
Lecture 10: NP-completeness: Subset-sum

Mika Göös

School of Computer and Communication Sciences

Lecture 10

Recap: NP-completeness reductions

Lecture 10

NP-completeness

Definition: A language L is said to be NP-complete if
I L is in NP.
I For every language L′ in NP, L′ ≤P L.

Observe: If one NP-complete language has a polynomial time decider,
then every language in NP has a polynomial time decider, i.e. P = NP.

The Cook–Levin Theorem: SAT is NP-complete.

To show L is NP-complete:
I [NP membership] Give a poly-time verifier for L.
I [NP hardness] Show C ≤P L for some NP-complete language C

(not the other way around)

Lecture 10

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 10

3SAT is NP-complete

kSAT = {〈ϕ〉 : ϕ is satisfiable and each clause of ϕ contains ≤ k literals}

Verifier for 3SAT: Just use the verifier for SAT.

Claim: SAT ≤P 3SAT

Reduction: Given ϕ,
I While ϕ contains a clause K = (`1 ∨ `2 ∨ `3 ∨ · · · ∨ `m) with > 3

literals

Replace K with the following two clauses
K1 = (`1 ∨ `2 ∨ z)

K2 = (z ∨ `3 ∨ · · · ∨ `m)


Preserves satisfiability

(check!)

What is the runtime?

Does SAT ≤P 2SAT analogously?

Lecture 10

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 10

INDSET is NP-complete
Claim: SAT ≤P INDSET

ϕ = x1︸︷︷︸
K1

∧ (x1 ∨ x2)︸ ︷︷ ︸
K2

∧ (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
K3

∧ (x1 ∨ x2 ∨ x3 ∨ x4)︸ ︷︷ ︸
K4

x1

x1

x2

x1 x2 x3

x1 x2 x3 x4

K1

K2

K3

K4

Lecture 10

INDSET is NP-complete
Claim: SAT ≤P INDSET

Reduction f : On input ϕ,

1 Let G be the graph generated as follows.
1 Take a vertex for each literal of each clause.
2 Add edges for pairs of conflicting literals.
3 Add edges for pairs of literals from the same clause.

2 Let m be the number of clauses in ϕ.

3 Output (G , m).

Claim: ϕ ∈ SAT =⇒ f (ϕ) ∈ INDSET

Proof: C : satisfying assignment of ϕ. Pick one true literal from each
clause. The corresponding vertices form a independent set.

Claim: f (ϕ) ∈ INDSET =⇒ ϕ ∈ SAT

Proof: C : independent set in G , |C | = m. C contains one vertex from
each group. Set the corresponding literals to true to get a satisfying
assignment.

Lecture 10

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 10

CLIQUE

CLIQUE

Defn: A 𝑘-clique is a subset of 𝑘 pairwise connected vertices

𝐷

𝐴

𝐵

𝐶

𝐹

𝐺, 3 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸 ?

𝐺, 4 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸? No 4-clique

𝐴, 𝐵, 𝐹 is a 3-clique

𝐶𝐿𝐼𝑄𝑈𝐸 = 𝐺, 𝑘 𝐺 has a clique of size 𝑘}

𝐸

A,B,F is a 3-clique

Definition: A k-clique is a subset of k pairwise connected vertices

CLIQUE = {〈G , k〉 | G has a clique of size k}

〈G , 3〉 ∈ CLIQUE? Yes

〈G , 4〉 ∈ CLIQUE? No

Lecture 10

INDSET vs CLIQUE

For a graph G :

Independent set: A subset of pairwise non-adjacent vertices

Clique: A subset of pairwise adjacent vertices

INDSET vs CLIQUE
For a graph 𝐺:
Independent set: A subset of pairwise non-adjacent vertices

Clique: A subset of pairwise adjacent vertices

Observation: If 𝐺 is a graph and ҧ𝐺 is its complement, then a subset 𝑆 of the
vertices of 𝐺 is an independent set iff 𝑆 is a clique of ҧ𝐺

Definition (Complement): The complement of a graph 𝐺 = (𝑉, 𝐸) is a graph
ҧ𝐺 = (𝑉, ഥ𝑬) with the same vertex set and the edge set ത𝐸 s.t. 𝑢𝑣 ∈ ത𝐸 iff 𝑢𝑣 ∉ 𝐸

T𝐡𝐞𝐨𝐫𝐞𝐦: 𝐶𝐿𝐼𝑄𝑈𝐸 ≤𝑃 𝐼𝑁𝐷𝑆𝐸𝑇 and 𝐼𝑁𝐷𝑆𝐸𝑇 ≤𝑃 𝐶𝐿𝐼𝑄𝑈𝐸

Def (Complement): The complement of a graph G = (V , E) is a graph
Ḡ = (V , Ē) with same vertex set and edge set Ē s.t. uv ∈ Ē iff uv < E

Observation: If G is a graph and Ḡ its complement, then a subset S of
the vertices of G is an independent set iff S is a clique of Ḡ

Lecture 10

INDSET ≤p CLIQUE

Reduction: f (〈G = (V , E), k〉) := 〈Ḡ = (V , Ē), k〉

Efficiency: The reduction is polynomial time

Correctness: 〈G , k〉 ∈ INDSET⇔ 〈Ḡ , k〉 ∈ CLIQUE

Proof of correctness:

INDSET vs CLIQUE
𝐼𝑁𝐷𝑆𝐸𝑇 ≤𝑃 𝐶𝐿𝐼𝑄𝑈𝐸

1. Reduction: 𝑓 𝐺 = 𝑉, 𝐸 , 𝑘 ≔ ҧ𝐺 = (𝑉, ത𝐸), 𝑘
2. Efficiency: The reduction is polynomial time
3. Correctness: 𝐺, 𝑘 ∈ 𝐼𝑁𝐷𝑆𝐸𝑇 ⇔ ഥ𝐺, 𝑘 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸

⇒⇔

Similarly: 𝐶𝐿𝐼𝑄𝑈𝐸 ≤𝑃 INDSET

Proof of correctness:

𝑎

𝑏

𝑐
𝑑

𝑒
𝑔

𝑎

𝑏

𝑐

𝑑

𝑒
𝑔

𝐺, 𝑘 ∈ 𝐼𝑁𝐷𝑆𝐸𝑇, 𝑆 = 𝑘

𝑆

ҧ𝐺, 𝑘 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸

𝑆

Lecture 10

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 10

Vertex Cover
Definition: For a graph G = (V , E), a vertex cover is a subset S of V
such that every edge of G is incident to at least one vertex in S

Example

Vertex Cover
Definition: For a graph 𝐺(𝑉, 𝐸), a vertex cover is a subset 𝑆 of 𝑉 such that
every edge of 𝐺 is incident with at least one vertex in 𝑆

Example:

Definition:
𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅 = { 𝐺, 𝑘 : 𝐺 is a graph that has a vertex cover of size 𝑘}

𝐺

𝐺, 4 ∈ 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅?

𝐺, 3 ∈ 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅?

Definition:

VERTEX COVER = {〈G , k〉 : G is a graph that has a vertex cover of size k}

I 〈G , 4〉 ∈ VERTEX COVER? Yes
I 〈G , 3〉 ∈ VERTEX COVER? No

Lecture 10

INDSET vs VERTEX COVER
Lemma: For every graph G , a subset S of the vertices is a vertex cover if
and only if S̄ is an independent set where S̄ = V \ S

Vertex Covers vs Independent Sets

𝐺

𝑆

Vertex cover

Since 𝑆 is a vertex
cover, such an
edge cannot exist.

Theorem: For every graph 𝐺, a subset 𝑆 of the vertices is a vertex
cover if and only if ҧ𝑆 is an independent set where ҧ𝑆 = 𝑉\𝑆

Independent set

Corollary: For every graph 𝐺 and a positive integer 𝑘, 𝐺 has an independent
set of size 𝑘 iff 𝐺 has a vertex cover of size 𝑛 − 𝑘Corollary: For every graph G and a positive integer k, G has an
independent set of size k iff G has a vertex cover of size n − k

Lecture 10

INDSET ≤p VERTEX COVER

Reduction: f (〈G , k〉) := 〈G , n − k〉, where n is the number of vertices
of G

Efficiency: The reduction f is polynomial time

Correctness: Lemma/Corollary on previous slide!

VERTEX COVER is NP-Complete
STEP 1: VERTEX COVER ∈ NP

TM V: “On input 𝐺, 𝑘, 𝐶
1. IF 𝐶 ≠ 𝑘, THEN, REJECT
2. FOR every pair 𝑢 ≠ 𝑣 of vertices DO

1. IF 𝑢𝑣 is an edge AND 𝑢 ∉ 𝐶 AND 𝑣 ∉ 𝐶, THEN
REJECT

3. ACCEPT”
STEP 2: 𝐼𝑁𝐷𝑆𝐸𝑇 ≤𝑃 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅.

Reduction: 𝑓 𝐺, 𝑘 ≔ 〈𝐺, 𝑛 − 𝑘〉 where 𝑛 is the number of vertices
of 𝐺.

𝐺, 𝑘 ∈ 𝐼𝑁𝐷𝑆𝐸𝑇 ⟺ ⟺ 𝐺, 𝑛 − 𝑘 ∈ 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅

𝐺

Efficiency: 𝑓 is (obviously) polynomial time computable

Correctness: Theorem on previous slide!

Lecture 10

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 10

Set Cover
Definition: Let U = {1, . . . , n} and F = {T1, . . . , Tm} be a family of
subsets ∀i , Ti ⊆ U

A subset {Ti1 , . . . , Tik} ⊆ F is called a set cover of size k if
⋃k

j=1 Tij = U

𝑆𝐸𝑇 𝐶𝑂𝑉𝐸𝑅

3

1
2 4 7

5
6 9

8

Definition: Let 𝑈 = {1, … , 𝑛} and ℱ = 𝑇1,… , 𝑇𝑚 be a family of its subsets ∀𝑖, 𝑇𝑖 ⊆ 𝑈

A subset 𝑇𝑖1, … , 𝑇𝑖𝑘 ⊆ ℱ is called a set cover of size 𝑘 if ∪𝑗=1𝑘 𝑇𝑖𝑗 = 𝑈

𝑆𝐸𝑇 𝐶𝑂𝑉𝐸𝑅 ≔ { 𝑈,ℱ, 𝑘 ∶ ℱ contains a set cover of size 𝑘}

Example:

𝑈,ℱ, 3 ∈ 𝑆𝐸𝑇𝐶𝑂𝑉𝐸𝑅?

𝑈, ℱ, 2 ∈ 𝑆𝐸𝑇𝐶𝑂𝑉𝐸𝑅?

{ 1,2,4 , 3,6,5 , {4,7,8,9}}

𝑈

SET COVER = {〈U,F , k〉 | F contains a set cover of size k}

Example:
I 〈U,F , 3〉 ∈ SET COVER? Yes {{1, 2, 4}, {3, 6, 4}, {4, 7, 8, 9}}
I 〈U,F , 2〉 ∈ SET COVER? No

Lecture 10

VERTEX COVER ≤p SET COVER

Key idea: VERTEX COVER is a special case of SET COVER

Example:

V𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅 ≤𝑃 𝑆𝐸𝑇 𝐶𝑂𝑉𝐸𝑅

Reduction:
• Let 𝐺 = (𝑉, 𝐸), 𝑘 be an instance of 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅
• Set 𝑈 ≔ 𝐸
• For every vertex 𝑣 ∈ 𝑉 create a set 𝑆𝑣

𝑆𝑣 ≔ 𝑒 ∈ 𝐸: 𝑒 is incident to 𝑣
• Let ℱ ≔ 𝑆𝑣 ∶ 𝑣 ∈ 𝑉 and set 𝑘′ = 𝑘

𝑒1

𝑒2

𝑒3

𝑒4
𝑒5

𝑈 = 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5

ℱ = { 𝑒1, 𝑒4 , 𝑒1, 𝑒2, 𝑒5 ,
𝑒2, 𝑒3 , 𝑒3, 𝑒4, 𝑒5 }

𝑘′ = 𝑘 = 2𝑘 = 2

Example:

Key Idea: 𝑉𝐸𝑅𝑇𝐸𝑋 𝐶𝑂𝑉𝐸𝑅 is a special case of 𝑆𝐸𝑇 𝐶𝑂𝑉𝐸𝑅

Efficiency: Obvious from the construction

Reduction:
I Let 〈G = (V , E), k〉 be an instance of VERTEX COVER
I Set U := E
I For every vertex v ∈ V create a set Sv

Sv := {e ∈ E | e is incident to v}

I Let F := {Sv | v ∈ V} and set k′ = k

Efficiency: Obvious from construction

Lecture 10

Correctness (⇒): If G has a vertex cover of cardinality k, then U can
be covered by k sets

Proof:
I Suppose C ⊆ V is a vertex cover of G and |C | = k
I Every edge ei is adjacent to at least one vertex in C⋃

v∈C

Sv = E

I Hence U can be covered by k sets

Correctness (⇐): If U can be covered by k sets, then G has a vertex
cover of cardinality k

Proof:
I Let Sv1 , Sv2 , . . . , Svk be a collection of sets which cover U = E
I We claim that C = {v1, v2, . . . , vk} is a vertex cover of G
I Indeed, every edge e in G belongs to Svi for some i ∈ {1, 2, . . . , k}
I Hence, every edge e in G is incident to some vertex vi ∈ C

Lecture 10

SAT

3SATINDSET

CLIQUEVERTEX COVER

SET COVER

SUBSET SUM

Lecture 10

SUBSET-SUM
Let X denote a (multi) set of positive integers

Definition: SUBSET-SUM
= {〈X , s〉 : X contains a subset whose elements sum to s}

Example: X = {1, 3, 4, 6, 13, 13}
I 〈X , 8〉 ∈ SUBSET-SUM? Yes T = {1, 3, 4}
I 〈X , 12〉 ∈ SUBSET-SUM? No

Question: SUBSET-SUM ∈ P?

It depends on the input length

Lecture 10

SUBSET-SUM
• Let 𝑋 be a (multi) set of positive integers
• Definition: 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 ≔ { 𝑋, 𝑠 : 𝑋 contains a subset whose elements sum to 𝑠}
• Example: 𝑋 = 1,3,4,6,13,13

• 𝑋, 8 ∈ 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀?
• 𝑋, 12 ∈ 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀?

• Question: Does 𝑆𝑈𝐵𝑆𝐸𝑇 − 𝑆𝑈𝑀 ∈ 𝑃?
• Input length

1 * 1 1 1 * 1 1 1 1 1 * 1 1 1 1 ⊔

𝑇 ≔ {1,3,4}

Unary vs Binary

1 * 1 1 * 1 0 1 * 1 0 0 ⊔

Input length: 𝑥1 + 𝑥2 +⋯+ 𝑥𝑚 + 𝑠 ≫ Input length: ⌈log(𝑥1)⌉ + ⋯+ ⌈log(𝑥𝑚)⌉ + ⌈log(𝑠)⌉

〈 1,3,5 , 4〉 〈 1,3,5 , 4〉
1 3 5 4 1 3 5 4

In 𝑆𝑈𝐵𝑆𝐸𝑇-𝑆𝑈𝑀
we use binary

encoding

Lecture 10

SUBSET-SUM: An Algorithm

𝑆𝑈𝐵𝑆𝐸𝑇-𝑆𝑈𝑀: An Algorithm

Running time: For the input {𝑥1,… , 𝑥𝑚}, 𝑠 , the above algorithm takes 𝑂 𝑚 ⋅ σ𝑖=1
𝑚 𝑥𝑖

steps to output whether or not 𝑋, 𝑠 ∈ 𝑆𝑈𝐵𝑆𝐸𝑇-𝑆𝑈𝑀

• Let 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑚 , 𝑠𝑢𝑚 ≔ σ𝑗=1
𝑚 𝑥𝑗

• FOR 𝑖 = 1 . . 𝑚 DO
• FOR 𝑗 = 0 . . 𝑠𝑢𝑚 DO
• 𝐴 𝑖, 𝑗 : = 𝐹𝑎𝑙𝑠𝑒
• FOR 𝑖 = 0 to 𝑚 DO
• 𝐴 𝑖, 0 ≔ 𝑇𝑟𝑢𝑒
• FOR 𝑖 = 1 . . 𝑚 DO
• FOR 𝑗 = 1 . . 𝑠𝑢𝑚 DO
• IF 𝐴 𝑖 − 1, 𝑗 − 𝑥𝑖 = 𝑇𝑟𝑢𝑒 OR 𝐴 𝑖 − 1, 𝑗 = 𝑇𝑟𝑢𝑒 THEN 𝐴 𝑖, 𝑗 := 𝑇𝑟𝑢𝑒
• IF 𝑨 𝒎, 𝒔 = 𝑻𝒓𝒖𝒆, ACCEPT; ELSE, REJECT

Unary representation: The length of the input 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑚 + 𝑠. In this case the
running time is polynomial in the input length

Binary representation: The length of the input ⌈log(𝑥1)⌉ + ⋯+ ⌈log(𝑥𝑚)⌉ + ⌈log(𝑠)⌉. In this
case, the running time is exponential in the input length

Lecture 10

SUBSET-SUM is NP-Complete

Theorem: SET COVER ≤p SUBSET-SUM

Corollary: SUBSET-SUM is NP-Complete

Indeed, SUBSET-SUM ∈ NP as it is easy to verify in polynomial time
that

∑
x∈S x = s for a given subset S ⊆ X .

Lecture 10

SET COVER vs SUBSET-SUM
The goal: SET COVER ≤p SUBSET-SUM

SET COVER SUBSET SUM

INPUT:

I U = {1, 2, . . . , n}

I A family F = {T1, . . . , Tm}
of subsets of U

I A number k

I A set of positive integers
X = {x1, . . . , x`}

I A positive integer s

GOAL: Select k elements of F whose
union is U

Select a subset of X whose sum of
elements is s

First Question: How to map subsets to numbers?

Lecture 10

Encoding subsets as numbers
Idea 1 (Vector representation): Think of sets as 0-1 vectors!

U = 1 2 3 4 . . . n − 1 n

Lecture 10

Encoding subsets as numbers
Idea 1 (Vector representation): Think of sets as 0-1 vectors!

U = 1 2 3 4 . . . n − 1 n

T = {2, 3, n} is then encoded by

T → 0 1 1 0 . . . 0 1

How to assign a number to this length-n vector?

2n−1 2n−2 2n−3 . . . 21 20

b1 b2 b3 bn−1 bnBinary:
∑n

j=1 bj2n−j

Lecture 10

Encoding subsets as numbers
Idea 1 (Vector representation): Think of sets as 0-1 vectors!

U = 1 2 3 4 . . . n − 1 n

T = {2, 3, n} is then encoded by

T → 0 1 1 0 . . . 0 1

How to assign a number to this length-n vector?

2n−1 2n−2 2n−3 . . . 21 20

b1 b2 b3 bn−1 bn

cn−1 cn−2 cn−3 . . . c1 c0

b1 b2 b3 bn−1 bn

Binary:
∑n

j=1 bj2n−j

c-ary: ∑n
j=1 bjcn−j

(for c ∈ N)

Lecture 10

Reduction: Part 1 (encoding sets as numbers)

〈U = {1, . . . , n},F = {T1, T2, . . . , Tm}, k〉 =⇒ X = {a1, . . . , am} in which

Ti =⇒ 0 1 . . . 1 =⇒ 0 1 . . . 1
c

=⇒ ai =
∑n

j=1 bj cn−j

I We set the value of c later

Lecture 10

How to pick s?
The reduction should ensure that:

〈U,F , k〉 ∈ SET COVER⇒ 〈X , s〉 ∈ SUBSET-SUM

One example: suppose there exist k sets Ti1 = · · · = Tik = U

0 1 … 1 … 1

Reduction: Part 2 (How to pick 𝑠𝑠?)
The reduction should ensure that: 𝑈𝑈,ℱ, 𝑘𝑘 ∈ 𝑆𝑆𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑉𝑉𝑈𝑈𝑆𝑆 ⟹ 𝑋𝑋, 𝑠𝑠 ∈ 𝑆𝑆𝑈𝑈𝑈𝑈𝑆𝑆𝑈𝑈𝑈𝑈-𝑆𝑆𝑈𝑈𝑆𝑆

𝑈𝑈𝑖𝑖1 →

𝑈𝑈𝑖𝑖𝑘𝑘 →
⋮ ⋮ ⋮

One instance of a set cover: suppose there exist 𝑘𝑘 sets 𝑈𝑈𝑖𝑖1 = ⋯ = 𝑈𝑈𝑖𝑖𝑘𝑘 = 𝑈𝑈

More generally: ⋃𝑗𝑗=1
𝑘𝑘 𝑈𝑈𝑖𝑖𝑗𝑗 = 𝑈𝑈 but sets not identical

1 2 𝑖𝑖 … 𝑛𝑛

Observation: Since ∪𝑗𝑗=1𝑘𝑘 𝑈𝑈𝑖𝑖𝑗𝑗 = 𝑈𝑈, ∀ ℎ , 𝟏𝟏 ≤ 𝒕𝒕𝒉𝒉 ≤ 𝒌𝒌

0 1 … 1 … 1𝑎𝑎𝑖𝑖1 ≔

𝑎𝑎𝑖𝑖𝑘𝑘 ≔ 1 1 … 0 … 0

𝑡𝑡1 𝑡𝑡2 … 𝑡𝑡ℎ … 𝑡𝑡𝑛𝑛

+

+

𝑐𝑐

𝑐𝑐

𝑐𝑐

⋮⋮

1 1 … 1𝑈𝑈𝑖𝑖1 →

𝑈𝑈𝑖𝑖𝑘𝑘 → 1 1 … 1

⋮ ⋮ ⋮

1 2 … 𝑛𝑛

1 1 … 1 … 1𝑎𝑎𝑖𝑖1 ≔

𝑎𝑎𝑖𝑖𝑘𝑘 ≔ 1 1 … 1 … 1

𝑘𝑘 𝑘𝑘 … 𝑘𝑘 … 𝑘𝑘s =

+

+

𝑐𝑐

𝑐𝑐

𝑐𝑐

⋮⋮

1 1 … 0 … 0

𝑘𝑘 𝑘𝑘 … 𝑘𝑘

How to make
it " = " ?

Σ𝑗𝑗=1𝑘𝑘 𝑎𝑎𝑖𝑖𝑗𝑗 = 𝑡𝑡1 𝑡𝑡2 … 𝑡𝑡𝑛𝑛 ≤𝑐𝑐 𝑐𝑐

Idea 2 (Additional numbers): The reduction,
∀ 1 ≤ ℎ ≤ 𝑛𝑛, adds 𝑘𝑘 − 1 integers 𝒃𝒃𝒉𝒉: = to 𝑿𝑿

𝑗𝑗-th position

𝑐𝑐0 0 … 1 … 0

By adding 𝒌𝒌 − 𝒕𝒕𝒉𝒉 of each 𝑏𝑏ℎ’s, we ensure: if ∪𝒋𝒋=𝟏𝟏𝒌𝒌 𝑺𝑺𝒊𝒊𝒋𝒋 = 𝑺𝑺 then ∑𝒋𝒋=𝟏𝟏𝒌𝒌 𝒂𝒂𝒊𝒊𝒋𝒋 + ∑𝒉𝒉=𝟏𝟏𝒏𝒏 𝒌𝒌 − 𝒕𝒕𝒉𝒉 𝒃𝒃𝒉𝒉 = 𝒔𝒔

More generally:
⋃k

j=1 Tij = U but sets not identical

0 1 … 1 … 1

Reduction: Part 2 (How to pick 𝑠𝑠?)
The reduction should ensure that: 𝑈𝑈,ℱ, 𝑘𝑘 ∈ 𝑆𝑆𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑉𝑉𝑈𝑈𝑆𝑆 ⟹ 𝑋𝑋, 𝑠𝑠 ∈ 𝑆𝑆𝑈𝑈𝑈𝑈𝑆𝑆𝑈𝑈𝑈𝑈-𝑆𝑆𝑈𝑈𝑆𝑆

𝑈𝑈𝑖𝑖1 →

𝑈𝑈𝑖𝑖𝑘𝑘 →
⋮ ⋮ ⋮

One instance of a set cover: suppose there exist 𝑘𝑘 sets 𝑈𝑈𝑖𝑖1 = ⋯ = 𝑈𝑈𝑖𝑖𝑘𝑘 = 𝑈𝑈

More generally: ⋃𝑗𝑗=1
𝑘𝑘 𝑈𝑈𝑖𝑖𝑗𝑗 = 𝑈𝑈 but sets not identical

1 2 𝑖𝑖 … 𝑛𝑛

Observation: Since ∪𝑗𝑗=1𝑘𝑘 𝑈𝑈𝑖𝑖𝑗𝑗 = 𝑈𝑈, ∀ ℎ , 𝟏𝟏 ≤ 𝒕𝒕𝒉𝒉 ≤ 𝒌𝒌

0 1 … 1 … 1𝑎𝑎𝑖𝑖1 ≔

𝑎𝑎𝑖𝑖𝑘𝑘 ≔ 1 1 … 0 … 0

𝑡𝑡1 𝑡𝑡2 … 𝑡𝑡ℎ … 𝑡𝑡𝑛𝑛

+

+

𝑐𝑐

𝑐𝑐

𝑐𝑐

⋮⋮

1 1 … 1𝑈𝑈𝑖𝑖1 →

𝑈𝑈𝑖𝑖𝑘𝑘 → 1 1 … 1

⋮ ⋮ ⋮

1 2 … 𝑛𝑛

1 1 … 1 … 1𝑎𝑎𝑖𝑖1 ≔

𝑎𝑎𝑖𝑖𝑘𝑘 ≔ 1 1 … 1 … 1

𝑘𝑘 𝑘𝑘 … 𝑘𝑘 … 𝑘𝑘s =

+

+

𝑐𝑐

𝑐𝑐

𝑐𝑐

⋮⋮

1 1 … 0 … 0

𝑘𝑘 𝑘𝑘 … 𝑘𝑘

How to make
it " = " ?

Σ𝑗𝑗=1𝑘𝑘 𝑎𝑎𝑖𝑖𝑗𝑗 = 𝑡𝑡1 𝑡𝑡2 … 𝑡𝑡𝑛𝑛 ≤𝑐𝑐 𝑐𝑐

Idea 2 (Additional numbers): The reduction,
∀ 1 ≤ ℎ ≤ 𝑛𝑛, adds 𝑘𝑘 − 1 integers 𝒃𝒃𝒉𝒉: = to 𝑿𝑿

𝑗𝑗-th position

𝑐𝑐0 0 … 1 … 0

By adding 𝒌𝒌 − 𝒕𝒕𝒉𝒉 of each 𝑏𝑏ℎ’s, we ensure: if ∪𝒋𝒋=𝟏𝟏𝒌𝒌 𝑺𝑺𝒊𝒊𝒋𝒋 = 𝑺𝑺 then ∑𝒋𝒋=𝟏𝟏𝒌𝒌 𝒂𝒂𝒊𝒊𝒋𝒋 + ∑𝒉𝒉=𝟏𝟏𝒏𝒏 𝒌𝒌 − 𝒕𝒕𝒉𝒉 𝒃𝒃𝒉𝒉 = 𝒔𝒔

Lecture 10

Reduction: Part 2 (selecting s)

0 1 … 1 … 1

Reduction: Part 2 (How to pick 𝑠𝑠?)
The reduction should ensure that: 𝑈𝑈,ℱ, 𝑘𝑘 ∈ 𝑆𝑆𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑉𝑉𝑈𝑈𝑆𝑆 ⟹ 𝑋𝑋, 𝑠𝑠 ∈ 𝑆𝑆𝑈𝑈𝑈𝑈𝑆𝑆𝑈𝑈𝑈𝑈-𝑆𝑆𝑈𝑈𝑆𝑆

𝑈𝑈𝑖𝑖1 →

𝑈𝑈𝑖𝑖𝑘𝑘 →
⋮ ⋮ ⋮

One instance of a set cover: suppose there exist 𝑘𝑘 sets 𝑈𝑈𝑖𝑖1 = ⋯ = 𝑈𝑈𝑖𝑖𝑘𝑘 = 𝑈𝑈

More generally: ⋃𝑗𝑗=1
𝑘𝑘 𝑈𝑈𝑖𝑖𝑗𝑗 = 𝑈𝑈 but sets not identical

1 2 𝑖𝑖 … 𝑛𝑛

Observation: Since ∪𝑗𝑗=1𝑘𝑘 𝑈𝑈𝑖𝑖𝑗𝑗 = 𝑈𝑈, ∀ ℎ , 𝟏𝟏 ≤ 𝒕𝒕𝒉𝒉 ≤ 𝒌𝒌

0 1 … 1 … 1𝑎𝑎𝑖𝑖1 ≔

𝑎𝑎𝑖𝑖𝑘𝑘 ≔ 1 1 … 0 … 0

𝑡𝑡1 𝑡𝑡2 … 𝑡𝑡ℎ … 𝑡𝑡𝑛𝑛

+

+

𝑐𝑐

𝑐𝑐

𝑐𝑐

⋮⋮

1 1 … 1𝑈𝑈𝑖𝑖1 →

𝑈𝑈𝑖𝑖𝑘𝑘 → 1 1 … 1

⋮ ⋮ ⋮

1 2 … 𝑛𝑛

1 1 … 1 … 1𝑎𝑎𝑖𝑖1 ≔

𝑎𝑎𝑖𝑖𝑘𝑘 ≔ 1 1 … 1 … 1

𝑘𝑘 𝑘𝑘 … 𝑘𝑘 … 𝑘𝑘s =

+

+

𝑐𝑐

𝑐𝑐

𝑐𝑐

⋮⋮

1 1 … 0 … 0

𝑘𝑘 𝑘𝑘 … 𝑘𝑘

How to make
it " = " ?

Σ𝑗𝑗=1𝑘𝑘 𝑎𝑎𝑖𝑖𝑗𝑗 = 𝑡𝑡1 𝑡𝑡2 … 𝑡𝑡𝑛𝑛 ≤𝑐𝑐 𝑐𝑐

Idea 2 (Additional numbers): The reduction,
∀ 1 ≤ ℎ ≤ 𝑛𝑛, adds 𝑘𝑘 − 1 integers 𝒃𝒃𝒉𝒉: = to 𝑿𝑿

𝑗𝑗-th position

𝑐𝑐0 0 … 1 … 0

By adding 𝒌𝒌 − 𝒕𝒕𝒉𝒉 of each 𝑏𝑏ℎ’s, we ensure: if ∪𝒋𝒋=𝟏𝟏𝒌𝒌 𝑺𝑺𝒊𝒊𝒋𝒋 = 𝑺𝑺 then ∑𝒋𝒋=𝟏𝟏𝒌𝒌 𝒂𝒂𝒊𝒊𝒋𝒋 + ∑𝒉𝒉=𝟏𝟏𝒏𝒏 𝒌𝒌 − 𝒕𝒕𝒉𝒉 𝒃𝒃𝒉𝒉 = 𝒔𝒔

Observation: Since
⋃k

j=1 Tij = U, ∀h, 1 ≤ th ≤ k

Idea 2 (additional numbers) The reduction adds to X for every
h ∈ {1, 2, . . . , n}, k − 1 integers

bh = 0 0 . . . 1

h-th pos

. . . 0
c

By adding k − th of each bh’s, we ensure:

if
⋃k

j=1 Tij = U then
∑k

j=1 aij +
∑n

h=1(k − th)bh = s

Lecture 10

What about the other direction?
Suppose: 〈X , s〉 ∈ SUBSET-SUM Thus ∃ai1 , . . . , aip , b1, . . . , b1︸ ︷︷ ︸

r1 times

, . . . , bn . . . , bn︸ ︷︷ ︸
rn times

∈ X

s.t.
p∑

j=1

aij + r1 · b1 + · · · rn · bn = s = k . . . k
c

Claim: ∀h ∈ {1, . . . , n}, ∃q ∈ {1, . . . , p} s.t. the h:th coordinate of aiq is 1
Proof:
I Crucial idea: force no carry over by selecting c large enough (c = m + kn + 1

larger than the number of summands)
I The h-th digit of

∑p
j=1 aij + r1 · · · b1 + · · ·+ rn · bn is k

I Since rh ≤ k − 1 this means that the h-th digit of some aiq must be 1

Corollary: Ti1 ∪ Ti2 ∪ · · · ∪ Tip = U

Proof:
I ∀h ∈ {1, . . . , n}, the h-th coordinate of aiq is 1 iff h ∈ Tiq (by the reduction)
I Thus, at least one of the subsets Ti1 , . . . , Tip contains h

Final question: Ti1 ∪ · · · ∪ Tip = U ⇒ 〈U,F , k〉 ∈ SET COVER? only if p = k

Lecture 10

Reduction part 3
Idea 3 (enforce p = k): Introduce a new coordinate in the leftmost
position of ai ’s, bi ’s and s

Reduction: Part 3

𝑎𝑎𝑖𝑖 ≔

0 0 0 … 1 … 0

𝑐𝑐

Idea 3 (Enforce 𝒑𝒑 = 𝒌𝒌): Introduce a new coordinate in the leftmost positions of 𝑎𝑎𝑖𝑖’s, 𝑏𝑏𝑖𝑖’s and 𝑠𝑠

0 1 … 1𝑈𝑈𝑖𝑖

𝑏𝑏𝑗𝑗 ≔

1 0 1 … 0

𝑘𝑘 𝑘𝑘 𝑘𝑘 … 𝑘𝑘 … 𝑘𝑘𝑠𝑠 ≔

𝑐𝑐

𝑐𝑐

𝑛𝑛 + 1

(𝑗𝑗 + 1)-st position

Claim: If Σ𝑗𝑗=1
𝑝𝑝 𝑎𝑎𝑖𝑖𝑗𝑗 + 𝑟𝑟1 ⋅ 𝑏𝑏1 +⋯+ 𝑟𝑟𝑛𝑛 ⋅ 𝑏𝑏𝑛𝑛 = 𝑠𝑠, then 𝑝𝑝 = 𝑘𝑘

Proof:
1. The leftmost digit of 𝛴𝛴𝑗𝑗=1

𝑝𝑝 𝑎𝑎𝑖𝑖𝑗𝑗 + 𝑟𝑟1 ⋅ 𝑏𝑏1 +⋯+ 𝑟𝑟𝑛𝑛 ⋅ 𝑏𝑏𝑛𝑛 is 𝑘𝑘 (base c)
2. The leftmost digit of 𝑏𝑏𝑖𝑖 is 0
3. The leftmost digit of 𝑎𝑎𝑖𝑖𝑗𝑗 is 1
4. No carry over (since the base 𝑐𝑐 = 𝑚𝑚 + 𝑘𝑘𝑛𝑛 + 1 is large enough)
5. By (2),(3),(4): the left most digit of 𝛴𝛴𝑗𝑗=1

𝑝𝑝 𝑎𝑎𝑖𝑖𝑗𝑗 + 𝑟𝑟1 ⋅ 𝑏𝑏1 +⋯+ 𝑟𝑟𝑛𝑛 ⋅ 𝑏𝑏𝑛𝑛 is 𝑝𝑝
6. By (1),(5): 𝑝𝑝 = 𝑘𝑘

Claim: If
∑p

j=1 aij + r1 · b1 + · · · rnbn = s, then p = k
Proof

I The leftmost digit of
∑p

j=1 aij + r1 · b1 + · · · rnbn = s is k (base c)

I The leftmost digit of bi is 0

I The leftmost digit of aij is 1

I No carry over (since the base c = m + kn + 1 is large enough)

I Hence, it must be that p = k

Lecture 10

The Complete Reduction

Given: 𝑈𝑈 = 1,… ,𝑛𝑛 ,ℱ = {𝑈𝑈1, … ,𝑈𝑈𝑚𝑚}, 𝑘𝑘

Define: 𝑋𝑋 = 𝑎𝑎1, … , 𝑎𝑎𝑚𝑚, 𝑏𝑏1, … , 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛, … , 𝑏𝑏𝑛𝑛 , where:

𝑘𝑘 − 1 times 𝑘𝑘 − 1 times

The Complete Reduction

0 1 … 1𝑈𝑈1

𝑈𝑈2

𝑈𝑈𝑚𝑚

1 1 … 0

0 1 … 1

⋮ ⋮ ⋮

1 0 1 … 1𝑎𝑎1 ≔

𝑎𝑎2 ≔

𝑎𝑎𝑚𝑚 ≔

1 1 1 … 0

1 0 1 … 1

⋮

𝑐𝑐

𝑐𝑐

𝑐𝑐

𝑠𝑠: = 𝑘𝑘 𝑘𝑘 𝑘𝑘 … 𝑘𝑘 𝑐𝑐

Length 𝑛𝑛 + 1

Length 𝑛𝑛 + 1

0 0 … 1 … 0𝑏𝑏𝑖𝑖 ≔

(𝑖𝑖 + 1)-st position

𝑐𝑐

Proof:
Efficiency of reduction:
• the numbers in 𝑋𝑋 we construct have length ≤ 𝒏𝒏 + 𝟏𝟏 ⋅ 𝐥𝐥𝐥𝐥𝐥𝐥 𝒄𝒄 in binary
• We can compute them in polynomial time

Theorem: 𝑆𝑆𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑉𝑉𝑈𝑈𝑆𝑆 ≤𝑃𝑃 𝑆𝑆𝑈𝑈𝑈𝑈𝑆𝑆𝑈𝑈𝑈𝑈−𝑆𝑆𝑈𝑈𝑆𝑆
Theorem: SET COVER ≤p SUBSET-SUM
Proof: Efficiency of reduction:
I the numbers in X we construct have length ≤ (n + 1) log c in binary
I We can compute them in polynomial time

Lecture 10

Correctness (⇒)
Suppose: 〈U,F , k〉〉 ∈ SET COVER

I Therefore, ∃Ti1 , . . . , Tik s.t. ∪k
j=1Tij = U

I First coordinate of
∑k

j=1 aij is k

I Let th be the (h + 1)st coordinate of
∑k

j=1 aij

I Since each element is covered we have 1 ≤ th ≤ k
I By adding (k − th) copies of bh we can make the (h + 1)st digit equal to k

without affecting other digits
I Thus,

∑k
j=1 aij + (k − t1)b1 + · · ·+ (k − tn) · bn = s

I Hence, 〈X , s〉 ∈ SUBSET-SUM

Lecture 10

Correctness (⇐)
Suppose: 〈X , s〉 ∈ SUBSET-SUM Thus ∃ai1 , . . . , aip , b1, . . . , b1︸ ︷︷ ︸

r1 times

, . . . , bn . . . , bn︸ ︷︷ ︸
rn times

∈ X

s.t.
p∑

j=1

aij + r1 · b1 + · · · rn · bn = s = k . . . k
c

Let Ti1 , . . . , Tik ∈ F be the sets corresponding to ai1 , . . . , aik

Step 1: p = k
I There is no carry over when computing the sum
I The first digit in the sum = number of aij ’s = p
I The first digit in s = k and so p = k

Step 2: for every h ∈ {1, 2, . . . , n} some set Tiq contains h

I The (h + 1)st digit of
∑k

j=1 aij + r1 · b1 + · · · rnbn is k
I The (h + 1)st digit of bi is 1 f i = h and 0 otherwise
I Since rh ≤ k = 1 the (h + 1)st digit of

∑k
j=1 aij is at least 1

I Therefore the (h + 1)st digit of at least one of ai1 , . . . , aik is 1
I So some set Tiq contains h

Conclusion:
⋃k

j=1 Tij = U and so 〈U,F , k〉 ∈ SET COVER
Lecture 10

NP-complete problems you can use:

CLIQUE, SAT, 3SAT, INDSET
VERTEXCOVER, SETCOVER, SUBSET-SUM,

PERFECT-3-MATCHING

Lecture 10

