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Recap: NP-completeness reductions
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Definition: A language L is said to be NP-complete if
» Lisin NP.

> For every language L’ in NP, L' <p L.

Observe: If one NP-complete language has a polynomial time decider,
then every language in NP has a polynomial time decider, i.e. P = NP.

The Cook-Levin Theorem: SAT is NP-complete.
To show L is NP-complete:

» [NP membership] Give a poly-time verifier for L.

> [NP hardness] Show C <p L for some NP-complete language C
(not the other way around)
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3SAT is NP-complete

kSAT = {{¢) : ¢ is satisfiable and each clause of ¢ contains < k literals}

Verifier for 3SAT: Just use the verifier for SAT.
Claim: SAT <p 3SAT
Reduction: Given ¢,
> While ¢ contains a clause K = ({4 VoV €3V -+ V £p) with > 3

literals

Replace K with the following two clauses
Kl = (61 \/62 \/Z)
Ko=(ZV I3V ---Vip)

Preserves satisfiability
(check!)

What is the runtime?

Does SAT <p 2SAT analogously?
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INDSET is NP-complete

Claim: SAT <p INDSET
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Claim: SAT <p INDSET
Reduction f: On input ¢,

Let G be the graph generated as follows.

Take a vertex for each literal of each clause.
Add edges for pairs of conflicting literals.
Add edges for pairs of literals from the same clause.

Let m be the number of clauses in (.
Output (G, m).
Claim: ¢ € SAT = f(p) € INDSET

Proof: C: satisfying assignment of . Pick one true literal from each
clause. The corresponding vertices form a independent set.

Claim: f(¢) € INDSET = ¢ € SAT

Proof: C: independent set in G, |C| = m. C contains one vertex from
each group. Set the corresponding literals to true to get a satisfying
assignment.
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CLIQUE

A,B,F is a 3-clique

Definition: A k-clique is a subset of k pairwise connected vertices
CLIQUE = {(G, k) | G has a clique of size k}

(G,3) € CLIQUE? Yes
(G,4) € CLIQUE? No
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For a graph G:
Independent set: A subset of pairwise non-adjacent vertices

Clique: A subset of pairwise adjacent vertices

Def (Complement): The complement of a graph G = (V, E) is a graph
G = (V, E) with same vertex set and edge set E s.t. uv € E iff uv ¢ E

Observation: If G is a graph and G its complement, then a subset S of
the vertices of G is an independent set iff S is a clique of G



INDSET <, CLIQUE

Reduction: f({G = (V,E), k)) := (G = (V,E), k)
Efficiency: The reduction is polynomial time

Correctness: (G, k) € INDSET « (G, k) € CLIQUE

Proof of correctness:

(G, k) € INDSET, |S| = k (G, k) € CLIQUE
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Definition: For a graph G = (V/, E), a vertex cover is a subset S of V
such that every edge of G is incident to at least one vertex in S

G

Example

Definition:

VERTEX COVER = {(G, k) : G is a graph that has a vertex cover of size k}

> (G,4) € VERTEX COVER? Yes
> (G,3) € VERTEX COVER? No



INDSET vs VERTEX COVER

Lemma: For every graph G, a subset S of the vertices is a vertex cover if
and only if S is an independent set where S = V' \ S

Since S is a vertex
cover, such an
edge cannot exist.

Independent set

Vertex cover

Corollary: For every graph G and a positive integer k, G has an
independent set of size k iff G has a vertex cover of size n — k
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INDSET <, VERTEX COVER

Reduction: f({G, k)) := (G, n — k), where n is the number of vertices
of G

Efficiency: The reduction f is polynomial time

Correctness: Lemma/Corollary on previous slide!

& (G,n—k) € VERTEX COVER

(G,k) € INDSET & °
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Definition: Let U={1,...,n} and F ={Ty,..., T} be a family of
subsets Vi, T; C U

A subset {T;,..., T, } C Fis called a set cover of size k if UJ/.;1 T,=U

SET COVER = {(U, F, k) | F contains a set cover of size k}
Example:
» (U, F,3) € SET COVER? Yes {{1,2,4},{3,6,4},{4,7,8,9}}
» (U, F,2) € SET COVER? No



VERTEX COVER <, SET COVER

Key idea: VERTEX COVER is a special case of SET COVER

€1

Example: U ={e e e3 €465}
€s
€y e, —) F = {{eg,e4},{eq, 5,65},
{6‘2,6‘3}, {63'64-' 65}}
€3
k=2 kK=k=2

Reduction:

> Let (G = (V,E), k) be an instance of VERTEX COVER
> Set U:=E

> For every vertex v € V create a set S,
S, :={e € E | eis incident to v}

> Let F:={S,|v € V} and set k' =

Efficiency: Obvious from construction



Correctness (=-): If G has a vertex cover of cardinality k, then U can
be covered by k sets

Proof:

> Suppose C C V is a vertex cover of G and |C| = k

> Every edge €; is adjacent to at least one vertex in C

USV:E

veC

> Hence U can be covered by k sets

Correctness («<=): If U can be covered by k sets, then G has a vertex
cover of cardinality k

Proof:
> Let Sy, Sy,,...,Sy, be a collection of sets which cover U = E
> We claim that C = {vi, v2,..., v} is a vertex cover of G

> Indeed, every edge e in G belongs to S, for some i € {1,2,...,k}

> Hence, every edge e in G is incident to some vertex v; € C
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SUBSET-SUM

Let X denote a (multi) set of positive integers

Definition: SUBSET-SUM
= {(X,s) : X contains a subset whose elements sum to s}

Example: X ={1,3,4,6,13,13}
> (X,8) € SUBSET-SUM? Yes T = {1,3,4}
> (X,12) € SUBSET-SUM? No

Question: SUBSET-SUM € P?

It depends on the input length
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In SUBSET-SUM
we use binary

encoding

Unary S Binary

1*¥11*101*100LU

~ — — -~ S ——
1 3 5 4 1 3 5 4
({1,3,5},4) ({1,3,5} 4)
Input length: xq + x5 + -+ X + 5 > Input length: [log(x;)] + -+ + [log(x;,,)] + [log(s)]

L ecture 10



SUBSET-SUM: An Algorithm

¢ LletX ={x;,Xp, ., X}, Sum =3, x;
. FORi=1..mDO

. FORj =0..sum DO

. Ali,j]: = False

e FORi=0tomDO

. Ali, 0] == True

. FORi=1..mDO

. FORj =1..sum DO

. IFA[i —1,j — x;] = True OR A[i — 1,j] = True THEN A[i, j]: = True

. IF A[m, s] = True, ACCEPT; ELSE, REJECT

Running time: For the input ({x, ..., X, }, s), the above algorithm takes O(m - (X% x;))
steps to output whether or not (X, s) € SUBSET-SUM

Unary representation: The length of the input x; + x, + - + x,,, + s. In this case the
running time is polynomial in the input length

Binary representation: The length of the input [log(x;)] + --- + [log(x,,)] + [log(s)]. In this
case, the running time is exponential in the input length
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SUBSET-SUM is NP-Complete

Theorem: SET COVER <, SUBSET-SUM

Corollary: SUBSET-SUM is NP-Complete

Indeed, SUBSET-SUM € NP as it is easy to verify in polynomial time
that ) s x = s for a given subset S C X.
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SET COVER vs SUBSET-SUM

The goal: SET COVER <, SUBSET-SUM

SET COVER SUBSET SUM

» U={1,2,...,n}
) > A set of positive integers
> Afamily F={Ti,..., Tm} X ={x1,...,x}

INPUT: of subsets of U

> A positive integer s
> A number k
Select a subset of X whose sum of
elements is s

GOAL: Select k elements of F whose
union is U

First Question: How to map subsets to numbers?
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Encoding subsets as numbers

Idea 1 (Vector representation): Think of sets as 0-1 vectors!

U=1234 .. -l
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Encoding subsets as numbers

Idea 1 (Vector representation): Think of sets as 0-1 vectors!

U= 1234 . n-la

T = {2,3,n} is then encoded by

Tool1o .01

How to assign a number to this length-n vector?

2n—1 2n—2 2n—3 21 20

ea: B0 el 2
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Encoding subsets as numbers

Idea 1 (Vector representation): Think of sets as 0-1 vectors!

U= 1234 . n-la

T = {2,3,n} is then encoded by

To011o0 .01

How to assign a number to this length-n vector?

2n—1 2n—2 2n—3 21 20

cmary: (BB b ey b

Cn—l Cn—2 Cn—3 . Cl CO
oty b Bk b b X b
(for c € N) j=1"
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Reduction: Part 1 (encoding sets as numbers)
(U=A1,..., n}, F={T1, Ta,..., Tm}, k) B X =A{a,..., am} in which

R
o=l = el = as b

» We set the value of ¢ later
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The reduction should ensure that:
(U, F, k) € SET COVER = (X, s) € SUBSET-SUM

One example: suppose there exist k sets Ty=-=T,=U

1 2 n
.- AN — ‘fx = EEEEEE,
- —— l-nl-l
---c

More generally: U i = U but sets not identical

wﬂllll- — «- DEEAEN
r. - D — - NSO,

(e ] ol e
< NN,

(e

] =14i; =
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Reduction: Part 2 (selecting s)

mﬂllll- — «= DEEAEN
.- N — - NSO,
(e ] ol e

Ihe, - AEEEEE < DOEED

Observation: Since Uj’,‘:1 T, =UVh1<t,<k

Idea 2 (additional numbers) The reduction adds to X for every
he{1,2,...,n}, k—1 integers

bi=00 10

h-th pos

By adding k — tj, of each by's, we ensure:

|fU = U then Z A+ (k—t)by=s
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Suppose: (X,s) € SUBSET-SUM  Thus Jaj,,...,aj,,b1,...,b1,...,bp..., b € X
~—— SN——

ry times rn times

s.t.
P

Zafj+r1‘b1+"'rn'bn:S: k ... k
j=1
Claim: Vhe {1,...,n},3g € {1,...,p} s.t. the hith coordinate of a;, is 1
Proof:

> Crucial idea: force no carry over by selecting ¢ large enough (¢ = m+ kn+1
larger than the number of summands)

> The h-th digit of 337 @y +ri- b1+t 1o byis k
> Since r, < k — 1 this means that the h-th digit of some aj, must be 1

Corollary: T UT, U---UTj, =U

Proof:
> Vhe {L,...,n}, the h-th coordinate of a;, is 1 iff h € T;, (by the reduction)
> Thus, at least one of the subsets Tj, ..., Tj, contains h

Final question: T, U---UT;, = U= (U, F, k) € SET COVER? only if p =k



Reduction part 3

Idea 3 (enforce p = k): Introduce a new coordinate in the leftmost
position of a;'s, b;'s and s

T AN — a=Ho:1 . o

U+ 1)-§t position
bj=o 0o .1 .0

s=Hrk ko k

c

c

c

n+1
Claim: If Z;'):l aj+r- by + -+ raby, =s, then p = k
Proof
> The leftmost digit of Ej‘):l aj; +n- by + -+ raby = s is k (base c)
> The leftmost digit of b; is 0
> The leftmost digit of aj; is 1
> No carry over (since the base ¢ = m+ kn+ 1 is large enough)

> Hence, it must be that p = k
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The Complete Reduction

Given: (U = {1,..,n},F = {Ty, ..., T}, k) Lengthn + 1
f—%
Define: X = {ay, ..., by, oo, byy oo by o by}, si= kK, where:
N

k —1times k —1times

Lengthn +1
f_______A_______\
n AN — - BN
. AN — - BSEEED.
7. IS —— o - A,

(i + 1)-st position

T o)

Theorem: SET COVER <, SUBSET-SUM
Proof: Efficiency of reduction:

> the numbers in X we construct have length < (n+ 1) logc in binary

> We can compute them in polynomial time
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Correctness (=)

Suppose: (U, F, k)) € SET COVER

v

Therefore, AT, ..., T, s.t. LJJ’.‘:1 T;j =U

First coordinate of Zj"(=1 aj, is k

Let t, be the (h+ 1)st coordinate of 21’;1 aj;

> Since each element is covered we have 1 < t, < k
> By adding (k — t) copies of b, we can make the (h+ 1)st digit equal to k
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without affecting other digits
k
Thus, ijla,-j +(k—ti)b1+- -+ (k—tn) - bp=s

Hence, (X,s) € SUBSET-SUM



Suppose: (X,s) € SUBSET-SUM  Thus Jaj,,...,aj,,b1,...,b1,...,bp..., b € X
~—— SN——

ry times rn times
s.t.
p
Zafj+r1~b1+~~-rn~bn:s: k ... k .
j=1
Let T;,..., Tj, € F be the sets corresponding to a;, ..., aj,
Step 1: p=k
> There is no carry over when computing the sum
> The first digit in the sum = number of a;'s = p
> The first digit in s = k and so p = k
Step 2: for every h € {1,2,...,n} some set T; contains h

> The (h+ 1)st digit of Y aj +ri-by+ - rabnis k

> The (h+ 1)st digit of bj is 1 f i = h and 0 otherwise

> Since ry < k =1 the (h+ 1)st digit of Zj;l aj; is at least 1
is 1

> Therefore the (h+ 1)st digit of at least one of a;;,. .., a;,

> So some set T}, contains h

Conclusion: Uj.;l T, = U and so (U, F, k) € SET COVER



NP-complete problems you can use:

CLIQUE, SAT, 3SAT, INDSET
VERTEXCOVER, SETCOVER, SUBSET-SUM,
PERFECT-3-MATCHING



