Welcome to CS-251:

Theory of Computation!
Mika Goos

E PF L School of Computer and Communication Sciences

Lecture 1

CS-251 course overview

What is CS-2517

> Mathematical — problem solving, ability to write proofs. Must
attend exercise sessions and solve homework problems. . .

> Challenging — abstract thinking, how to reduce one problem to
another?

What are the fundamental capabilities and limitations of computers?

This question goes back to the 1930s...

Lecture 1

Godel: What can be mathematically proved?

Turing: What can be computed?

r | YV
? Stephen Cook
& Leonid Levin

? Alan ? Jack
Turing Edmonds Wigderson

7 Avi

Seen as the father of computer science

“On Computable Numbers, with an Application to the Entscheidungsproblem”

> Introduced “Universal machine” that is capable of computing anything that is
computable

> “Central concept of modern computer” was due to this theoretical paper
published in 1936

Introduced the class P — the idea that practical computation is

-

v The ComputatiOnaI_-':Uni.v‘e"'rSé e

! What are the relatlons between dlﬂ'erent problems and between
dlfferent computatlonal models?
.
o 9 Does randomness help? Qhantum?
If | can solve proBI'_en’l_A, can | solv'e-problem B?

S Sl S "

-

The Computational Universe -

Test whether a
Ol computer program

finishes running or
. continues f

(efficient s;)lvable)

® -.

®
Shortest path

- Y i /| JTraveling salesman ..
. i 3 " problem

® . .
i A. (éf_ﬁcient.veriﬁabie) : :

=il Sl R "

> Abstraction

> No limits

> “model of computing” introduced before computers
> Quantum computers

» Profound impact not only on computer science

> P vs NP one of the seven most important math problems
> Biology: nature does computation all the time (e.g. evolution)
> Game theory: analysis of city planning, economics, etc.

“I can’t find an efficient algorithm, I guess I’'m just too dumb.”

———— 1

T
““I can’t find an efficient algorithm, because no such algorithm is possible!”

0L LL L L

““I can’t find an efficient algorithm, but neither can all these famous people.”

WHO WILL TEACH YOU
ALL THE COOL MATERIAL?

The Dream Team of Teaching Assistants

Happy to help and answer any questions!

PhD BA/MA
Ziyi (head TA) Fedor
Valentin (exercises) Antoine
Anastasia Adrien
Artur Madeline
Hristo Georgios
Ekaterina Martin

Zijing Pierre

Lecture 1

» Mika Goos

> mika.goos@epfl.ch
> https://theory.epfl.ch/mika/

> Faculty of computer science

> Research in Complexity Theory

» Feedback welcome!

THE COURSE ESSENTIALS

Resources

Moodle: http://moodle.epfl.ch/
| .

‘Theory of computation PRm——

. Dynamic: course material (these slides will
be there), exercises+solutions, links, etc.

Textbook

Introduction to the Theory of Computation, 3rd
international edition (2013) by Michael Sipser

Nice reading. To learn best solve as many exercises as
you can

Lecture 1

Time and Location

Lectures:
> Monday 13:15-15:00

Exercise Session:

» Monday 15:15-17:00

Office hours: TBD

Ed Discussion forum: All questions about course admin and content

All links on Moodle!

Lecture 1

30% — 3 sets of homeworks in groups of 2—4 students

70% — Final exam in June/July

Lecture 1

Understanding the limits of computational models

» Part | — What problems can we solve with constant memory?

> Finite Automaton and Regular Languages
> Non-determinism
> Non-regular languages

> Part Il — What is computable with any computer?

> Turing Machines
> Decidability/Undecidability

> Part Ill — What is computable efficiently?

> Time complexity
> P, NP
> NP-completeness

Let’s start our journey!

What can we do with limited memory?

Lecture 1

Input: A string s made of symbols M and W

Output: Yes if M appears in s an even number of times.
No otherwise

Examples: MWMWMW — No MWMMMW— Yes

Computational model: Use just 1 bit of memory

What can algorithm on a 1-bit computer do?

> Initialize memory
Memory states:

> Scan input from left to right
ODD and EVEN

> For every symbol seen, change the memory
state based on

> the current state :> ? ?

> the current symbol

> Provide an answer based on the final state of
memory

M
State diagram of Deterministic Finite Automaton (DFA)

Alphabet ¥ = {M, W} (given by problem description)

States (memory allowance). In this case 2 but in general any finite
number independent of input length

Transition function (arrows)

Starting state —

Accepting state(s) @

How to check if a DFA accepts a string?

W W
M
M

M W W M W M M
0 0O O E E O E

Start E Accepting

W M MW W M
E E O E E E O

Not Accepting

This DFA accepts even if the input string is empty!
€

Lecture 1

Example 1

To understand what strings a DFA accepts, try a couple of strings to
understand the roles of the states!

0 1
@ | ‘

0

What strings does the DFA accept? Strings ending with a 1

Lecture 1

Example 2

To understand what strings a DFA accepts, try a couple of strings to
understand the roles of the states!

What strings does the DFA accept? Strings ending with a 0 plus empty
string ¢

Lecture 1

To understand what strings a DFA accepts, try a couple of strings to
understand the roles of the states!

What strings does the DFA accept? Strings with at least one 1 that ends
with an even number of 0's

Lecture 1

Is the concept of DFAs clear? NO!

Although state diagrams are easier to grasp intuitively, we need the
formal definition, too, for two specific reasons:

» Clarify uncertainties
> Are 0 accept states allowed?
> Must have exactly one transition exiting every state for each possible
input symbol?
» A formal definition provides notation

> Good notation helps you think and express your thoughts clearly

A deterministic finite automaton (DFA) M is a 5-tuple (Q,X, 4, qo, F),
where

> Q is a finite set called the states,

> ¥ is a finite set called the alphabet,

> §:Q x X — Q is the transition function,

> go € Q is the start state, and

> F C Q is the set of accept states. (allow F =10)

» §(g, o) encodes the state we go to from g when reading o € X. For
a string s we use §(q,s) to denote the state obtained by reading all
of s starting in state gq.

> If Ais the set of all strings that machine M accepts, we say that A
is the language of machine M and write L(M) = A. We say that
M recognizes A or that M accepts A. If the machine accepts no
strings, it still recognizes one language — namely, the empty language ().

We can describe this DFA M formally by writing M = (Q, X, 6, q1, F),
where
> Q={q1,9,q3}, > g is the start state, and

» ¥ ={0,1}, » F={q.}.

.S .
0 is described ?S M recognizes the language L(M) =

© {w | w contains at least one 1
@ and an even number of Os follow the last 1}
q2,

Lecture 1

PROVING CORRECTNESS OF AUTOMATA

Induction!

Y ={a, b}, L = {w | w contains an even number of a's}

count(w, a) is even

b b
a
SO SISO
a

How do you prove that M is correct, that is, M accepts exactly L?
> To prove: For all strings w, M accepts w iff count(w, a) is even

> To prove: For all strings w, d(qo, w) = qo iff count(w, a) is even

Proof of correctness b b

a
a

To prove: For all strings w, §(qo, w) = qo iff count(w, a) is even
Proof by induction on string length /structure

Base case: Prove the claim for w = ¢

Inductive case:

> Assume that claim holds for an arbitrary string x

> Prove the claim for w = x.0, where o is a symbol (either a or b)

L ecture 1

Proof of correctness: Base Case b b

a
a

To prove: For all strings w, §(qo, w) = qo iff count(w, a) is even

Base case: Prove the claim for w = ¢
> We have 6(go,€) = qo
> The empty string has 0 number of a’s, which is an even number

> So the claim holds

Lecture 1

a
a

To prove: For all strings w, §(qo, w) = qo iff count(w, a) is even

Inductive case: Assume that the claim holds for an arbitrary string x:
that is, assume: d(qo, x) = qo iff count(x, a) is even

> Need to show the claim for x.o, where o is symbol in {a, b}
> 0(qo,x) can be qo or g1, and o can be a or b.

> Gives four cases to consider. Let us consider the case §(qo, x) = qo
and o = b, rest three are similar

a
a

To prove: For all strings w, §(qo, w) = qo iff count(w, a) is even

Case §(qgo, x) = qo and o = b:
» By Induction Hypothesis, count(x, a) is even
> To prove §(qo, x.b) = qo iff count(x.b, a) is even

> By definition of 4:
6(qo, x-b) = 6(6(qo, x), b) = 6(qo, b) = qo

> Adding b to a string does not change the number of a's it contains,
so count(x.b, a) equals count(x, a), which is even in this case. QED

Another Example

What language does this DFA accept?

DFA M:

Claim: L(M) ={w | w contains at least two a's}.

Lecture 1

Proof of correctness

To prove: For all strings w, §(qo, w) = qa iff count(w, a) is at least 2

Proof by induction on string w

Base case: Prove the claim for w = ¢
> We have 6(qgo,) = qo
> count(w,a) =0

> So the claim holds

L ecture 1

ee

Induction hypothesis, d(qo, x) = g2 iff count(x, a) is at least 2

To prove, for o € {a, b}, §(qo, x.0) = ¢z iff count(x.o,a) is at least 2.

Case 6(go,x) = qo and 0 = a:
> In this case, by induction hypothesis, count(x, a) < 2

> To prove: §(qo, x.a) = qz iff count(x.a, a) is at least 2

» The proof fails!!
> count(x,a) =1 and §(qo, x) = qo is consistent with the assumptions
> In such a case, count(x.a,a) = 2 but 6(qo, x.a) = 5(qo,a) = q1
> Claim does not hold.

How to fix the proof?

qo if count(w,a) =0
For all strings w, 0(qo, w) =< q1 if count(w,a) =1
q» if count(w,a) > 2

The claim is stronger than the original claim:

> If we prove this, it follows that 6(qgo, w) = g iff count(w, a) > 2

Instead of just saying “strings in L lead to a final state and strings not in L
lead to a non-final state”, we have strengthened the claim by identifying,
for each state, which strings lead to that state

qo if count(w,a) =0
To prove: For all strings w, 6(qo, w) = ¢ g1 if count(w,a) =1
q> if count(w,a) > 2

Proof by induction on string w

Base case: Prove the claim for w = ¢
> We have 6(qgo, &) = qo
> count(w,a) =0

> So the claim holds

Assume that (qo, x) equals qq if count(x,a) =0, equals gy if
count(x,a) =1 and equals g, if count(x,a) > 2

Prove that, for each o € {a, b}, 6(qo, x.0) equals qq if count(x.0,a) =0,
equals gy if count(x.o,a) =1 and equals g, if count(x.o,a) > 2

Proof by cases: d(qo, x) can be g or g1 or g», and o can be a or b
Case 6(qo,x) = go and 0 = a:
» count(x,a) = 0 by induction hypothesis and so count(x.a,a) =1

> 6(qo,x-a) = 6(6(qo,x),a) = d(qo,a) = q1.

» So claim holds

Remaining five cases are similar

Given a language L described by a mathematical constraint and a DFA
M= ({q0,q1,-..,9n},%,0,qo, F), to prove that L(M) = L:

> Find a precise descriptions of the sets Tg, T1,..., T, of strings that
take the machine from initial state to the corresponding states

» Language L should match sets corresponding to accepting states

» Prove by induction on string w:
For all w, 6(qo,w) =gq; if wisinset T;, for i =0,1,...,n

> Base case

> Prove claim for w = ¢

» |Inductive case

> Assume: 6(qo,x) =gqjif x € T; fori =0,1,...,n
> To prove: for each o € X,6(qo, x.0) = q; if x.o € Tjfori=0,1,...,n.
> Proof by case analysis on what o is and what §(qo, x) is.

REGULAR LANGUAGES
AND OPERATIONS

> 3 * set of all strings composed of symbols from X

> Includes the empty string ¢
> [(M) C I* set of strings accepted by M
» L is a regular language if there is a DFA such that L = L(M)

Regular expressions for pattern matching in documents (supported by all
modern programming languages and editors)

So DFAs not only beautiful theory but of practical importance!!

Are all languages regular? If not which ones are?

New languages from old

v

Complement

» L={weX*:wisnotin L}

v

Union

> L1UL2={WEZ*ZWEL10I'WEL2}

v

Intersection

> LlﬂLQZ{WEZ*ZWELland W€L2}

v

Concatenation

> L10L2={WEZ*ZW=W1.W2, wy € L; and WQGLQ}

Lecture 1

Complement

If L is regular is its complement L = {w € ¥* : w is not in L} regular?
> Let M = (Q,X%,0,qo, F) be a DFA that accepts L

> Let M =(Q,X%,0,q0, F = Q\ F) be the DFA where accepting
states are complemented

> we (M) < wé¢L(M)

Theorem: L(M') =L

Hence complement of a regular language is regular

Lecture 1

0 1

e | ’

0

is the complement of

Lecture 1

> L= L(Ml), M; = (Qlaz7617 qi, Fl)
> [, = L(MZ)a My = (Q272752, g2, F2)

If My's alphabet ¥ is different from Ma's alphabet X, then first extend them to the
alphabet ¥ = ¥; U ¥ before taking the union

The union is recognized by the DFA M = (Q, X, 4, go, F) where

> Q=01 x @
> 0((q1, q2), a) = (61(q1, a), 92(q2; 2))
> qo = (q1,92)
» F={(qu,q):qu€Fiorgech}

Run M; and M, in parallel and accept if one of them does

Lecture 1

The union

Lecture 1

Intersection

> L= L(Ml), M; = (Qlaz,ély qi, Fl)
> [, = L(MZ)a My = (Q272752) g2, F2)

If My's alphabet ¥ is different from Ma's alphabet X, then first extend them to the
alphabet ¥ = ¥; U ¥, before taking the intersection

The union is recognized by the DFA M = (Q, X, 4, go, F) where

> Q=01 x @

> 0((q1, q2), a) = (61(q1, a), 92(q2; 2))
> qo = (q1,92)

» F={(q1,q2):qu € Frand g € Fp}

Run M; and M, in parallel and accept if both of them do

Lecture 1

The intersection

Lecture 1

Concatenation?

