Non-regular Languages
Mika Goos

E PF L School of Computer and Communication Sciences

Lecture 3

w
6/\6

Should | stay or should | go (left or right)

RECALL: NFAs, Subset Construction

0,1 0,1

q11@0,5@1

State diagram of a Nondeterministic Finite Automaton (NFA)

Differences to DFAs:

Ability to transition to more than one state on a given symbol
Ex: g1 has two outgoing transitions for symbol 1

A state may have no transition on a particular symbol
Ex: g3 has no outgoing transitions for symbol 0

Ability to take a step without reading any input symbol (e-transitions)
Ex: g2 can transition to g3 without reading a symbol

Formal definitions

A nondeterministic finite automaton (NFA) M is a 5-tuple (Q, X, 4, qo, F),
where
> Q@ is a finite set called the states,
2 is a finite set called the alphabet,
§: Q@ x (XU {e}) — 29 is the transition function,
qo € Q is the start state, and
F C Q is the set of accept states. (allow F =10)

vV viYvyy

> Here 29 denotes the power set of Q. Ex:
Q == {CI17 q2}a 2Q = {®7 {q1}7 {QZ}, {q17 Ch}}

> An input is accepted if there exists at least one path that ends at
an accepting state

> An input is rejected if no computation path end at an accepting
state

| ecture 3

Lecture 3

1 0, 1
The formal description of N7 is (Q, %, §, g1, F'), where

1. Q = {Q1,Q2aQB7Q4},
2.5 = {01},

3. J is given as o 1

o | {a} {a,} 0

q2 {Q3} 0 {Q3}
q3 0 {Q4} 0
qa | {qa} {qa} 0

)

4. q; is the start state, and
5. F = {Q4}.

Concatenation

Theorem. Every nondeterministic finite automaton has an equivalent
deterministic finite automaton.

Corollary. A language is regular if and only if some nondeterministic
finite automaton recognizes it.

5:29%x ¥ 29

3(A,a) = d(q,a)
geA

5 0 1

1]] (

{r} {r} {p,d}

{q} {r} {r}

{r} 0 0
{psa} {p.r} {p,q.r}
{p,r} {p} {p.q}
{a.r} {r} {r}
{p;a,r} {p,r} {p.q.r}

Is every Language Regular?

What DFAs/NFAs Can Do

> Pattern matching
> L={w e {0,1}* | w contains 1011011 as a substring}

» Checking parity of numbers, checking divisibility, counting “modulo
some number”

> L={w e {0,1}* | #ones(w) is divisible by 5}

> Skipping prefixes, suffixes, ... (e.g. 2nd last bit is 1)
More generally — “regular” expressions
> L =0*110* — {0"110™ | n,m € N}

» Closure under complements, unions, intersections, ...

Lecture 3

Test your intuition

Are these languages regular?

B ={0"1"| n >0} = {¢,01,0011,000111,...}
C = {w | w has an equal number of 0's and 1's}

D = {w | w has an equal number of occurrences of 01 and 10 as substrings}

Lecture 3

B ={0"1" | >0} ={¢,01,0011,000111, ...} is not regular

i/

I

ﬁ 4 4 4
ﬁ ,‘o OOC& A000 40000

\/

> Suppose on the contrary that B is recognized by a DFA with p
states (e.g. p=15)

» Consider what happens when the input is long enough, e.g., 0P

v

Thus, for two strings 0', 0/, i # j we must end up in the same state

v

Since 01 is accepted /1 is also accepted — contradiction!

Thus B is NOT regular!

If Ais a regular language, then there is a number p (the pumping length)
such that, for every string s in A of length at least p, there exists a division
of s into three pieces, s = xyz s.t.

for each i >0, xy'z € A
ly| > 1, and
|xy| < p. (What if A is finite?)

> Let M = (Q,%,4,qo, F) s.t.
L(M) = A

> Consider a string s € A s.t.
sl > QI =p

> Stop once in a state for the
2nd time, say at times j, k

> s = xyz where x is the first
j letters, y is letter j 4+ 1 to
k, z is from k+ 1 to end

More formal proof

If Ais a regular language, then there is a number p (the pumping length) such that,
for every string s in A of length at least p, there exists a division of s into three pieces,
s = Xyz s.t.

for each i > 0, xy’z € A
lyl > 1, and
byl < p.

Let p = |Q| be the number of states in a DFA M = (Q, X, 4, o, F) accepting A
Let s be an accepted string of length [s| > p

Let g be the first state that is repeated when starting at qo and feeding s and
let x,y, z be the strings s.t. |xy| is minimized and

0(qo,x) =¢q and 0(qo,xy) = q and 6(q,z)=reF

> Then 6(qo, xy’z) = r for all i >0
Note that |y| > 1 as there are two distinct occurences of g

|xy| < p by pigeonhole principle and that |xy| equals the number of steps until
a state is visited twice.

| ecture 3

Applications

Lecture 3

F={ww|we{0,1}*}
F is not regular!
Proof: (by contradiction)
> Assume F is regular, let p be its pumping length

» Pick s = 0P1P0P1P € F

All strings don’t work! Fun part is guessing which string to pick

v

Pumping lemma: s = xyz, |xy| < p, |y| > 1,xy'z € F forall i >0

Pumping lemma tells us there is such a decomposition — we can’t choose
it! Your reasoning should work for any decomposition

> Since |xy| < p and |y| > 1, y = 0 for some k >0

v

According to pumping lemma, xy?z € F

> xyz = 0PTK1POP1P ¢ F

v

Contradiction!

E=1{0""|m> n}

E is not regular!

Proof: (by contradiction)

>

>

>

Assume E is regular, let p be its pumping length

Pick s = 0PT11P € E

Pumping lemma: s = xyz, |xy| < p, |y| > 1,xy'z € E forall i >0
Since s = 0P*11P, |xy| < p, |y| > 1, we have y = 0¥ for some k > 0
Need to find a string of the type xy'z ¢ E for some i > 0

However, xy?z = 0PTAT11P xy37 = QPt2ktl1P € E

Try i = 0. According to pumping lemma, xy°z = xz € E

But xz = 0P %1Pand p+1— k < p. Thus, xz ¢ E.
Contradiction!

C = {w | w has equal number of 0's and 1's}
C is not regular! Reduction from B = {0"1" | n > 0}

» B C C and B is non-regular does not imply C is non-regular. ..
> eg. BC{0,1}* as well but {0,1}* is regular!
> However we can still use non-regularity of B

Proof: (by contradiction)

> Assume C is regular

(J 1 0,1

> Let 0*1* = {0™1" | m,n > 0} () w’l 0
- /(0\—> — (z\n

> 0*1* is regular Y @ \&

v

Claim: B = CnN(0*1*)

> Intersection of two regular languages is regular

v

= B is regular — a contradiction!

C = {w | w has equal number of 0's and 1's}
C is not regular! (Proof using Pumping Lemma)
Proof: (by contradiction)

» Assume C is regular, let p be the pumping length

» We need to find a string which cannot be “pumped”

v

Try s = 010101010101 = (01)?

> s = xyz with |xy| < p,|y| > 1 and xy’z € C for every i >0
> What if x =€ and y = 01 then indeed xy'z € C?
> Our choice of s gives no contradiction!

» Try s = 0P1P

s = xyz with |xy| < p,|y| > 1 and xy’z € C for every i >0
In every possible case y is composed of Os only!

Say y = 0 for some k > 0 then xy?z = 0Ptk1P ¢ C
Contradiction!

vvyyvyy

Task: Prove that L is not regular ..

Let’s try to use the Pumping Lemma

Assume L is regular
Fun part is

guessing which
string to pick!

Pick sin L with [s|2p

Xz, XYyz,Xyyyz,xyyyyz,...

If all of them in L — Try again!

——)
_ p : the pumping length

Your reasoning should
work for any

— decomposition
e s-xyz st

Ixy|<pand |y[21and xy'z € L Vi = (
mmm) |f one of them NOT in L — DONE!

——

Test your intuition. ..

D = {w | w has equal nr of occurrences of 01 and 10 as substrings}

D is regular!

—=Oo

O

Lecture 3

Beyond Regular Languages
Turing Machines ...

