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In beginning to describe the mathematical theory of finite automata, we do
so in the abstract, without reference to any particular application. The following
figure depicts a finite automaton called M1.

FIGURE 1.4

A finite automaton called M1 that has three states

Figure 1.4 is called the state diagram of M1. It has three states, labeled q1, q2,
and q3. The start state, q1, is indicated by the arrow pointing at it from nowhere.
The accept state, q2, is the one with a double circle. The arrows going from one
state to another are called transitions.

When this automaton receives an input string such as 1101, it processes that
string and produces an output. The output is either accept or reject. We will
consider only this yes/no type of output for now to keep things simple. The
processing begins in M1’s start state. The automaton receives the symbols from
the input string one by one from left to right. After reading each symbol, M1

moves from one state to another along the transition that has that symbol as its
label. When it reads the last symbol, M1 produces its output. The output is
accept if M1 is now in an accept state and reject if it is not.

For example, when we feed the input string 1101 into the machine M1 in
Figure 1.4, the processing proceeds as follows:

1. Start in state q1.

2. Read 1, follow transition from q1 to q2.

3. Read 1, follow transition from q2 to q2.

4. Read 0, follow transition from q2 to q3.

5. Read 1, follow transition from q3 to q2.

6. Accept because M1 is in an accept state q2 at the end of the input.

Experimenting with this machine on a variety of input strings reveals that it
accepts the strings 1, 01, 11, and 0101010101. In fact, M1 accepts any string that
ends with a 1, as it goes to its accept state q2 whenever it reads the symbol 1. In
addition, it accepts strings 100, 0100, 110000, and 0101000000, and any string
that ends with an even number of 0s following the last 1. It rejects other strings,
such as 0, 10, 101000. Can you describe the language consisting of all strings
that M1 accepts? We will do so shortly.
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Definitions
A deterministic finite automaton (DFA) M is a 5-tuple (Q, Σ, δ, q0, F ),
where
▶ Q is a finite set called the states,
▶ Σ is a finite set called the alphabet,
▶ δ : Q × Σ → Q is the transition function,
▶ q0 ∈ Q is the start state, and
▶ F ⊆ Q is the set of accept states. (allow F = ∅)
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▶ Q = {q1, q2, q3},
▶ Σ = {0, 1},

▶ δ is described as
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The formal definition precisely describes what we mean by a finite automa-
ton. For example, returning to the earlier question of whether 0 accept states is
allowable, you can see that setting F to be the empty set ∅ yields 0 accept states,
which is allowable. Furthermore, the transition function δ specifies exactly one
next state for each possible combination of a state and an input symbol. That an-
swers our other question affirmatively, showing that exactly one transition arrow
exits every state for each possible input symbol.

We can use the notation of the formal definition to describe individual finite
automata by specifying each of the five parts listed in Definition 1.5. For exam-
ple, let’s return to the finite automaton M1 we discussed earlier, redrawn here
for convenience.

FIGURE 1.6

The finite automaton M1

We can describe M1 formally by writing M1 = (Q, Σ, δ, q1, F ), where

1. Q = {q1, q2, q3},
2. Σ = {0,1},
3. δ is described as

0 1

q1 q1 q2

q2 q3 q2

q3 q2 q2,

4. q1 is the start state, and

5. F = {q2}.
If A is the set of all strings that machine M accepts, we say that A is the

language of machine M and write L(M) = A. We say that M recognizes A or
that M accepts A. Because the term accept has different meanings when we refer
to machines accepting strings and machines accepting languages, we prefer the
term recognize for languages in order to avoid confusion.

A machine may accept several strings, but it always recognizes only one lan-
guage. If the machine accepts no strings, it still recognizes one language—
namely, the empty language ∅.
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▶ q1 is the start state, and

▶ F = {q2}.
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Definitions
A deterministic finite automaton (DFA) M is a 5-tuple (Q, Σ, δ, q0, F ),
where
▶ Q is a finite set called the states,
▶ Σ is a finite set called the alphabet,
▶ δ : Q × Σ → Q is the transition function,
▶ q0 ∈ Q is the start state, and
▶ F ⊆ Q is the set of accept states. (allow F = ∅)

▶ Σ∗ — set of all finite strings composed of symbols from Σ
▶ Includes the empty string ε

▶ L(M) ⊆ Σ∗ set of strings accepted by M. We say that M
recognizes the language L(M).

▶ A ⊆ Σ∗ is a regular language if there is a DFA M s.t. A = L(M).
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Is L = {w ∈ {0, 1}∗ : w contains an even number of 1’s} a
regular language?

YES because it is recognized by the following DFA

EVEN ODD

0 0
1

1

Formally, we prove correctness, i.e., that a DFA accepts a certain
language, via induction on the length of the string. It is a good idea to
choose a strong induction hypothesis that classifies which strings leads to
which states instead of only talking about accepting states
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▶ Complement
▶ L̄ = {w ∈ Σ∗ : w is not in L}

▶ Union
▶ L1 ∪ L2 = {w ∈ Σ∗ : w ∈ L1 or w ∈ L2}

▶ Intersection
▶ L1 ∩ L2 = {w ∈ Σ∗ : w ∈ L1 and w ∈ L2}

▶ Concatenation
▶ L1 ◦ L2 = {w ∈ Σ∗ : w = w1.w2, w1 ∈ L1 and w2 ∈ L2}

NEW LANGUAGES FROM OLD
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Complement

If L is regular is its complement L̄ = {w ∈ Σ∗ : w is not in L} regular?
▶ Let M = (Q, Σ, δ, q0, F ) be a DFA that accepts L
▶ Let M ′ = (Q, Σ, δ, q0, F̄ = Q \ F ) be the DFA where accepting

states are complemented

▶ If w ∈ L(M) then w < L(M ′)
▶ If w < L(M) then w ∈ L(M ′)

Theorem: L(M ′) = L̄

Hence complement of a regular language is regular
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Example

1.1 FINITE AUTOMATA 37

In our example, let

A = {w| w contains at least one 1 and

an even number of 0s follow the last 1}.

Then L(M1) = A, or equivalently, M1 recognizes A.

EXAMPLES OF FINITE AUTOMATA

EXAMPLE 1.7

Here is the state diagram of finite automaton M2.

FIGURE 1.8

State diagram of the two-state finite automaton M2

In the formal description, M2 is
(
{q1, q2}, {0,1}, δ, q1, {q2}

)
. The transition

function δ is

0 1

q1 q1 q2

q2 q1 q2.

Remember that the state diagram of M2 and the formal description of M2

contain the same information, only in different forms. You can always go from
one to the other if necessary.

A good way to begin understanding any machine is to try it on some sample
input strings. When you do these “experiments” to see how the machine is
working, its method of functioning often becomes apparent. On the sample
string 1101, the machine M2 starts in its start state q1 and proceeds first to state
q2 after reading the first 1, and then to states q2, q1, and q2 after reading 1, 0,
and 1. The string is accepted because q2 is an accept state. But string 110 leaves
M2 in state q1, so it is rejected. After trying a few more examples, you would see
that M2 accepts all strings that end in a 1. Thus L(M2) = {w| w ends in a 1}.
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is the complement of
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EXAMPLE 1.9

Consider the finite automaton M3.

FIGURE 1.10

State diagram of the two-state finite automaton M3

Machine M3 is similar to M2 except for the location of the accept state. As
usual, the machine accepts all strings that leave it in an accept state when it has
finished reading. Note that because the start state is also an accept state, M3

accepts the empty string ε. As soon as a machine begins reading the empty
string, it is at the end; so if the start state is an accept state, ε is accepted. In
addition to the empty string, this machine accepts any string ending with a 0.
Here,

L(M3) = {w| w is the empty string ε or ends in a 0}.

EXAMPLE 1.11

The following figure shows a five-state machine M4.

FIGURE 1.12

Finite automaton M4

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Lecture 2



Union

▶ L1 = L(M1), M1 = (Q1, Σ, δ1, q1, F1)
▶ L2 = L(M2), M2 = (Q2, Σ, δ2, q2, F2)

If M1’s alphabet Σ1 is different from M2’s alphabet Σ2 then first extend them to the
alphabet Σ = Σ1 ∪ Σ2 before taking the union

The union is recognized by the DFA M = (Q, Σ, δ, q0, F ) where
▶ Q = Q1 × Q2

▶ δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))
▶ q0 = (q1, q2)
▶ F = {(r1, r2) : r1 ∈ F1 or r2 ∈ F2}

Run M1 and M2 in parallel and accept if one of them does
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Example

q0 q1

0 0,1
1

h0

h1

0

1

10

q0h0 q1h0

q0h1 q1h1

0

1

0

1

1

0

1

0

The union
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Intersection

▶ L1 = L(M1), M1 = (Q1, Σ, δ1, q1, F1)
▶ L2 = L(M2), M2 = (Q2, Σ, δ2, q2, F2)

If M1’s alphabet Σ1 is different from M2’s alphabet Σ2 then first extend them to the
alphabet Σ = Σ1 ∪ Σ2 before taking the intersection

The union is recognized by the DFA M = (Q, Σ, δ, q0, F ) where
▶ Q = Q1 × Q2

▶ δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))
▶ q0 = (q1, q2)
▶ F = {(r1, r2) : r1 ∈ F1 and r2 ∈ F2}

Run M1 and M2 in parallel and accept if both of them do
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Example

q0 q1

0 0,1
1

h0

h1

0

1

10

q0h0 q1h0

q0h1 q1h1

0

1

0

1

1

0

1

0

The intersection
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Concatenation?
L1 ◦ L2 = {w ∈ Σ∗ : w = w1.w2, w1 ∈ L1 and w2 ∈ L2}

Difficulty to decide whether a string w is in L1 ◦ L2 is that we need to
“guess” where to break it into w1 and w2
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Should I stay or should I go (left or right)

NONDETERMINISM
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Nondeterminism vs Determinism48 CHAPTER 1 / REGULAR LANGUAGES

FIGURE 1.27

The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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State diagram of a Nondeterministic Finite Automaton (NFA)

Differences to DFAs:

1 Ability to transition to more than one state on a given symbol
Ex: q1 has two outgoing transitions for symbol 1

2 A state may have no transition on a particular symbol
Ex: q3 has no outgoing transitions for symbol 0

3 Ability to take a step without reading any input symbol (ε-transitions)
Ex: q2 can transition to q3 without reading a symbol
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How does an NFA Compute?

Two different but equivalent viewpoints:

▶ It is a parallel computer that makes multiple copies of itself and
follows all possibilities in parallel. If any one of these copies is in an
accept state at the end, the NFA accepts the input string

▶ It is a computer that accepts if there exist guesses/choices that
makes it accept
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Parallel Viewpoint
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Input: 010110
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Input: 010110

Let’s start
▶ cat moves to initial state q1

1.2 NONDETERMINISM 49

FIGURE 1.28

Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.

FIGURE 1.29

The computation of N1 on input 010110
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The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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Input: 010110

Symbol read 0

▶ cat stays in state q1

1.2 NONDETERMINISM 49

FIGURE 1.28

Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.

FIGURE 1.29

The computation of N1 on input 010110
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Input: 010110

Symbol read 1

▶ cat can (i) stay in state q1, (ii)
move to q2, and (iii) move to q2
and then to q3 via the ε-transition

▶ We make a copy of the process (cat)
for each of the three possibilities
that we then run in parallel
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Input: 010110
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▶ q1 → q1 and q2 → q3

▶ The process/cat previously at q3
dies since there is no valid
0-transition
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Input: 010110

Symbol read 1

▶ Cat at q1 can end up at q1, q2 or q3
so we make three copies

▶ Cat at q3 ends up in q4
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The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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1.2 NONDETERMINISM 49

FIGURE 1.28

Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.
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The computation of N1 on input 010110
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The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.

FIGURE 1.29

The computation of N1 on input 010110
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The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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Input: 010110

Symbol read 0

▶ Cat at q1 stays at q1

▶ Cat at q2 goes to q3

▶ Cat at q3 dies

▶ Cats at q4 stay at q4
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FIGURE 1.28

Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.

FIGURE 1.29

The computation of N1 on input 010110

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Lecture 2



Parallel Viewpoint
48 CHAPTER 1 / REGULAR LANGUAGES

FIGURE 1.27

The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.

FIGURE 1.29

The computation of N1 on input 010110

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Lecture 2



Parallel Viewpoint
48 CHAPTER 1 / REGULAR LANGUAGES

FIGURE 1.27

The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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Input: 010110

The input string is accepted if any
one of the copies is in an accept
state at the end of the input

In the example two copies are in the
accept state at the end so the input
is accepted
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FIGURE 1.28

Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.

FIGURE 1.29

The computation of N1 on input 010110
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The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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Input: 010110

Let’s start
▶ cat moves to initial state q1

1.2 NONDETERMINISM 49

FIGURE 1.28

Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.

FIGURE 1.29

The computation of N1 on input 010110
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The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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Input: 010110

Let’s start
▶ cat moves to initial state q1
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FIGURE 1.28

Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.

FIGURE 1.29

The computation of N1 on input 010110
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The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
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How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Input: 010110

Symbol read 1
▶ Cat at q3 ends up in q4

1.2 NONDETERMINISM 49

FIGURE 1.28

Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N1 shown in Figure 1.27. The
computation of N1 on input 010110 is depicted in the following figure.

FIGURE 1.29

The computation of N1 on input 010110

Lecture 2



Guess Viewpoint
48 CHAPTER 1 / REGULAR LANGUAGES

FIGURE 1.27

The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
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Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
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that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
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Input: 010110

The input string is accepted if there
exist guesses that makes the process
end in the accept state at the end of
the input

Equivalently, if there exists at least
one path that ends at an accept
state (Guess and Verify!)
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The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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What language does the NFA recognize?

L = {w ∈ {0, 1}∗ | w contains 11 or 101 as a substring}
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EXAMPLE 1.30

Let A be the language consisting of all strings over {0,1} containing a 1 in the
third position from the end (e.g., 000100 is in A but 0011 is not). The following
four-state NFA N2 recognizes A.

FIGURE 1.31

The NFA N2 recognizing A

One good way to view the computation of this NFA is to say that it stays in the
start state q1 until it “guesses” that it is three places from the end. At that point,
if the input symbol is a 1, it branches to state q2 and uses q3 and q4 to “check” on
whether its guess was correct.

As mentioned, every NFA can be converted into an equivalent DFA; but some-
times that DFA may have many more states. The smallest DFA for A contains
eight states. Furthermore, understanding the functioning of the NFA is much
easier, as you may see by examining the following figure for the DFA.

FIGURE 1.32

A DFA recognizing A

Suppose that we added ε to the labels on the arrows going from q2 to q3 and
from q3 to q4 in machine N2 in Figure 1.31. So both arrows would then have
the label 0, 1, ε instead of just 0, 1. What language would N2 recognize with this
modification? Try modifying the DFA in Figure 1.32 to recognize that language.
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What language does the NFA recognize?

L = {w ∈ {0, 1}∗ | w contains a 1 in the third position from the end}

Remark: If in the computation path you visit an accept state but don’t
end there, then that path is not accepting. E.g. 1000
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EXAMPLE 1.33

The following NFA N3 has an input alphabet {0} consisting of a single symbol.
An alphabet containing only one symbol is called a unary alphabet.

FIGURE 1.34

The NFA N3

This machine demonstrates the convenience of having ε arrows. It accepts
all strings of the form 0k where k is a multiple of 2 or 3. (Remember that the
superscript denotes repetition, not numerical exponentiation.) For example, N3

accepts the strings ε, 00, 000, 0000, and 000000, but not 0 or 00000.
Think of the machine operating by initially guessing whether to test for a

multiple of 2 or a multiple of 3 by branching into either the top loop or the bot-
tom loop and then checking whether its guess was correct. Of course, we could
replace this machine by one that doesn’t have ε arrows or even any nondeter-
minism at all, but the machine shown is the easiest one to understand for this
language.

EXAMPLE 1.35

We give another example of an NFA in Figure 1.36. Practice with it to satisfy
yourself that it accepts the strings ε, a, baba, and baa, but that it doesn’t ac-
cept the strings b, bb, and babba. Later we use this machine to illustrate the
procedure for converting NFAs to DFAs.
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What language does the NFA recognize?

L = {w ∈ {0, 1}∗ | w = 0k where k is divisible by 2 or 3}
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Formal definitions
A nondeterministic finite automaton (NFA) M is a 5-tuple (Q, Σ, δ, q0, F ),
where
▶ Q is a finite set called the states,
▶ Σ is a finite set called the alphabet,
▶ δ : Q × (Σ ∪ {ε}) → 2Q is the transition function,
▶ q0 ∈ Q is the start state, and
▶ F ⊆ Q is the set of accept states. (allow F = ∅)

▶ Here 2Q denotes the power set of Q. Ex:
Q = {q1, q2}, 2Q = {∅, {q1}, {q2}, {q1, q2}}

▶ An input is accepted if there exists at least one path that ends at
an accepting state

▶ An input is rejected if no computation path end at an accepting
state
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FIGURE 1.27

The nondeterministic finite automaton N1

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The NFA shown in Figure 1.27 violates that
rule. State q1 has one exiting arrow for 0, but it has two for 1; q2 has one arrow
for 0, but it has none for 1. In an NFA, a state may have zero, one, or many
exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label ε. In general, an NFA may have arrows
labeled with members of the alphabet or ε. Zero, one, or many arrows may exit
from each state with the label ε.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state q1 in NFA N1 and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows all the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an ε symbol on an exiting arrow is encountered, something
similar happens. Without reading any input, the machine splits into multiple
copies, one following each of the exiting ε-labeled arrows and one staying at the
current state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
multiple independent “processes” or “threads” can be running concurrently.
When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of
these processes accepts, then the entire computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the tree corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the
computation branches ends in an accept state, as shown in Figure 1.28.
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EXAMPLE 1.38

Recall the NFA N1:

The formal description of N1 is (Q, Σ, δ, q1, F ), where

1. Q = {q1, q2, q3, q4},
2. Σ = {0,1},
3. δ is given as

0 1 ε
q1 {q1} {q1, q2} ∅
q2 {q3} ∅ {q3}
q3 ∅ {q4} ∅
q4 {q4} {q4} ∅,

4. q1 is the start state, and

5. F = {q4}.

The formal definition of computation for an NFA is similar to that for a DFA.
Let N = (Q, Σ, δ, q0, F ) be an NFA and w a string over the alphabet Σ. Then
we say that N accepts w if we can write w as w = y1y2 · · · ym, where each yi

is a member of Σε and a sequence of states r0, r1, . . . , rm exists in Q with three
conditions:

1. r0 = q0,

2. ri+1 ∈ δ(ri, yi+1), for i = 0, . . . , m− 1, and

3. rm ∈ F .

Condition 1 says that the machine starts out in the start state. Condition 2 says
that state ri+1 is one of the allowable next states when N is in state ri and reading
yi+1. Observe that δ(ri, yi+1) is the set of allowable next states and so we say that
ri+1 is a member of that set. Finally, condition 3 says that the machine accepts
its input if the last state is an accept state.

EQUIVALENCE OF NFAS AND DFAS

Deterministic and nondeterministic finite automata recognize the same class of
languages. Such equivalence is both surprising and useful. It is surprising be-
cause NFAs appear to have more power than DFAs, so we might expect that NFAs
recognize more languages. It is useful because describing an NFA for a given
language sometimes is much easier than describing a DFA for that language.

Say that two machines are equivalent if they recognize the same language.
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Why Study Nondeterminism?

If there is no “real-world” analog of nondeterminism construct, namely,
make the choice that will lead to success, why bother?
▶ Mathematically well-defined and valid question to study its impact

on computational power
▶ Useful in translation of regular languages:

▶ As we will show, every NFA can be converted into an equivalent DFA
▶ So a language is regular iff it is recognized by an NFA
▶ Constructing NFAs is sometimes easier than directly constructing DFAs

(doing concatenation with NFA is an exercise)
▶ NFA may be much (exponentially) smaller than its deterministic

counterpart, or its functioning may be easier to understand

▶ Nondeterminism is also critical to theory of NP-complete problems
which includes a large number of natural optimization problems
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Theorem. Every nondeterministic finite automaton has an equivalent
deterministic finite automaton.

Corollary. A language is regular if and only if some nondeterministic
finite automaton recognizes it.

▶ We prove the theorem for NFAs without ε-transitions

▶ Exercises
▶ Change the proof to work in the presence of ε-transitions (see book)
▶ Given an NFA N construct an NFA N′ with L(N′) = L(N) and no

ε-transitions in N′ (see Exercise Set 2)
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Example p q r

0,1

1 0,1

Define δ̃ : 2Q × Σ → 2Q be function that maps possible states A to the
possible states after reading one more symbol a:

δ̃(A, a) =
⋃
q∈A

δ(q, a)

δ̃ 0 1
∅ ∅ ∅

{p} {p} {p, q}
{q} {r} {r}
{r} ∅ ∅

{p, q} {p, r} {p, q, r}
{p, r} {p} {p, q}
{q, r} {r} {r}

{p, q, r} {p, r} {p, q, r}

{q} {r}

{q, r} ∅

0,1

0,10,1

0,1

{p}

{p, q}

{p, r}

{p,q,r}

0
1 1

0

0

1

0

1
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Extended Transition Function
For a DFA: A state and a sequence of symbols maps to a state by sequentially applying
transit function, by reading the input sequence letter by letter

M = (QM , Σ, δM , q0, FM) ∆M : QM × Σ∗ → QM

∆M(A, ε) = A
∆M(A, xa) = δM(∆M(A, x), a)

For an NFA: A set of states and a sequence of symbols maps to a set of states by
sequentially applying transit function, by reading the input sequence letter by letter. A
state with null input maps to the same state (no ε-transitions)

N = (QN , Σ, δN , q0, FN) ∆N : 2QN × Σ∗ → 2QN

∆N(A, ε) = A
∆N(A, xa) = ∪q∈∆N (A,x)δN(q, a)

Lemma: For all x , y ∈ Σ∗, ∆N(A, xy) = ∆N(∆N(A, x), y)
▶ Proof via induction on |xy | — exercise
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Theorem. Every nondeterministic finite automaton has an equivalent deterministic
finite automaton

Proof

Take any NFA:

N = (QN , Σ, δN , q0, FN)

Extended transition function:

∆N : 2QN × Σ∗ → 2QN

∆N(A, ε) = A
∆N(A, xa) = ∪q∈∆N (A,x)δN(q, a)

We need to construct a DFA M that accepts the same language

The Subset Construction:

M = (QM , Σ, δM , q0, FM)

QM = 2QN

δM(A, a) = ∆N(A, a)
FM = {A ⊆ QN : A ∩ FN , ∅}Lecture 2



Proof of Theorem (continued)

Lemma. For all A ⊆ QN , x ∈ Σ∗, ∆M(A, x) = ∆N(A, x)

Proof of Lemma: Induction on |x|
Base case: x = ε

∆M(A, ε) = A = ∆N(A, ε)

Induction Step: Let x = ya where a ∈ Σ and a , ∅

∆M(A, ya) = δM(∆M(A, y), a) (Definition of ∆M)

= δM(∆N(A, y), a) (Induction as |y | < |x |)

= ∆N(∆N(A, y), a) (By subset construction)

= ∆N(A, ya) (Definition of ∆N)

Lemma implies Theorem:
x ∈ L(M) ⇔ ∆M(q0, x) ∈ FM ⇔ ∆M(q0, x) ∩ FN , ∅

⇐⇒︸︷︷︸
Lemma

∆N(q0, x) ∩ FN , ∅ ⇔ x ∈ L(N)
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Back to Concatenation

L1 ◦ L2 = {w ∈ Σ∗ : w = w1.w2, w1 ∈ L1 and w2 ∈ L2}
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FIGURE 1.48

Construction of N to recognize A1 ◦A2

PROOF

Let N1 = (Q1, Σ, δ1, q1, F1) recognize A1, and
N2 = (Q2, Σ, δ2, q2, F2) recognize A2.

Construct N = (Q, Σ, δ, q1, F2) to recognize A1 ◦A2.

1. Q = Q1 ∪Q2.
The states of N are all the states of N1 and N2.

2. The state q1 is the same as the start state of N1.

3. The accept states F2 are the same as the accept states of N2.

4. Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

δ1(q, a) q ∈ Q1 and q ̸∈ F1

δ1(q, a) q ∈ F1 and a ̸= ε

δ1(q, a) ∪ {q2} q ∈ F1 and a = ε

δ2(q, a) q ∈ Q2.
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Formal construction
Let N1 = (Q1, Σ, δ1, q1, F1) recognize A1,
and N2 = (Q2, Σ, δ2, q2, F2) recognize A2

Construct N = (Q, Σ, δ, q1, F2) to recognize A1 ◦ A2

1 Q = Q1 ∪ Q2 The states of N are all the states of N1 and N2

2 The state q1 is the same as the start state of N1

3 The accept states F2 are the same as the accept states of N2

4 Define δ so that for any q ∈ Q and any a ∈ Σ ∪ {ε},

δ(q, a) =


δ1(q, a) q ∈ Q1 and q < F1

δ1(q, a) q ∈ F1 and a , ε

δ1(q, a) ∪ {q2} q ∈ F1 and a = ε

δ2(q, a) q ∈ Q2
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Is every Language Regular?
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