
Welcome to CS-251:

Theory of Computation!
Mika Göös

School of Computer and Communication Sciences

Lecture 1

CS-251 course overview

What is CS-251?
I Mathematical — problem solving, ability to write proofs. Must

attend exercise sessions and solve homework problems. . .
I Challenging — abstract thinking, how to reduce one problem to

another?

What are the fundamental capabilities and limitations of computers?

This question goes back to the 1930s...

Lecture 1

1930s — Computability

Lecture 1

Gödel: What can be mathematically proved?
Turing: What can be computed?

? Alan
Turing

? Jack
Edmonds

? Stephen Cook
& Leonid Levin ? Avi

Wigderson

Seen as the father of computer science

“On Computable Numbers, with an Application to the Entscheidungsproblem”

I Introduced “Universal machine” that is capable of computing anything that is
computable

I “Central concept of modern computer” was due to this theoretical paper
published in 1936

Introduced the class P — the idea that practical computation is
polynomial time computation

In the first fast algorithm for the matching problem published in 1965
Introduced the concept of NP-complete problems
I Stephen Cook was denied tenure at Berkeley (1970);

Invented NP-completeness (1971); Won Turing Award (1982)

I Leonid Levin’s seminal paper obscured by Russian and Cold War

Modern era
I Abel prize (2021) and Turing award (2023)

Lecture 1

The Computational Universe

What computational resources do we need to solve this problem?

How much time?

How much space?

How much communication?

The Computational UniverseThe Computational Universe

What are the relations between different problems and between

different computational models?

Does randomness help? Quantum?

If I can solve problem A, can I solve problem B?

A

B

Lecture 1

Test whether a
computer program
finishes running or
continues forever

Undecidable

The Computational Universe

Sorting

Shortest path

P
(efficient solvable)

Traveling salesman
problem

Satisfiability

Graph Coloring

NP
(efficient verifiable)

Lecture 1

Why I (and hopefully you will) love this topic

I Abstraction

I No limits
I “model of computing” introduced before computers
I Quantum computers

I Profound impact not only on computer science
I P vs NP one of the seven most important math problems
I Biology: nature does computation all the time (e.g. evolution)
I Game theory: analysis of city planning, economics, etc.

Lecture 1

Lecture 1

Lecture 1

Lecture 1

WHO WILL TEACH YOU
ALL THE COOL MATERIAL?

Lecture 1

The Dream Team of Teaching Assistants

Happy to help and answer any questions!

PhD BA/MA
Ziyi (head TA) Fedor
Valentin (exercises) Antoine
Anastasia Adrien
Artur Madeline
Hristo Georgios
Ekaterina Martin
Zijing Pierre

Lecture 1

Who am I (the course responsible)?

I Mika Göös
I mika.goos@epfl.ch
I https://theory.epfl.ch/mika/

I Faculty of computer science
I Research in Complexity Theory

I Feedback welcome!

Lecture 1

THE COURSE ESSENTIALS

Lecture 1

Resources

Moodle: http://moodle.epfl.ch/

Dynamic: course material (these slides will
be there), exercises+solutions, links, etc.

Textbook
Introduction to the Theory of Computation, 3rd
international edition (2013) by Michael Sipser

Nice reading. To learn best solve as many exercises as
you can

Lecture 1

Time and Location

Lectures:
I Monday 13:15–15:00

Exercise Session:
I Monday 15:15–17:00

Office hours: TBD

Ed Discussion forum: All questions about course admin and content

All links on Moodle!

Lecture 1

Grading

30% — 3 sets of homeworks in groups of 2–4 students

70% — Final exam in June/July

Lecture 1

Content

Understanding the limits of computational models

I Part I — What problems can we solve with constant memory?
I Finite Automaton and Regular Languages
I Non-determinism
I Non-regular languages

I Part II — What is computable with any computer?
I Turing Machines
I Decidability/Undecidability

I Part III — What is computable efficiently?
I Time complexity
I P, NP
I NP-completeness

Lecture 1

Let’s start our journey!
What can we do with limited memory?

Lecture 1

Example: Parity
Input: A string s made of symbols M and W

Output: Yes if M appears in s an even number of times.
No otherwise

Examples: MWMWMW → No MWMMMW→ Yes

Computational model: Use just 1 bit of memory
What can algorithm on a 1-bit computer do?
I Initialize memory
I Scan input from left to right
I For every symbol seen, change the memory

state based on
I the current state
I the current symbol

I Provide an answer based on the final state of
memory

Memory states:
ODD and EVEN

ODD EVEN
M ? ?
W ? ?

=⇒

Lecture 1

Our first algorithm on a 1-bit computer

EVEN ODD

W W

M

M

State diagram of Deterministic Finite Automaton (DFA)

1 Alphabet Σ = {M,W } (given by problem description)

2 States (memory allowance). In this case 2 but in general any finite
number independent of input length

3 Transition function (arrows)

4 Starting state

5 Accepting state(s)
Lecture 1

How to check if a DFA accepts a string?

EVEN ODD

W W

M

M

M M W W M W M M
E O O O E E O EStart Accepting

W W M M W W M
E E O E E E O Not Accepting

This DFA accepts even if the input string is empty!
ε

Lecture 1

Example 1

To understand what strings a DFA accepts, try a couple of strings to
understand the roles of the states!

1.1 FINITE AUTOMATA 37

In our example, let

A = {w| w contains at least one 1 and

an even number of 0s follow the last 1}.

Then L(M1) = A, or equivalently, M1 recognizes A.

EXAMPLES OF FINITE AUTOMATA

EXAMPLE 1.7

Here is the state diagram of finite automaton M2.

FIGURE 1.8

State diagram of the two-state finite automaton M2

In the formal description, M2 is
(
{q1, q2}, {0,1}, δ, q1, {q2}

)
. The transition

function δ is

0 1

q1 q1 q2

q2 q1 q2.

Remember that the state diagram of M2 and the formal description of M2

contain the same information, only in different forms. You can always go from
one to the other if necessary.

A good way to begin understanding any machine is to try it on some sample
input strings. When you do these “experiments” to see how the machine is
working, its method of functioning often becomes apparent. On the sample
string 1101, the machine M2 starts in its start state q1 and proceeds first to state
q2 after reading the first 1, and then to states q2, q1, and q2 after reading 1, 0,
and 1. The string is accepted because q2 is an accept state. But string 110 leaves
M2 in state q1, so it is rejected. After trying a few more examples, you would see
that M2 accepts all strings that end in a 1. Thus L(M2) = {w| w ends in a 1}.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

What strings does the DFA accept? Strings ending with a 1

Lecture 1

Example 2

To understand what strings a DFA accepts, try a couple of strings to
understand the roles of the states!

38 CHAPTER 1 / REGULAR LANGUAGES

EXAMPLE 1.9

Consider the finite automaton M3.

FIGURE 1.10

State diagram of the two-state finite automaton M3

Machine M3 is similar to M2 except for the location of the accept state. As
usual, the machine accepts all strings that leave it in an accept state when it has
finished reading. Note that because the start state is also an accept state, M3

accepts the empty string ε. As soon as a machine begins reading the empty
string, it is at the end; so if the start state is an accept state, ε is accepted. In
addition to the empty string, this machine accepts any string ending with a 0.
Here,

L(M3) = {w| w is the empty string ε or ends in a 0}.

EXAMPLE 1.11

The following figure shows a five-state machine M4.

FIGURE 1.12

Finite automaton M4

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

What strings does the DFA accept? Strings ending with a 0 plus empty
string ε

Lecture 1

Example 3

To understand what strings a DFA accepts, try a couple of strings to
understand the roles of the states!

34 CHAPTER 1 / REGULAR LANGUAGES

In beginning to describe the mathematical theory of finite automata, we do
so in the abstract, without reference to any particular application. The following
figure depicts a finite automaton called M1.

FIGURE 1.4

A finite automaton called M1 that has three states

Figure 1.4 is called the state diagram of M1. It has three states, labeled q1, q2,
and q3. The start state, q1, is indicated by the arrow pointing at it from nowhere.
The accept state, q2, is the one with a double circle. The arrows going from one
state to another are called transitions.

When this automaton receives an input string such as 1101, it processes that
string and produces an output. The output is either accept or reject. We will
consider only this yes/no type of output for now to keep things simple. The
processing begins in M1’s start state. The automaton receives the symbols from
the input string one by one from left to right. After reading each symbol, M1

moves from one state to another along the transition that has that symbol as its
label. When it reads the last symbol, M1 produces its output. The output is
accept if M1 is now in an accept state and reject if it is not.

For example, when we feed the input string 1101 into the machine M1 in
Figure 1.4, the processing proceeds as follows:

1. Start in state q1.

2. Read 1, follow transition from q1 to q2.

3. Read 1, follow transition from q2 to q2.

4. Read 0, follow transition from q2 to q3.

5. Read 1, follow transition from q3 to q2.

6. Accept because M1 is in an accept state q2 at the end of the input.

Experimenting with this machine on a variety of input strings reveals that it
accepts the strings 1, 01, 11, and 0101010101. In fact, M1 accepts any string that
ends with a 1, as it goes to its accept state q2 whenever it reads the symbol 1. In
addition, it accepts strings 100, 0100, 110000, and 0101000000, and any string
that ends with an even number of 0s following the last 1. It rejects other strings,
such as 0, 10, 101000. Can you describe the language consisting of all strings
that M1 accepts? We will do so shortly.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

What strings does the DFA accept? Strings with at least one 1 that ends
with an even number of 0’s

Lecture 1

Is the concept of DFAs clear? NO!

Although state diagrams are easier to grasp intuitively, we need the
formal definition, too, for two specific reasons:

I Clarify uncertainties
I Are 0 accept states allowed?
I Must have exactly one transition exiting every state for each possible

input symbol?

I A formal definition provides notation
I Good notation helps you think and express your thoughts clearly

Lecture 1

Formal definitions

A deterministic finite automaton (DFA) M is a 5-tuple (Q,Σ, δ, q0,F),
where
I Q is a finite set called the states,
I Σ is a finite set called the alphabet,
I δ : Q × Σ→ Q is the transition function,
I q0 ∈ Q is the start state, and
I F ⊆ Q is the set of accept states. (allow F = ∅)

I δ(q, σ) encodes the state we go to from q when reading σ ∈ Σ. For
a string s we use δ(q, s) to denote the state obtained by reading all
of s starting in state q.

I If A is the set of all strings that machine M accepts, we say that A
is the language of machine M and write L(M) = A. We say that
M recognizes A or that M accepts A. If the machine accepts no
strings, it still recognizes one language — namely, the empty language ∅.

Lecture 1

Example

34 CHAPTER 1 / REGULAR LANGUAGES

In beginning to describe the mathematical theory of finite automata, we do
so in the abstract, without reference to any particular application. The following
figure depicts a finite automaton called M1.

FIGURE 1.4

A finite automaton called M1 that has three states

Figure 1.4 is called the state diagram of M1. It has three states, labeled q1, q2,
and q3. The start state, q1, is indicated by the arrow pointing at it from nowhere.
The accept state, q2, is the one with a double circle. The arrows going from one
state to another are called transitions.

When this automaton receives an input string such as 1101, it processes that
string and produces an output. The output is either accept or reject. We will
consider only this yes/no type of output for now to keep things simple. The
processing begins in M1’s start state. The automaton receives the symbols from
the input string one by one from left to right. After reading each symbol, M1

moves from one state to another along the transition that has that symbol as its
label. When it reads the last symbol, M1 produces its output. The output is
accept if M1 is now in an accept state and reject if it is not.

For example, when we feed the input string 1101 into the machine M1 in
Figure 1.4, the processing proceeds as follows:

1. Start in state q1.

2. Read 1, follow transition from q1 to q2.

3. Read 1, follow transition from q2 to q2.

4. Read 0, follow transition from q2 to q3.

5. Read 1, follow transition from q3 to q2.

6. Accept because M1 is in an accept state q2 at the end of the input.

Experimenting with this machine on a variety of input strings reveals that it
accepts the strings 1, 01, 11, and 0101010101. In fact, M1 accepts any string that
ends with a 1, as it goes to its accept state q2 whenever it reads the symbol 1. In
addition, it accepts strings 100, 0100, 110000, and 0101000000, and any string
that ends with an even number of 0s following the last 1. It rejects other strings,
such as 0, 10, 101000. Can you describe the language consisting of all strings
that M1 accepts? We will do so shortly.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

We can describe this DFA M formally by writing M = (Q,Σ, δ, q1,F),
where
I Q = {q1, q2, q3},
I Σ = {0, 1},
I δ is described as

36 CHAPTER 1 / REGULAR LANGUAGES

The formal definition precisely describes what we mean by a finite automa-
ton. For example, returning to the earlier question of whether 0 accept states is
allowable, you can see that setting F to be the empty set ∅ yields 0 accept states,
which is allowable. Furthermore, the transition function δ specifies exactly one
next state for each possible combination of a state and an input symbol. That an-
swers our other question affirmatively, showing that exactly one transition arrow
exits every state for each possible input symbol.

We can use the notation of the formal definition to describe individual finite
automata by specifying each of the five parts listed in Definition 1.5. For exam-
ple, let’s return to the finite automaton M1 we discussed earlier, redrawn here
for convenience.

FIGURE 1.6

The finite automaton M1

We can describe M1 formally by writing M1 = (Q, Σ, δ, q1, F), where

1. Q = {q1, q2, q3},
2. Σ = {0,1},
3. δ is described as

0 1

q1 q1 q2

q2 q3 q2

q3 q2 q2,

4. q1 is the start state, and

5. F = {q2}.
If A is the set of all strings that machine M accepts, we say that A is the

language of machine M and write L(M) = A. We say that M recognizes A or
that M accepts A. Because the term accept has different meanings when we refer
to machines accepting strings and machines accepting languages, we prefer the
term recognize for languages in order to avoid confusion.

A machine may accept several strings, but it always recognizes only one lan-
guage. If the machine accepts no strings, it still recognizes one language—
namely, the empty language ∅.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

I q1 is the start state, and
I F = {q2}.

M recognizes the language L(M) =
{w | w contains at least one 1

and an even number of 0s follow the last 1}

Lecture 1

PROVING CORRECTNESS OF AUTOMATA

Induction!

Lecture 1

Does your DFA accept the correct language?

Σ = {a, b}, L = {w | w contains an even number of a’s︸ ︷︷ ︸
count(w , a) is even

}

q0 q1

b b
a

a

DFA M:

How do you prove that M is correct, that is, M accepts exactly L?
I To prove: For all strings w , M accepts w iff count(w , a) is even
I To prove: For all strings w , δ(q0,w) = q0 iff count(w , a) is even

Lecture 1

Proof of correctness

To prove: For all strings w , δ(q0,w) = q0 iff count(w , a) is even

Proof by induction on string length/structure

Base case: Prove the claim for w = ε

Inductive case:
I Assume that claim holds for an arbitrary string x
I Prove the claim for w = x .σ, where σ is a symbol (either a or b)

Lecture 1

q0 q1

b b
a

a

Proof of correctness: Base Case

To prove: For all strings w , δ(q0,w) = q0 iff count(w , a) is even

Base case: Prove the claim for w = ε

I We have δ(q0, ε) = q0
I The empty string has 0 number of a’s, which is an even number
I So the claim holds

Lecture 1

q0 q1

b b
a

a

Inductive Case

To prove: For all strings w , δ(q0,w) = q0 iff count(w , a) is even

Inductive case: Assume that the claim holds for an arbitrary string x :
that is, assume: δ(q0, x) = q0 iff count(x , a) is even
I Need to show the claim for x .σ, where σ is symbol in {a, b}
I δ(q0, x) can be q0 or q1, and σ can be a or b.
I Gives four cases to consider. Let us consider the case δ(q0, x) = q0

and σ = b, rest three are similar

Lecture 1

q0 q1

b b
a

a

Inductive Case

To prove: For all strings w , δ(q0,w) = q0 iff count(w , a) is even

Case δ(q0, x) = q0 and σ = b:
I By Induction Hypothesis, count(x , a) is even
I To prove δ(q0, x .b) = q0 iff count(x .b, a) is even
I By definition of δ:

δ(q0, x .b) = δ(δ(q0, x), b) = δ(q0, b) = q0

I Adding b to a string does not change the number of a’s it contains,
so count(x .b, a) equals count(x , a), which is even in this case. QED

Lecture 1

q0 q1

b b
a

a

Another Example

What language does this DFA accept?

q0 q1 q2

b b a,b
a

a
DFA M:

Claim: L(M) = {w | w contains at least two a’s}.

Lecture 1

Proof of correctness

To prove: For all strings w , δ(q0,w) = q2 iff count(w , a) is at least 2

Proof by induction on string w

Base case: Prove the claim for w = ε

I We have δ(q0, ε) = q0
I count(w , a) = 0
I So the claim holds

Lecture 1

q0 q1 q2

b b a,b

a
a

Inductive case

Induction hypothesis, δ(q0, x) = q2 iff count(x , a) is at least 2

To prove, for σ ∈ {a, b}, δ(q0, x .σ) = q2 iff count(x .σ, a) is at least 2.

Case δ(q0, x) = q0 and σ = a:
I In this case, by induction hypothesis, count(x , a) < 2
I To prove: δ(q0, x .a) = q2 iff count(x .a, a) is at least 2

I The proof fails!!
I count(x , a) = 1 and δ(q0, x) = q0 is consistent with the assumptions
I In such a case, count(x .a, a) = 2 but δ(q0, x .a) = δ(q0, a) = q1
I Claim does not hold.

How to fix the proof?

Lecture 1

q0 q1 q2

b b a,b

a
a

Stronger claim

For all strings w , δ(q0,w) =


q0 if count(w , a) = 0
q1 if count(w , a) = 1
q2 if count(w , a) ≥ 2

The claim is stronger than the original claim:
I If we prove this, it follows that δ(q0,w) = q2 iff count(w , a) ≥ 2

Instead of just saying “strings in L lead to a final state and strings not in L
lead to a non-final state”, we have strengthened the claim by identifying,
for each state, which strings lead to that state

Lecture 1

q0 q1 q2

b b a,b

a
a

Correctness Proof

To prove: For all strings w , δ(q0,w) =


q0 if count(w , a) = 0
q1 if count(w , a) = 1
q2 if count(w , a) ≥ 2

Proof by induction on string w

Base case: Prove the claim for w = ε

I We have δ(q0, ε) = q0
I count(w , a) = 0
I So the claim holds

Lecture 1

q0 q1 q2

b b a,b

a
a

Inductive case

Assume that δ(q0, x) equals q0 if count(x , a) = 0, equals q1 if
count(x , a) = 1 and equals q2 if count(x , a) ≥ 2

Prove that, for each σ ∈ {a, b}, δ(q0, x .σ) equals q0 if count(x .σ, a) = 0,
equals q1 if count(x .σ, a) = 1 and equals q2 if count(x .σ, a) ≥ 2

Proof by cases: δ(q0, x) can be q0 or q1 or q2, and σ can be a or b
Case δ(q0, x) = q0 and σ = a:
I count(x , a) = 0 by induction hypothesis and so count(x .a, a) = 1
I δ(q0, x .a) = δ(δ(q0, x), a) = δ(q0, a) = q1.
I So claim holds

Remaining five cases are similar

Lecture 1

q0 q1 q2

b b a,b

a
a

Recipe for Proving Correctness of Automata

Given a language L described by a mathematical constraint and a DFA
M = ({q0, q1, . . . , qn},Σ, δ, q0,F), to prove that L(M) = L:
I Find a precise descriptions of the sets T0,T1, . . . ,Tn of strings that

take the machine from initial state to the corresponding states
I Language L should match sets corresponding to accepting states
I Prove by induction on string w :

For all w , δ(q0,w) = qi if w is in set Ti , for i = 0, 1, . . . , n

I Base case
I Prove claim for w = ε

I Inductive case
I Assume: δ(q0, x) = qi if x ∈ Ti for i = 0, 1, . . . , n
I To prove: for each σ ∈ Σ, δ(q0, x .σ) = qi if x .σ ∈ Ti for i = 0, 1, . . . , n.
I Proof by case analysis on what σ is and what δ(q0, x) is.

Lecture 1

REGULAR LANGUAGES
AND OPERATIONS

Lecture 1

Regular Languages

I Σ∗ set of all strings composed of symbols from Σ
I Includes the empty string ε

I L(M) ⊆ Σ∗ set of strings accepted by M
I L is a regular language if there is a DFA such that L = L(M)

Regular expressions for pattern matching in documents (supported by all
modern programming languages and editors)

So DFAs not only beautiful theory but of practical importance!!

Are all languages regular? If not which ones are?

Lecture 1

New languages from old

I Complement
I L̄ = {w ∈ Σ∗ : w is not in L}

I Union
I L1 ∪ L2 = {w ∈ Σ∗ : w ∈ L1 or w ∈ L2}

I Intersection
I L1 ∩ L2 = {w ∈ Σ∗ : w ∈ L1 and w ∈ L2}

I Concatenation
I L1 ◦ L2 = {w ∈ Σ∗ : w = w1.w2, w1 ∈ L1 and w2 ∈ L2}

Lecture 1

Complement

If L is regular is its complement L̄ = {w ∈ Σ∗ : w is not in L} regular?
I Let M = (Q,Σ, δ, q0,F) be a DFA that accepts L
I Let M ′ = (Q,Σ, δ, q0, F̄ = Q \ F) be the DFA where accepting

states are complemented

I w ∈ L(M) ⇐⇒ w < L(M ′)

Theorem: L(M ′) = L̄

Hence complement of a regular language is regular

Lecture 1

Example

1.1 FINITE AUTOMATA 37

In our example, let

A = {w| w contains at least one 1 and

an even number of 0s follow the last 1}.

Then L(M1) = A, or equivalently, M1 recognizes A.

EXAMPLES OF FINITE AUTOMATA

EXAMPLE 1.7

Here is the state diagram of finite automaton M2.

FIGURE 1.8

State diagram of the two-state finite automaton M2

In the formal description, M2 is
(
{q1, q2}, {0,1}, δ, q1, {q2}

)
. The transition

function δ is

0 1

q1 q1 q2

q2 q1 q2.

Remember that the state diagram of M2 and the formal description of M2

contain the same information, only in different forms. You can always go from
one to the other if necessary.

A good way to begin understanding any machine is to try it on some sample
input strings. When you do these “experiments” to see how the machine is
working, its method of functioning often becomes apparent. On the sample
string 1101, the machine M2 starts in its start state q1 and proceeds first to state
q2 after reading the first 1, and then to states q2, q1, and q2 after reading 1, 0,
and 1. The string is accepted because q2 is an accept state. But string 110 leaves
M2 in state q1, so it is rejected. After trying a few more examples, you would see
that M2 accepts all strings that end in a 1. Thus L(M2) = {w| w ends in a 1}.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

is the complement of

38 CHAPTER 1 / REGULAR LANGUAGES

EXAMPLE 1.9

Consider the finite automaton M3.

FIGURE 1.10

State diagram of the two-state finite automaton M3

Machine M3 is similar to M2 except for the location of the accept state. As
usual, the machine accepts all strings that leave it in an accept state when it has
finished reading. Note that because the start state is also an accept state, M3

accepts the empty string ε. As soon as a machine begins reading the empty
string, it is at the end; so if the start state is an accept state, ε is accepted. In
addition to the empty string, this machine accepts any string ending with a 0.
Here,

L(M3) = {w| w is the empty string ε or ends in a 0}.

EXAMPLE 1.11

The following figure shows a five-state machine M4.

FIGURE 1.12

Finite automaton M4

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Lecture 1

Union

I L1 = L(M1),M1 = (Q1,Σ, δ1, q1,F1)
I L2 = L(M2),M2 = (Q2,Σ, δ2, q2,F2)

If M1’s alphabet Σ1 is different from M2’s alphabet Σ2 then first extend them to the
alphabet Σ = Σ1 ∪ Σ2 before taking the union

The union is recognized by the DFA M = (Q,Σ, δ, q0,F) where
I Q = Q1 × Q2

I δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a))
I q0 = (q1, q2)
I F = {(q1, q2) : q1 ∈ F1 or q2 ∈ F2}

Run M1 and M2 in parallel and accept if one of them does

Lecture 1

Example

q0 q1

0 0,1
1

h0

h1

0

1

10

q0h0 q1h0

q0h1 q1h1

0

1

0

1

1

0

1

0

The union

Lecture 1

Intersection

I L1 = L(M1),M1 = (Q1,Σ, δ1, q1,F1)
I L2 = L(M2),M2 = (Q2,Σ, δ2, q2,F2)

If M1’s alphabet Σ1 is different from M2’s alphabet Σ2 then first extend them to the
alphabet Σ = Σ1 ∪ Σ2 before taking the intersection

The union is recognized by the DFA M = (Q,Σ, δ, q0,F) where
I Q = Q1 × Q2

I δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a))
I q0 = (q1, q2)
I F = {(q1, q2) : q1 ∈ F1 and q2 ∈ F2}

Run M1 and M2 in parallel and accept if both of them do

Lecture 1

Example

q0 q1

0 0,1
1

h0

h1

0

1

10

q0h0 q1h0

q0h1 q1h1

0

1

0

1

1

0

1

0

The intersection

Lecture 1

Concatenation?

Lecture 1

