Nondeterministic Finite Automata
Mika G60s

E PF L School of Computer and Communication Sciences

Lecture 2

RECALL: DFAs, REGULAR LANGUAGES

A deterministic finite automaton (DFA) M is a 5-tuple (Q, X, 4, qo, F),
where

> @ is a finite set called the states,

> 3 is a finite set called the alphabet,

> §: QXX — Q is the transition function,

> qgo € Q is the start state, and

> F C Q is the set of accept states. (allow F =)

» Q={q, 9, a4}
» ¥ ={0,1},
> ¢ is described as

q2 > @y is the start state, and

q2
> F =
. F={a}.

Lecture 2

A deterministic finite automaton (DFA) M is a 5-tuple (Q, X, 4, qo, F),
where

> @ is a finite set called the states,

> 3 is a finite set called the alphabet,

> §: QXX — Q is the transition function,

> qgo € Q is the start state, and

> F C Q is the set of accept states. (allow F =)

> ¥ * — set of all finite strings composed of symbols from &

> Includes the empty string e

> [(M) C X* set of strings accepted by M. We say that M
recognizes the language L(M).

» A C X*is a regular language if there is a DFA M s.t. A= L(M).

Lecture 2

Is L ={w € {0,1}* : w contains an even number of 1's} a
regular language?

YES because it is recognized by the following DFA

CET

Formally, we prove correctness, i.e., that a DFA accepts a certain
language, via induction on the length of the string. It is a good idea to
choose a strong induction hypothesis that classifies which strings leads to
which states instead of only talking about accepting states

NEW LANGUAGES FROM OLD

> Complement

» L={weX*: wisnotin L}
> Union

> LUL={weX*:weljorwel}
> Intersection

» LhNnbh={weX*:wel;and we L}
> Concatenation

> L10L2={WEZ*ZW=W1.W2, wy € Ly and WQELQ}

Lecture 2

Complement

If L is regular is its complement L = {w € ¥* : w is not in L} regular?
> Let M =(Q,X,4,qo, F) be a DFA that accepts L

> Let M =(Q,X,0,q0, F = Q\ F) be the DFA where accepting
states are complemented

v

If we L(M) then w ¢ L(M')
If wg L(M) then w € L(M')

v

Theorem: L(M') =L

Hence complement of a regular language is regular

Lecture 2

Lecture 2

> [= L(Ml)a My = (Qlaz’éla qi, Fl)
> L2 = L(M2)7 M2 = (Q2vz7527 a2, F2)

If M;'s alphabet ¥ is different from Mjy's alphabet %5 then first extend them to the
alphabet X = ¥; U X5 before taking the union

The union is recognized by the DFA M = (Q, X, 4, qo, F) where

Q=@ x
> 6((r1, r2), a) = (01(r1, a), 52(r2, @)
> qo = (q1,92)
» F={(n,n):n€Fornchk}

Run M; and M, in parallel and accept if one of them does

Lecture 2

The union

Intersection

> [= L(Ml)a My = (Qlaz’éla qi, Fl)
> L2 = L(M2)7 M2 = (Q2vz7527 a2, F2)

If M;'s alphabet ¥ is different from Mjy's alphabet %5 then first extend them to the
alphabet X = ¥; U X before taking the intersection

The union is recognized by the DFA M = (Q, X, 4, qo, F) where

> Q=01 x @

> 6((r1, r2), @) = (61(r1, @), 62(r2, @)
> qo = (q1,92)

» F={(rn,n):n €F and r, € F}

Run M; and M, in parallel and accept if both of them do

Lecture 2

0 0,1

The intersection

Lecture 2

Concatenation?

L10L2:{W€Z*ZW:W1.W2, wy € L and W2€L2}

Difficulty to decide whether a string w is in L o Ly is that we need to
“guess” where to break it into wy and w,

w
6/\%

Should | stay or should | go (left or right)

NONDETERMINISM

0,1 0,1

q11@o,e@1

State diagram of a Nondeterministic Finite Automaton (NFA)

Differences to DFAs:

Ability to transition to more than one state on a given symbol
Ex: g1 has two outgoing transitions for symbol 1

A state may have no transition on a particular symbol

Ex: g3 has no outgoing transitions for symbol 0

Ability to take a step without reading any input symbol (e-transitions)
Ex: g can transition to g3 without reading a symbol

How does an NFA Compute?

Two different but equivalent viewpoints:

> |t is a parallel computer that makes multiple copies of itself and
follows all possibilities in parallel. If any one of these copies is in an
accept state at the end, the NFA accepts the input string

> It is a computer that accepts if there exist guesses/choices that
makes it accept

Lecture 2

Parallel Viewpoint

O, 0,

§q11@o,e@1

Input: 010110

Lecture 2

Parallel Viewpoint

Symbol read @ Start

Input: 010110

Let's start

> cat moves to initial state q;

Lecture 2

Parallel Viewpoint

Symbol read @ Start

Input: 010110

Let's start

> cat moves to initial state q;

Lecture 2

Parallel Viewpoint

Symbol read @ Start

Input: 010110

Symbol read 0

Lecture 2

Parallel Viewpoint

Input: 010110

Symbol read 0

> cat stays in state q;

Lecture 2

Parallel Viewpoint

Input: 010110

Symbol read 1

Lecture 2

Parallel Viewpoint

Input: 010110

Symbol read 1

> cat can (i) stay in state g1, (ii)
move to g2, and (iii) move to g»
and then to g3 via the e-transition

> We make a copy of the process (cat)
for each of the three possibilities
that we then run in parallel

Lecture 2

Symbol read

Parallel Viewpoint

Input: 010110

Symbol read 0

Lecture 2

Parallel Viewpoint

Input: 010110

Symbol read 0
> g1 —q1and g2 — g3

> The process/cat previously at g3
dies since there is no valid
O-transition

Lecture 2

Parallel Viewpoint

Input: 010110

Symbol read 1

Lecture 2

Parallel Viewpoint

Input: 010110

Symbol read 1

> Cat at g1 can end up at g1, g2 or g3
so we make three copies

> Cat at g3 ends up in qa

Lecture 2

Parallel Viewpoint

Input: 010110

Symbol read 1

Lecture 2

Parallel Viewpoint

Input: 010110

Symbol read 1

> Cat at g1 can end up at g1, g2 or g3
so we make three copies

> Cat at ¢, “dies”
> Cat at g3 ends up in qa

> Cat at g4 stays at qa

Lecture 2

Parallel Viewpoint

Input: 010110

Symbol read 0

Lecture 2

Parallel Viewpoint

Input: 010110

Symbol read 0
> Cat at g; stays at g1
> Cat at gy goes to g3
> Cat at g3 dies

> Cats at g4 stay at qa

Lecture 2

Parallel Viewpoint

Input: 010110

The input string is accepted if any
one of the copies is in an accept
state at the end of the input

In the example two copies are in the
accept state at the end so the input
is accepted

Lecture 2

Guess Viewpoint

O, 0,

§q11@o,e@1

Input: 010110

Lecture 2

Guess Viewpoint

Symbol read . Start
Input: 010110

Let's start

> cat moves to initial state q;

Lecture 2

Guess Viewpoint

Symbol read . Start
Input: 010110

Let's start

> cat moves to initial state q;

Lecture 2

Guess Viewpoint

Symbol read . Start
Input: 010110

Symbol read 0

Lecture 2

Guess Viewpoint

Input: 010110

Symbol read 0

> cat stays in state q;

Lecture 2

Guess Viewpoint

Input: 010110

Symbol read 1

Lecture 2

Guess Viewpoint

Input: 010110

Symbol read 1

> cat can (i) stay in state g1, (ii)
move to g2, and (iii) move to g»
and then to g3 via the e-transition

> we make a guess that the cat goes
to state gqo

Lecture 2

Guess Viewpoint

Input: 010110

Symbol read 0

Lecture 2

Guess Viewpoint

Input: 010110

Symbol read 0

> g — g3

Lecture 2

Guess Viewpoint

Input: 010110

Symbol read 1

Lecture 2

Guess Viewpoint

Input: 010110

Symbol read 1

> Cat at g3 ends up in qa

Lecture 2

Guess Viewpoint

Input: 010110

Symbol read 1

Lecture 2

Guess Viewpoint

Input: 010110

Symbol read 1

> Cat at gs stays at qa

Lecture 2

Guess Viewpoint

Input: 010110

Symbol read 0

Lecture 2

Guess Viewpoint

Input: 010110

Symbol read 0

> Cats at g4 stay at qa

Lecture 2

Guess Viewpoint

®

Input: 010110

The input string is accepted if there
exist guesses that makes the process
end in the accept state at the end of
the input

Equivalently, if there exists at least
one path that ends at an accept
state (Guess and Verify!)

Lecture 2

0,1 0,1

What language does the NFA recognize?

L={w e {0,1}" | w contains 11 or 101 as a substring}

Lecture 2

Example 2

What language does the NFA recognize?

L={w e {0,1}" | w contains a 1 in the third position from the end}

Remark: If in the computation path you visit an accept state but don't
end there, then that path is not accepting. E.g. 1000

Lecture 2

What language does the NFA recognize?

L={w € {0,1}* | w = 0% where k is divisible by 2 or 3}

Lecture 2

Formal definitions

A nondeterministic finite automaton (NFA) M is a 5-tuple (Q, X, 4, qo, F),
where
> @ is a finite set called the states,
2 is a finite set called the alphabet,
§:Qx (XU {e}) — 29 is the transition function,
go € Q is the start state, and
F C Q is the set of accept states. (allow F =10)

vV v.vVvyy

> Here 29 denotes the power set of Q. Ex:

Q= {q1,%},2° = {0, {q1}, {a}. {an, 2 }}

> An input is accepted if there exists at least one path that ends at
an accepting state

> An input is rejected if no computation path end at an accepting
state

Lecture 2

0,1 0,1

q11@o,s@1

The formal description of N7 is (Q, %, 6, g1, F'), where

1. Q = {qlanaq37Q4}1
2.5 = {01},

3. J is given as 0 1

q1 {ql} {qh QQ} 0
q2 {(I3} 0 {Q3}
q3 0 {(I4} 0
as | {aa} {aa} 0

)

4. gq is the start state, and
5. F = {Q4}.

Lecture 2

If there is no “real-world" analog of nondeterminism construct, namely,
make the choice that will lead to success, why bother?

>

Mathematically well-defined and valid question to study its impact
on computational power

Useful in translation of regular languages:

>
»
»

As we will show, every NFA can be converted into an equivalent DFA
So a language is regular iff it is recognized by an NFA

Constructing NFAs is sometimes easier than directly constructing DFAs
(doing concatenation with NFA is an exercise)

NFA may be much (exponentially) smaller than its deterministic
counterpart, or its functioning may be easier to understand

Nondeterminism is also critical to theory of NP-complete problems
which includes a large number of natural optimization problems

Theorem. Every nondeterministic finite automaton has an equivalent
deterministic finite automaton.

Corollary. A language is regular if and only if some nondeterministic
finite automaton recognizes it.

» We prove the theorem for NFAs without e-transitions

> Exercises

> Change the proof to work in the presence of e-transitions (see book)
> Given an NFA N construct an NFA N’ with L(N’) = L(N) and no
e-transitions in N (see Exercise Set 2)

1

Define § : 29 x ¥ — 29 be function that maps possible states A to the
possible states after reading one more symbol a:

3(Aa) = | 8(q.a)

geA
B 0 1
0 0 0
{r} {rt {p.q}
{q} {r} {r}
{r}) 0

{p.at {p,r} {p,q,r}

{pry Apt Ap.q}

{g.r} {r} {r}
{psa,ry {p,r} {p,q,r}

Extended Transition Function

For a DFA: A state and a sequence of symbols maps to a state by sequentially applying
transit function, by reading the input sequence letter by letter

MZ(QM,Z,JM,QO,FM) AMIQ,\/]XZ*—)QM

An(Ae) = A
Ap(A, xa) = om(Am(A, x), a)

For an NFA: A set of states and a sequence of symbols maps to a set of states by
sequentially applying transit function, by reading the input sequence letter by letter. A
state with null input maps to the same state (no e-transitions)

N:(QN7276N7q07FN) AN:2QN XZ*—>2QN

An(Ac) = A
An(A, xa) = Ugen,(ax)On(a, a)

Lemma: For all x,y € ©*, An(A, xy) = An(An(A, x),y)

> Proof via induction on |xy| — exercise

Lecture 2

Theorem. Every nondeterministic finite automaton has an equivalent deterministic
finite automaton

Proof

Take any NFA: Extended transition function:

N = (Qn,X,dn, qo, Fn) Ap 2% x T* 5 2
An(Ae) = A
AN(Aa Xa) = quAN(A,x)(sN(q, a)

We need to construct a DFA M that accepts the same language

M = (Qm, X, m, G0, Fm)
The Subset Construction:
Qu = 2%
dm(A,a) = An(A, a)
Fu={AC Qy:ANFy+0}

Proof of Theorem (continued)

Lemma. For all AC Qn,x € ¥, Ay(A, x) = An(A, x)

Proof of Lemma: Induction on |x]
Base case: x =¢

AM(A7€) =A= AN(A,E)

Induction Step: Let x = ya where a€ X and a # ()

Ap(A ya) = om(Am(A, y), a) (Definition of Ay)
= (SM(A/\/(A,y)7 a) (Induction as |y| < |x|)
= AN(AN(/L y), a) (By subset construction)
= Apn(A, ya) (Definition of Ap)

Lemma implies Theorem:
X € L(M)@AM(C]O,X)E FMﬁAM(qo,X)ﬂFN;E@ .
< Apn(qo,x)NFy 0= x € L(N) <

Lemma

Back to Concatenation

L10L2={WEZ*ZW=W1.W2, wy € L; and W2€L2}

Lecture 2

Concatenation

Formal construction

Let Ny = (Q1,X, 01, q1, F1) recognize Aq,

and N, = (Q2, X, b2, g2, F2) recognize A;

Construct N = (Q, X, 6, g1, F2) to recognize A; o A;
Q = Q1 U Q> The states of N are all the states of N; and N,
The state g; is the same as the start state of Ny
The accept states F, are the same as the accept states of N,

Define § so that for any g € Q and any a € X U {¢},

d1(q, a) ge @ andqgé¢ Fy
5(q,2) = 91(q, a) geFiand a#e
’ 01(g,a)U{qe} qgeF anda=¢
d2(q, a) ge @

Lecture 2

Is every Language Regular?

