$$Q = \{q_1, q_2\}, 2^Q = \{\emptyset, \{q_1\}, \{q_2\}, \{q_1, q_2\}\}$$
- ▶ An input is accepted if there **exists at least one path** that ends at an accepting state
- ▶ An input is rejected if **no computation path** end at an accepting state

# Example



The formal description of  $N_1$  is  $(Q, \Sigma, \delta, q_1, F)$ , where

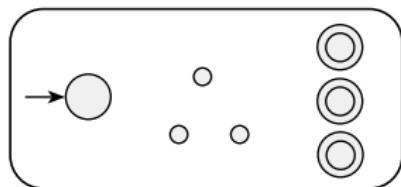
1.  $Q = \{q_1, q_2, q_3, q_4\}$ ,
2.  $\Sigma = \{0,1\}$ ,
3.  $\delta$  is given as

|       | 0           | 1              | $\epsilon$  |
|-------|-------------|----------------|-------------|
| $q_1$ | $\{q_1\}$   | $\{q_1, q_2\}$ | $\emptyset$ |
| $q_2$ | $\{q_3\}$   | $\emptyset$    | $\{q_3\}$   |
| $q_3$ | $\emptyset$ | $\{q_4\}$      | $\emptyset$ |
| $q_4$ | $\{q_4\}$   | $\{q_4\}$      | $\emptyset$ |

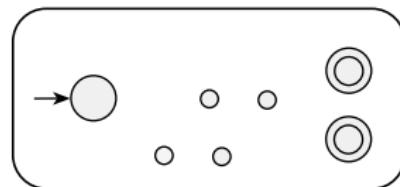
4.  $q_1$  is the start state, and
5.  $F = \{q_4\}$ .

# Concatenation

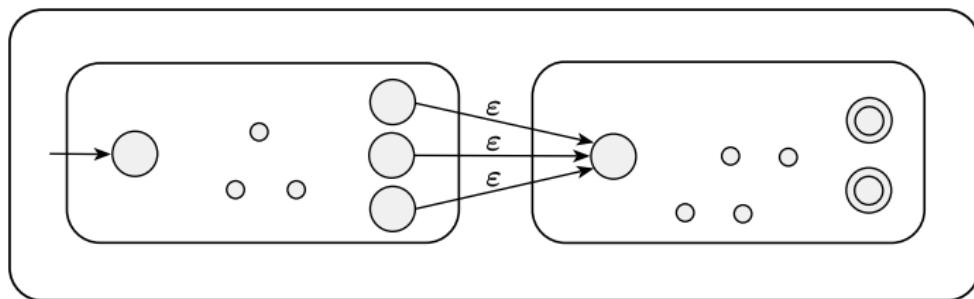
$N_1$



$N_2$



$N$





**Theorem.** Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

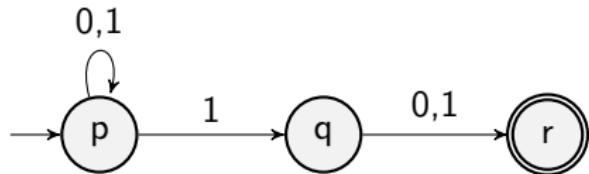
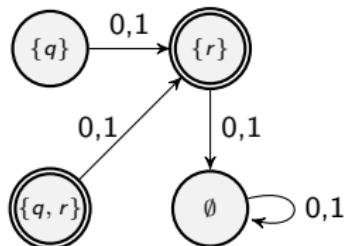
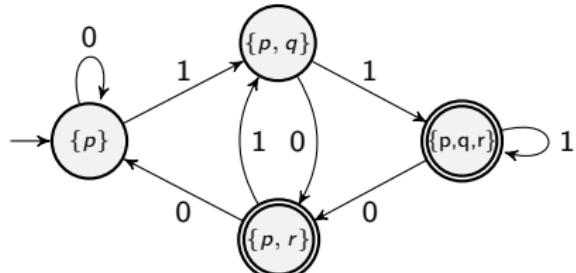
**Corollary.** A language is regular if and only if some nondeterministic finite automaton recognizes it.

# Example

$$\tilde{\delta}: 2^Q \times \Sigma \rightarrow 2^Q$$

$$\tilde{\delta}(A, a) = \bigcup_{q \in A} \delta(q, a)$$

| $\tilde{\delta}$ | 0           | 1             |
|------------------|-------------|---------------|
| $\emptyset$      | $\emptyset$ | $\emptyset$   |
| $\{p\}$          | $\{p\}$     | $\{p, q\}$    |
| $\{q\}$          | $\{r\}$     | $\{r\}$       |
| $\{r\}$          | $\emptyset$ | $\emptyset$   |
| $\{p, q\}$       | $\{p, r\}$  | $\{p, q, r\}$ |
| $\{p, r\}$       | $\{p\}$     | $\{p, q\}$    |
| $\{q, r\}$       | $\{r\}$     | $\{r\}$       |
| $\{p, q, r\}$    | $\{p, r\}$  | $\{p, q, r\}$ |



# Is every Language Regular?

# What DFAs/NFAs Can Do

- ▶ Pattern matching
  - ▶  $L = \{w \in \{0, 1\}^* \mid w \text{ contains } 1011011 \text{ as a substring}\}$
- ▶ Checking parity of numbers, checking divisibility, counting “modulo some number”
  - ▶  $L = \{w \in \{0, 1\}^* \mid \#\text{ones}(w) \text{ is divisible by } 5\}$
- ▶ Skipping prefixes, suffixes, . . . (e.g. 2nd last bit is 1)  
More generally – “regular” expressions
  - ▶  $L = 0^*110^* - \{0^n110^m \mid n, m \in \mathbb{N}\}$
- ▶ Closure under complements, unions, intersections, . . .

# Test your intuition

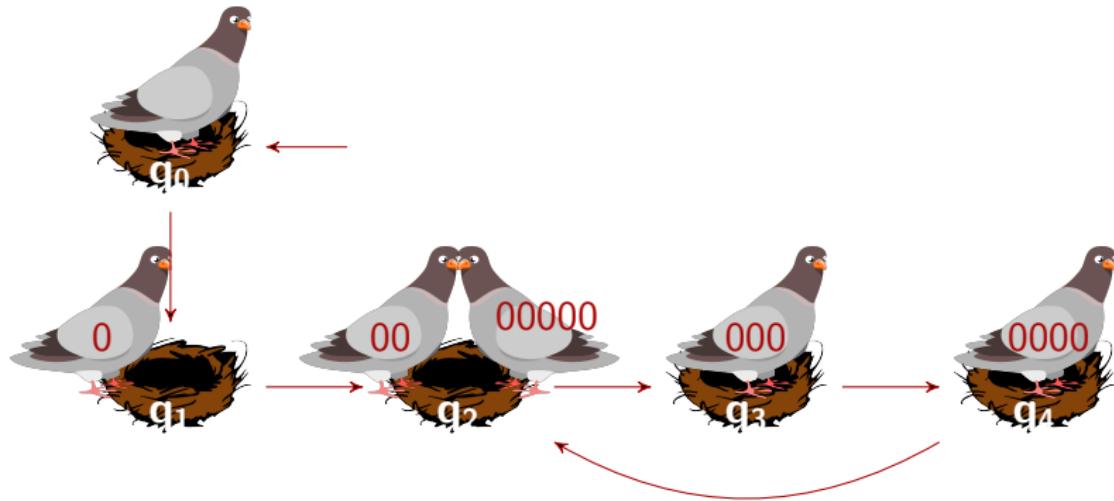
Are these languages regular?

$$B = \{0^n 1^n \mid n \geq 0\} = \{\varepsilon, 01, 0011, 000111, \dots\}$$

$$C = \{w \mid w \text{ has an equal number of 0's and 1's}\}$$

$$D = \{w \mid w \text{ has an equal number of occurrences of 01 and 10 as substrings}\}$$

$B = \{0^n 1^n \mid n \geq 0\} = \{\varepsilon, 01, 0011, 000111, \dots\}$  is **not** regular



- ▶ Suppose on the contrary that  $B$  is recognized by a DFA with  $p$  states (e.g.  $p = 5$ )
- ▶ Consider what happens when the input is long enough, e.g.,  $0^p$
- ▶ Thus, for two strings  $0^i, 0^j, i \neq j$  we must end up in the same state
- ▶ Since  $0^i 1^i$  is accepted  $0^j 1^j$  is also accepted – contradiction!

**Thus  $B$  is NOT regular!**

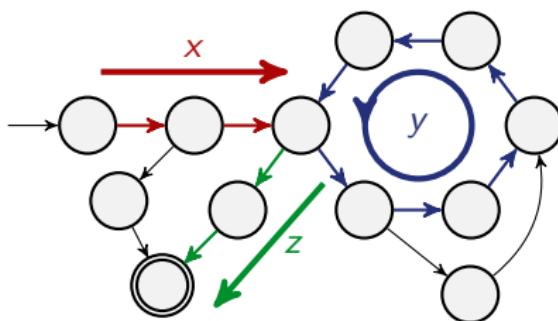
# Pumping Lemma and its Proof Sketch

If  $A$  is a regular language, then there is a number  $p$  (the pumping length) such that, for every string  $s$  in  $A$  of length at least  $p$ , there exists a division of  $s$  into three pieces,  $s = xyz$  s.t.

- 1 for each  $i \geq 0$ ,  $xy^i z \in A$
- 2  $|y| \geq 1$ , and
- 3  $|xy| \leq p$ .

(What if  $A$  is finite?)

- ▶ Let  $M = (Q, \Sigma, \delta, q_0, F)$  s.t.  $L(M) = A$
- ▶ Consider a string  $s \in A$  s.t.  $|s| \geq |Q| = p$
- ▶ Stop once in a state for the 2nd time, say at times  $j, k$
- ▶  $s = xyz$  where  $x$  is the first  $j$  letters,  $y$  is letter  $j + 1$  to  $k$ ,  $z$  is from  $k + 1$  to end



# More formal proof

If  $A$  is a regular language, then there is a number  $p$  (the pumping length) such that, for every string  $s$  in  $A$  of length at least  $p$ , there exists a division of  $s$  into three pieces,  $s = xyz$  s.t.

- 1 for each  $i \geq 0$ ,  $xy^i z \in A$
- 2  $|y| \geq 1$ , and
- 3  $|xy| \leq p$ .

- ▶ Let  $p = |Q|$  be the number of states in a DFA  $M = (Q, \Sigma, \delta, q_0, F)$  accepting  $A$
- ▶ Let  $s$  be an accepted string of length  $|s| \geq p$
- ▶ Let  $q$  be the first state that is repeated when starting at  $q_0$  and feeding  $s$  and let  $x, y, z$  be the strings s.t.  $|xy|$  is minimized and

$$\delta(q_0, x) = q \quad \text{and} \quad \delta(q_0, xy) = q \quad \text{and} \quad \delta(q, z) = r \in F$$

- ▶ Then  $\delta(q_0, xy^i z) = r$  for all  $i \geq 0$
- ▶ Note that  $|y| \geq 1$  as there are two distinct occurrences of  $q$
- ▶  $|xy| \leq p$  by pigeonhole principle and that  $|xy|$  equals the number of steps until a state is visited twice.

# Applications

$$F = \{ww \mid w \in \{0,1\}^*\}$$

*F is not regular!*

### Proof: (by contradiction)

► Assume  $F$  is regular, let  $p$  be its pumping length

► Pick  $s = 0^p 1^p 0^p 1^p \in F$

*All strings don't work!* Fun part is guessing which string to pick

► Pumping lemma:  $s = xyz, |xy| \leq p, |y| \geq 1, xy^i z \in F$  for all  $i \geq 0$

Pumping lemma tells us there is such a decomposition – we can't choose it! Your reasoning should work for any decomposition

► Since  $|xy| \leq p$  and  $|y| \geq 1$ ,  $y = 0^k$  for some  $k > 0$

► According to pumping lemma,  $xy^2 z \in F$

$xy^2 z = 0^{p+k} 1^p 0^p 1^p \notin F$

► **Contradiction!**

$$E = \{0^m 1^n \mid m > n\}$$

*E is not regular!*

### Proof: (by contradiction)

- ▶ Assume  $E$  is regular, let  $p$  be its pumping length
- ▶ Pick  $s = 0^{p+1}1^p \in E$
- ▶ Pumping lemma:  $s = xyz$ ,  $|xy| \leq p$ ,  $|y| \geq 1$ ,  $xy^i z \in E$  for all  $i \geq 0$
- ▶ Since  $s = 0^{p+1}1^p$ ,  $|xy| \leq p$ ,  $|y| \geq 1$ , we have  $y = 0^k$  for some  $k > 0$
- ▶ Need to find a string of the type  $xy^i z \notin E$  for some  $i \geq 0$
- ▶ However,  $xy^2 z = 0^{p+k+1}1^p$ ,  $xy^3 z = 0^{p+2k+1}1^p, \dots \in E$
- ▶ Try  $i = 0$ . According to pumping lemma,  $xy^0 z = xz \in E$
- ▶ But  $xz = 0^{p+1-k}1^p$  and  $p + 1 - k \leq p$ . Thus,  $xz \notin E$ .  
**Contradiction!**

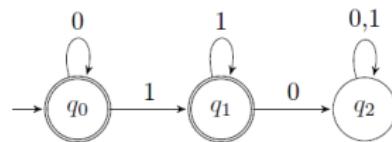
$$C = \{w \mid w \text{ has equal number of 0's and 1's}\}$$

$C$  is not regular! Reduction from  $B = \{0^n1^n \mid n \geq 0\}$

- ▶  $B \subseteq C$  and  $B$  is non-regular does **not** imply  $C$  is non-regular...
- ▶ e.g.  $B \subseteq \{0, 1\}^*$  as well but  $\{0, 1\}^*$  is regular!
- ▶ However we can still use non-regularity of  $B$

**Proof: (by contradiction)**

- ▶ Assume  $C$  is regular
- ▶ Let  $0^*1^* = \{0^m1^n \mid m, n \geq 0\}$
- ▶  $0^*1^*$  is regular
- ▶ Claim:  $B = C \cap (0^*1^*)$
- ▶ Intersection of two regular languages is regular
- ▶  $\Rightarrow B$  is regular – a **contradiction!**



$$C = \{w \mid w \text{ has equal number of 0's and 1's}\}$$

**C is not regular!** (Proof using Pumping Lemma)

**Proof: (by contradiction)**

- ▶ Assume  $C$  is regular, let  $p$  be the pumping length
- ▶ We need to find a string which cannot be “pumped”
- ▶ Try  $s = 010101010101 = (01)^p$ 
  - ▶  $s = xyz$  with  $|xy| \leq p$ ,  $|y| \geq 1$  and  $xy^i z \in C$  for every  $i \geq 0$
  - ▶ What if  $x = \epsilon$  and  $y = 01$  then indeed  $xy^i z \in C$ ?
  - ▶ Our choice of  $s$  gives **no contradiction!**
- ▶ Try  $s = 0^p 1^p$ 
  - ▶  $s = xyz$  with  $|xy| \leq p$ ,  $|y| \geq 1$  and  $xy^i z \in C$  for every  $i \geq 0$
  - ▶ In **every** possible case  $y$  is composed of 0s only!
  - ▶ Say  $y = 0^k$  for some  $k > 0$  then  $xy^2 z = 0^{p+k} 1^p \notin C$
  - ▶ **Contradiction!**

# Task: Prove that $L$ is not regular ..

Let's try to use the Pumping Lemma



Assume  $L$  is regular



Fun part is  
guessing which  
string to pick!

Pick  $s$  in  $L$  with  $|s| \geq p$

$p$  : the pumping length

Your reasoning should  
work for any  
decomposition



$xz, xyyz, xyyyz, xyyyyz, \dots$

$s=xyz$  s.t.

$|xy| \leq p$  and  $|y| \geq 1$  and  $xy^i z \in L \quad \forall i \geq 0$

If one of them NOT in  $L$  – DONE!

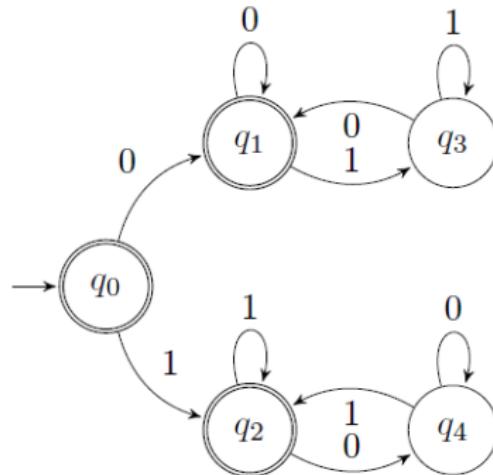
If all of them in  $L$  – Try again!



# Test your intuition...

$D = \{w \mid w \text{ has equal nr of occurrences of } 01 \text{ and } 10 \text{ as substrings}\}$

*D is regular!*



# Beyond Regular Languages Turing Machines . . .