

Lecture 10: NP-completeness: Subset-sum

Mika Göös

School of Computer and Communication Sciences

Lecture 10

Recap: NP-completeness reductions

NP-completeness

Definition: A language L is said to be **NP-complete** if

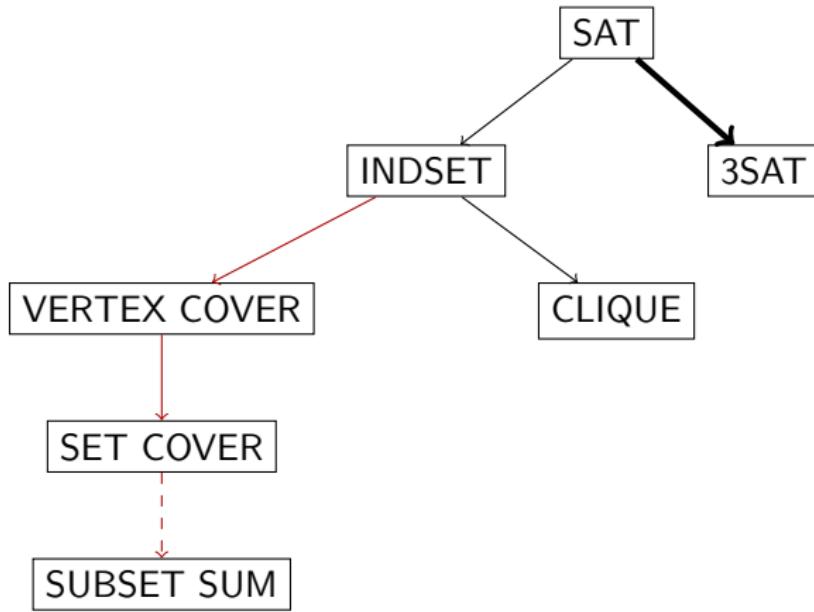
- ▶ L is in **NP**.
- ▶ For every language L' in **NP**, $L' \leq_P L$.

Observe: If **one** NP-complete language has a polynomial time decider, then **every** language in **NP** has a polynomial time decider, i.e. $\mathbf{P} = \mathbf{NP}$.

The Cook–Levin Theorem: SAT is **NP**-complete.

To show L is **NP**-complete:

- ▶ **[NP membership]** Give a poly-time verifier for L .
- ▶ **[NP hardness]** Show $C \leq_P L$ for some **NP**-complete language C (not the other way around)



3SAT is NP-complete

$k\text{SAT} = \{\langle \varphi \rangle : \varphi \text{ is satisfiable and each clause of } \varphi \text{ contains } \leq k \text{ literals}\}$

Verifier for 3SAT: Just use the verifier for SAT.

Claim: $\text{SAT} \leq_P 3\text{SAT}$

Reduction: Given φ ,

- ▶ While φ contains a clause $K = (\ell_1 \vee \ell_2 \vee \ell_3 \vee \cdots \vee \ell_m)$ with > 3 literals

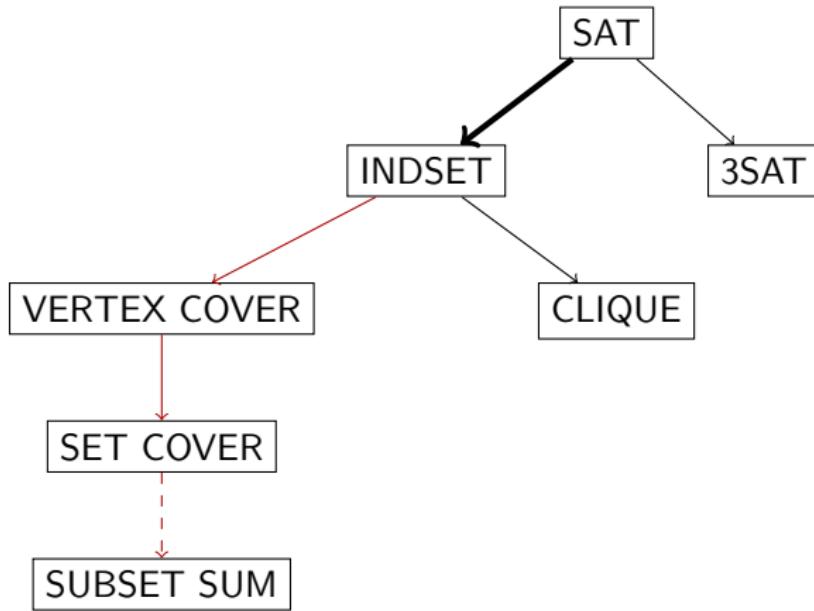
Replace K with the following two clauses

$$\left. \begin{array}{l} K_1 = (\ell_1 \vee \ell_2 \vee z) \\ K_2 = (\bar{z} \vee \ell_3 \vee \cdots \vee \ell_m) \end{array} \right\}$$

Preserves satisfiability
(check!)

What is the runtime?

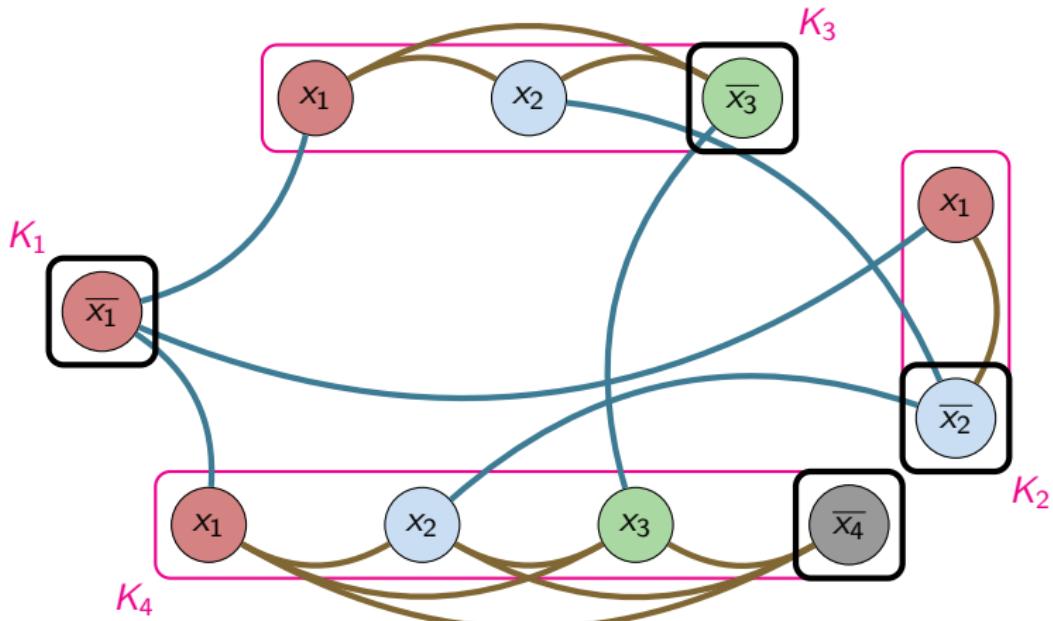
Does $\text{SAT} \leq_P 2\text{SAT}$ analogously?



INDSET is NP-complete

Claim: SAT \leq_P INDSET

$$\varphi = \underbrace{\overline{x_1}}_{K_1} \wedge \underbrace{(x_1 \vee \overline{x_2})}_{K_2} \wedge \underbrace{(x_1 \vee x_2 \vee \overline{x_3})}_{K_3} \wedge \underbrace{(x_1 \vee x_2 \vee x_3 \vee \overline{x_4})}_{K_4}$$



INDSET is NP-complete

Claim: $\text{SAT} \leq_P \text{INDSET}$

Reduction f : On input φ ,

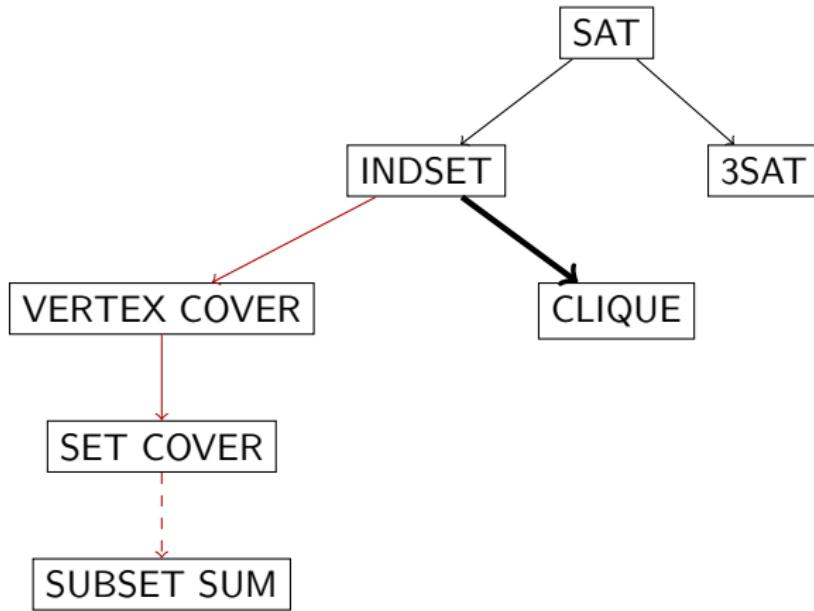
- 1 Let G be the graph generated as follows.
 - 1 Take a vertex for each literal of each clause.
 - 2 Add edges for pairs of conflicting literals.
 - 3 Add edges for pairs of literals from the same clause.
- 2 Let m be the number of clauses in φ .
- 3 Output (G, m) .

Claim: $\varphi \in \text{SAT} \implies f(\varphi) \in \text{INDSET}$

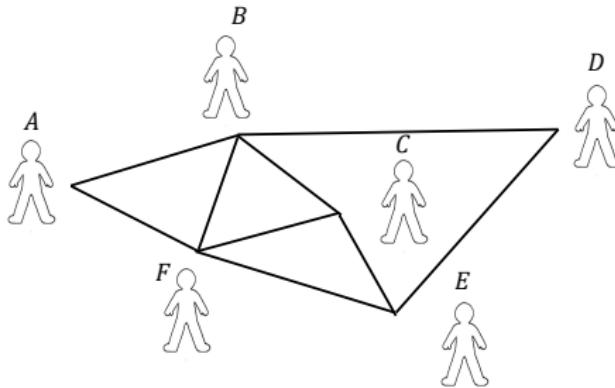
Proof: C : satisfying assignment of φ . Pick one true literal from each clause. The corresponding vertices form a independent set.

Claim: $f(\varphi) \in \text{INDSET} \implies \varphi \in \text{SAT}$

Proof: C : independent set in G , $|C| = m$. C contains one vertex from each group. Set the corresponding literals to true to get a satisfying assignment.



CLIQUE



A, B, F is a 3-clique

Definition: A k -clique is a subset of k pairwise connected vertices

$$\text{CLIQUE} = \{\langle G, k \rangle \mid G \text{ has a clique of size } k\}$$

$\langle G, 3 \rangle \in \text{CLIQUE?}$ Yes

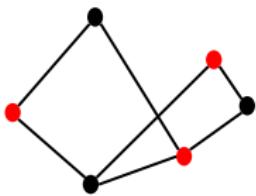
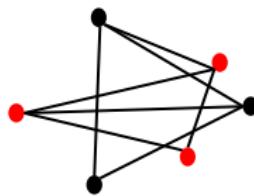
$\langle G, 4 \rangle \in \text{CLIQUE?}$ No

INDSET vs CLIQUE

For a graph G :

Independent set: A subset of pairwise **non-adjacent** vertices

Clique: A subset of pairwise **adjacent** vertices



Def (Complement): The *complement* of a graph $G = (V, E)$ is a graph $\bar{G} = (V, \bar{E})$ with same vertex set and edge set \bar{E} s.t. $uv \in \bar{E}$ iff $uv \notin E$

Observation: If G is a graph and \bar{G} its complement, then a subset S of the vertices of G is an **independent set** iff S is a **clique** of \bar{G}

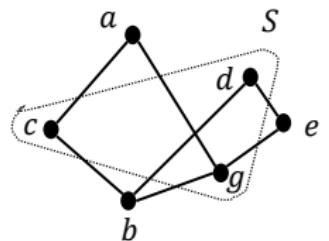
$$\text{INDSET} \leq_p \text{CLIQUE}$$

Reduction: $f(\langle G = (V, E), k \rangle) := \langle \bar{G} = (\bar{V}, \bar{E}), k \rangle$

Efficiency: The reduction is polynomial time

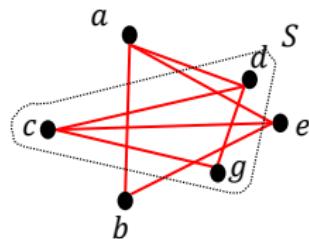
Correctness: $\langle G, k \rangle \in \text{INDSET} \Leftrightarrow \langle \bar{G}, k \rangle \in \text{CLIQUE}$

Proof of correctness:

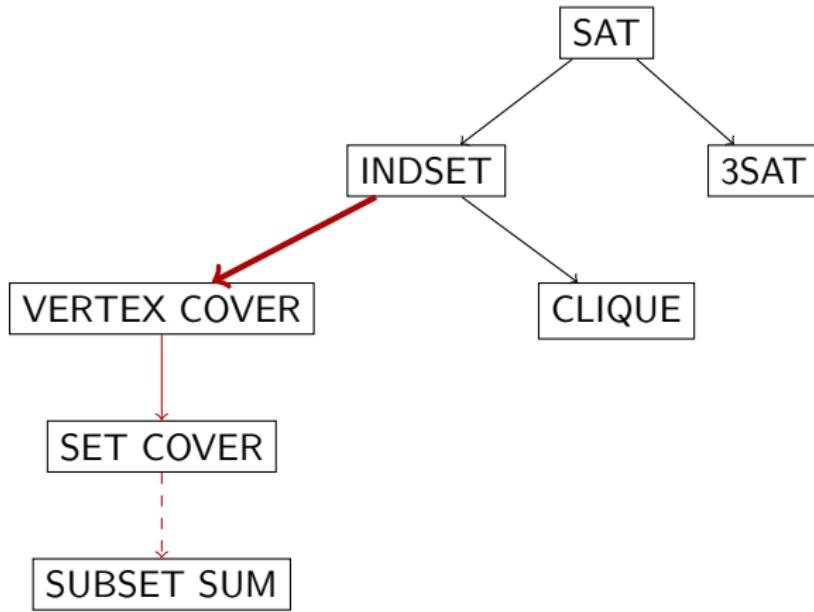


$$\langle G, k \rangle \in \text{INDSET}, |S| = k$$

\Leftrightarrow



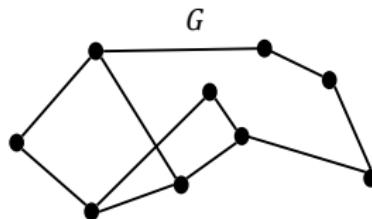
$$\langle \bar{G}, k \rangle \in \text{CLIQUE}$$



Vertex Cover

Definition: For a graph $G = (V, E)$, a *vertex cover* is a subset S of V such that every edge of G is incident to at least one vertex in S

Example



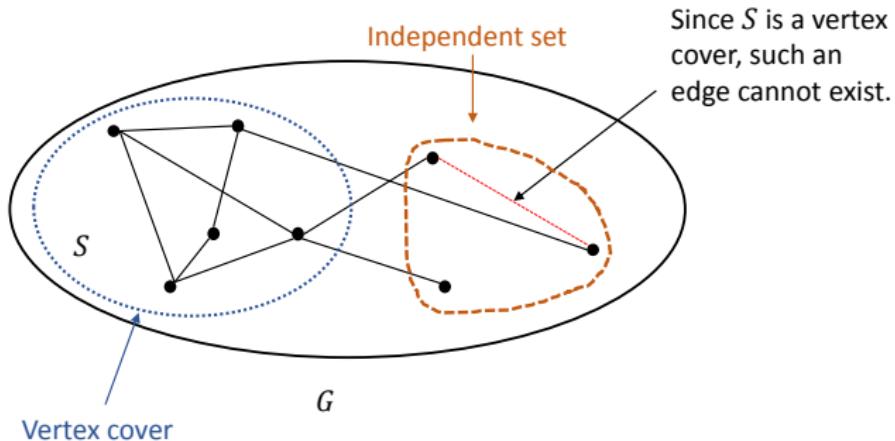
Definition:

$\text{VERTEX COVER} = \{\langle G, k \rangle : G \text{ is a graph that has a vertex cover of size } k\}$

- ▶ $\langle G, 4 \rangle \in \text{VERTEX COVER?}$ Yes
- ▶ $\langle G, 3 \rangle \in \text{VERTEX COVER?}$ No

INDSET vs VERTEX COVER

Lemma: For every graph G , a subset S of the vertices is a vertex cover if and only if \bar{S} is an independent set where $\bar{S} = V \setminus S$



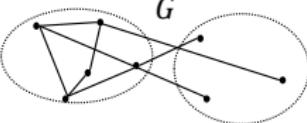
Corollary: For every graph G and a positive integer k , G has an independent set of size k iff G has a vertex cover of size $n - k$

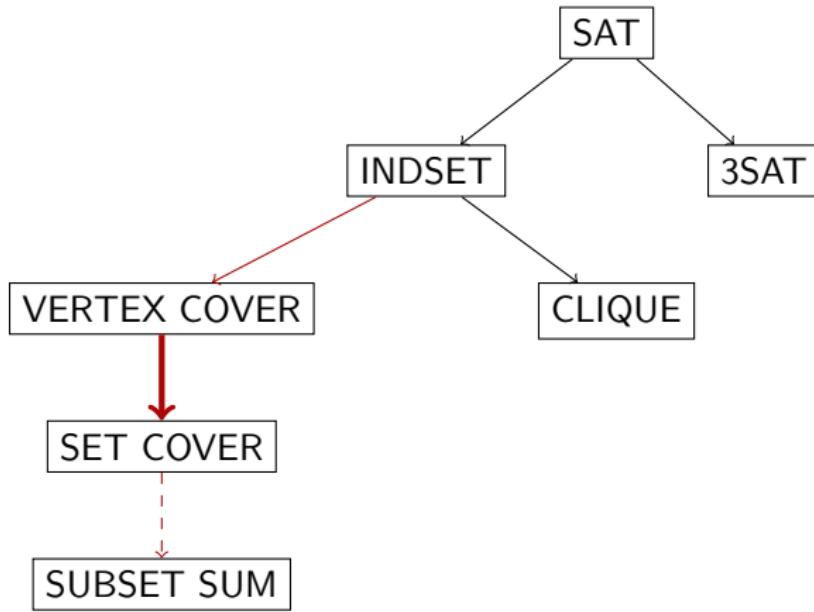
INDSET \leq_p VERTEX COVER

Reduction: $f(\langle G, k \rangle) := \langle G, n - k \rangle$, where n is the number of vertices of G

Efficiency: The reduction f is polynomial time

Correctness: Lemma/Corollary on previous slide!

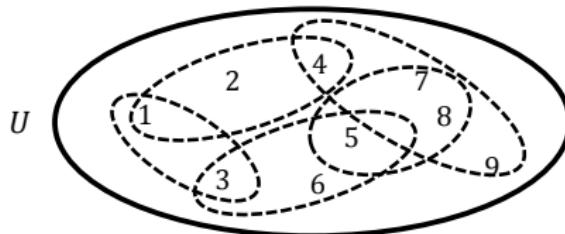
$$\langle G, k \rangle \in \text{INDSET} \Leftrightarrow \text{Diagram } G \text{ with } k \text{ vertices} \Leftrightarrow \langle G, n - k \rangle \in \text{VERTEX COVER}$$




Set Cover

Definition: Let $U = \{1, \dots, n\}$ and $\mathcal{F} = \{T_1, \dots, T_m\}$ be a family of subsets $\forall i, T_i \subseteq U$

A subset $\{T_{i_1}, \dots, T_{i_k}\} \subseteq \mathcal{F}$ is called a **set cover** of size k if $\bigcup_{j=1}^k T_{i_j} = U$



SET COVER = $\{\langle U, \mathcal{F}, k \rangle \mid \mathcal{F} \text{ contains a set cover of size } k\}$

Example:

- ▶ $\langle U, \mathcal{F}, 3 \rangle \in \text{SET COVER?}$ Yes $\{\{1, 2, 4\}, \{3, 6, 4\}, \{4, 7, 8, 9\}\}$
- ▶ $\langle U, \mathcal{F}, 2 \rangle \in \text{SET COVER?}$ No

VERTEX COVER \leq_p SET COVER

Key idea: VERTEX COVER is a *special case* of SET COVER

Reduction:

- ▶ Let $\langle G = (V, E), k \rangle$ be an instance of VERTEX COVER
- ▶ Set $U := E$
- ▶ For every vertex $v \in V$ create a set S_v

$$S_v := \{e \in E \mid e \text{ is incident to } v\}$$

- ▶ Let $\mathcal{F} := \{S_v \mid v \in V\}$ and set $k' = k$

Efficiency: Obvious from construction

Correctness (\Rightarrow): If G has a vertex cover of cardinality k , then U can be covered by k sets

Proof:

- ▶ Suppose $C \subseteq V$ is a vertex cover of G and $|C| = k$
- ▶ Every edge e_i is adjacent to at least one vertex in C

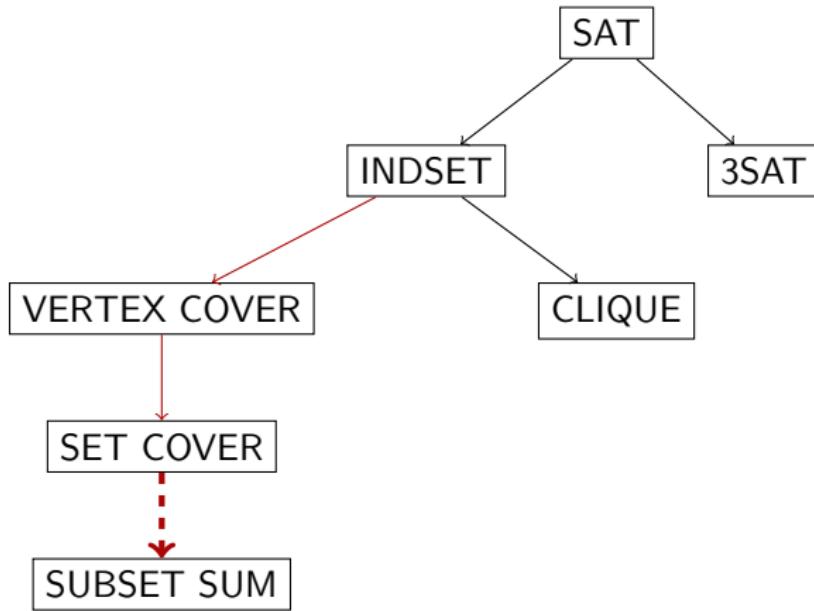
$$\bigcup_{v \in C} S_v = E$$

- ▶ Hence U can be covered by k sets

Correctness (\Leftarrow): If U can be covered by k sets, then G has a vertex cover of cardinality k

Proof:

- ▶ Let $S_{v_1}, S_{v_2}, \dots, S_{v_k}$ be a collection of sets which cover $U = E$
- ▶ We claim that $C = \{v_1, v_2, \dots, v_k\}$ is a vertex cover of G
- ▶ Indeed, every edge e in G belongs to S_{v_i} for some $i \in \{1, 2, \dots, k\}$
- ▶ Hence, every edge e in G is incident to some vertex $v_i \in C$



SUBSET-SUM

Let X denote a (multi) set of positive integers

Definition: SUBSET-SUM

$= \{\langle X, s \rangle : X \text{ contains a subset whose elements sum to } s\}$

Example: $X = \{1, 3, 4, 6, 13, 13\}$

- ▶ $\langle X, 8 \rangle \in \text{SUBSET-SUM?}$ Yes $T = \{1, 3, 4\}$
- ▶ $\langle X, 12 \rangle \in \text{SUBSET-SUM?}$ No

Question: SUBSET-SUM $\in P$?

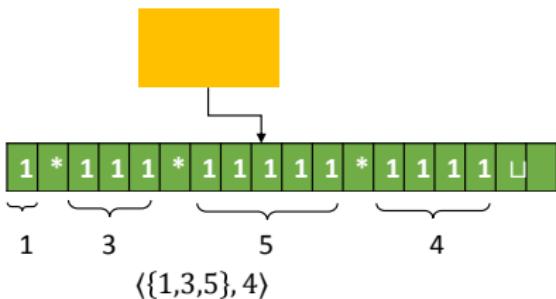
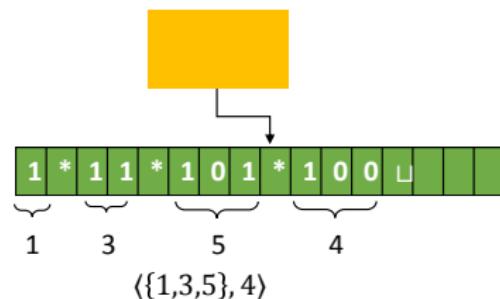
It depends on the **input length**

In *SUBSET-SUM*
we use binary
encoding

Unary

vs

Binary



Input length: $x_1 + x_2 + \dots + x_m + s$

»

Input length: $\lceil \log(x_1) \rceil + \dots + \lceil \log(x_m) \rceil + \lceil \log(s) \rceil$

SUBSET-SUM: An Algorithm

- Let $X = \{x_1, x_2, \dots, x_m\}$, $sum := \sum_{j=1}^m x_j$
- FOR $i = 1 \dots m$ DO
- FOR $j = 0 \dots sum$ DO
- $A[i, j] := False$
- FOR $i = 0$ to m DO
- $A[i, 0] := True$
- FOR $i = 1 \dots m$ DO
- FOR $j = 1 \dots sum$ DO
- IF $A[i - 1, j - x_i] = True$ OR $A[i - 1, j] = True$ THEN $A[i, j] := True$
- IF $A[m, s] = True$, ACCEPT; ELSE, REJECT

Running time: For the input $\langle \{x_1, \dots, x_m\}, s \rangle$, the above algorithm takes $\mathcal{O}(m \cdot (\sum_{i=1}^m x_i))$ steps to output whether or not $\langle X, s \rangle \in \text{SUBSET-SUM}$

Unary representation: The length of the input $x_1 + x_2 + \dots + x_m + s$. In this case the running time is **polynomial** in the input length

Binary representation: The length of the input $\lceil \log(x_1) \rceil + \dots + \lceil \log(x_m) \rceil + \lceil \log(s) \rceil$. In this case, the running time is **exponential** in the input length

SUBSET-SUM is **NP**-Complete

Theorem: SET COVER \leq_p SUBSET-SUM

Corollary: SUBSET-SUM is **NP**-Complete

Indeed, SUBSET-SUM $\in \mathbf{NP}$ as it is easy to verify in polynomial time that $\sum_{x \in S} x = s$ for a given subset $S \subseteq X$.

SET COVER vs SUBSET-SUM

The goal: $\text{SET COVER} \leq_p \text{SUBSET-SUM}$

	SET COVER	SUBSET SUM
INPUT:	<ul style="list-style-type: none">► $U = \{1, 2, \dots, n\}$► A family $\mathcal{F} = \{T_1, \dots, T_m\}$ of subsets of U► A number k	<ul style="list-style-type: none">► A set of positive integers $X = \{x_1, \dots, x_\ell\}$► A positive integer s
GOAL:	Select k elements of \mathcal{F} whose union is U	Select a subset of X whose sum of elements is s

First Question: $\text{How to map subsets to numbers?}$

Encoding subsets as numbers

Idea 1 (Vector representation): Think of sets as 0-1 vectors!

$$U = \boxed{1 \mid 2 \mid 3 \mid 4 \mid \dots \mid n-1 \mid n}$$

Encoding subsets as numbers

Idea 1 (Vector representation): Think of sets as 0-1 vectors!

$$U = [1 \ 2 \ 3 \ 4 \ \dots \ n-1 \ n]$$

$T = \{2, 3, n\}$ is then encoded by

$$T \rightarrow [0 \ 1 \ 1 \ 0 \ \dots \ 0 \ 1]$$

How to assign a number to this length- n vector?

$$\text{Binary: } [b_1 \ b_2 \ b_3 \ \dots \ b_{n-1} \ b_n] = \sum_{j=1}^n b_j 2^{n-j}$$

Encoding subsets as numbers

Idea 1 (Vector representation): Think of sets as 0-1 vectors!

$$U = [1 \ 2 \ 3 \ 4 \ \dots \ n-1 \ n]$$

$T = \{2, 3, n\}$ is then encoded by

$$T \rightarrow [0 \ 1 \ 1 \ 0 \ \dots \ 0 \ 1]$$

How to assign a number to this length- n vector?

Binary:

$$[2^{n-1} \ 2^{n-2} \ 2^{n-3} \ \dots \ 2^1 \ 2^0] \sum_{j=1}^n b_j 2^{n-j}$$

b_1	b_2	b_3			b_{n-1}	b_n	$\sum_{j=1}^n b_j 2^{n-j}$
-------	-------	-------	--	--	-----------	-------	----------------------------

c -ary:
(for $c \in \mathbb{N}$)

$$[c^{n-1} \ c^{n-2} \ c^{n-3} \ \dots \ c^1 \ c^0] \sum_{j=1}^n b_j c^{n-j}$$

b_1	b_2	b_3			b_{n-1}	b_n	$\sum_{j=1}^n b_j c^{n-j}$
-------	-------	-------	--	--	-----------	-------	----------------------------

Reduction: Part 1 (encoding sets as numbers)

$\langle U = \{1, \dots, n\}, \mathcal{F} = \{T_1, T_2, \dots, T_m\}, k \rangle \implies X = \{a_1, \dots, a_m\}$ in which

$$T_i \implies \begin{array}{|c|c|c|c|} \hline 0 & 1 & \dots & 1 \\ \hline \end{array} \implies \begin{array}{|c|c|c|c|} \hline 0 & 1 & \dots & 1 \\ \hline \end{array} \underset{c}{\mathbf{c}} \implies a_i = \sum_{j=1}^n b_j c^{n-j}$$

- We set the value of c later

How to pick s ?

The reduction should ensure that:

$$\langle U, \mathcal{F}, k \rangle \in \text{SET COVER} \Rightarrow \langle X, s \rangle \in \text{SUBSET-SUM}$$

One example: suppose there exist k sets $T_{i_1} = \dots = T_{i_k} = U$

$$\begin{array}{c} T_{i_1} \rightarrow \begin{array}{c} 1 \quad 2 \quad \dots \quad n \\ \boxed{1 \quad 1 \quad \dots \quad 1} \\ \vdots \end{array} \longrightarrow \begin{array}{c} a_{i_1} := \\ \vdots \\ a_{i_k} := \\ \vdots \\ s = \end{array} \begin{array}{c} \boxed{1 \quad 1 \quad \dots \quad 1} \\ \vdots \\ \boxed{1 \quad 1 \quad \dots \quad 1} \\ \vdots \\ \boxed{k \quad k \quad \dots \quad k} \end{array} \\ \vdots \\ T_{i_k} \rightarrow \begin{array}{c} 1 \quad 1 \quad \dots \quad 1 \end{array} \longrightarrow \end{array} \quad c \quad c \quad c$$

More generally: $\bigcup_{j=1}^k T_{i_j} = U$ but sets not identical

$$\begin{array}{c} T_{i_1} \rightarrow \begin{array}{c} 1 \quad 2 \quad \dots \quad i \quad \dots \quad n \\ \boxed{0 \quad 1 \quad \dots \quad 1 \quad \dots \quad 1} \\ \vdots \end{array} \longrightarrow \begin{array}{c} a_{i_1} := \\ \vdots \\ a_{i_k} := \\ \vdots \\ t_1 \quad t_2 \quad \dots \quad t_n \end{array} \\ \vdots \\ T_{i_k} \rightarrow \begin{array}{c} 1 \quad 1 \quad \dots \quad 0 \quad \dots \quad 0 \end{array} \longrightarrow \end{array} \quad c \quad c \quad c$$

$$\sum_{j=1}^k a_{i_j} = \begin{array}{c} t_1 \quad t_2 \quad \dots \quad t_n \end{array} \leq \begin{array}{c} k \quad k \quad \dots \quad k \end{array} \quad c$$

Reduction: Part 2 (selecting s)

$$\begin{array}{l} T_{i_1} \rightarrow \begin{array}{c} 1 \quad 2 \quad \dots \quad i \quad \dots \quad n \\ \hline 0 \quad 1 \quad \dots \quad |1| \quad \dots \quad 1 \end{array} \longrightarrow a_{i_1} := \begin{array}{c} 0 \quad 1 \quad \dots \quad |1| \quad \dots \quad 1 \\ \hline c \end{array} \\ \vdots \qquad \qquad \qquad \vdots \\ T_{i_k} \rightarrow \begin{array}{c} 1 \quad 1 \quad \dots \quad |0| \quad \dots \quad 0 \\ \hline 1 \quad 1 \quad \dots \quad 0 \quad \dots \quad 0 \end{array} \longrightarrow a_{i_k} := \begin{array}{c} 1 \quad 1 \quad \dots \quad |0| \quad \dots \quad 0 \\ \hline t_1 \quad t_2 \quad \dots \quad t_h \quad \dots \quad t_n \\ \hline c \end{array} \end{array}$$
$$\sum_{j=1}^k a_{i_j} = \begin{array}{c} t_1 \quad t_2 \quad \dots \quad t_n \\ \hline c \end{array} \leq \begin{array}{c} k \quad k \quad \dots \quad k \\ \hline c \end{array}$$

Observation: Since $\bigcup_{j=1}^k T_{i_j} = U, \forall h, 1 \leq t_h \leq k$

Idea 2 (additional numbers) The reduction adds to X for every $h \in \{1, 2, \dots, n\}$, $k - 1$ integers

$$b_h = \begin{array}{c} 0 \quad 0 \quad \dots \quad |1| \quad \dots \quad 0 \\ \uparrow \\ h\text{-th pos} \end{array} \quad c$$

By adding $k - t_h$ of each b_h 's, we ensure:

$$\text{if } \bigcup_{j=1}^k T_{i_j} = U \text{ then } \sum_{j=1}^k a_{i_j} + \sum_{h=1}^n (k - t_h) b_h = s$$

What about the other direction?

Suppose: $\langle X, s \rangle \in \text{SUBSET-SUM}$ Thus $\exists a_{i_1}, \dots, a_{i_p}, \underbrace{b_1, \dots, b_1}_{r_1 \text{ times}}, \dots, \underbrace{b_n, \dots, b_n}_{r_n \text{ times}} \in X$

s.t.

$$\sum_{j=1}^p a_{i_j} + r_1 \cdot b_1 + \dots + r_n \cdot b_n = s = \begin{array}{|c|c|c|} \hline k & \dots & k \\ \hline c & & \\ \hline \end{array}$$

Claim: $\forall h \in \{1, \dots, n\}, \exists q \in \{1, \dots, p\}$ s.t. the h :th coordinate of a_{i_q} is 1

Proof:

- Crucial idea: force **no carry over** by selecting c large enough ($c = m + kn + 1$ larger than the number of summands)
- The h -th digit of $\sum_{j=1}^p a_{i_j} + r_1 \cdot b_1 + \dots + r_n \cdot b_n$ is k
- Since $r_h \leq k - 1$ this means that the h -th digit of some a_{i_q} must be 1

Corollary: $T_{i_1} \cup T_{i_2} \cup \dots \cup T_{i_p} = U$

Proof:

- $\forall h \in \{1, \dots, n\}$, the h -th coordinate of a_{i_q} is 1 iff $h \in T_{i_q}$ (by the reduction)
- Thus, at least one of the subsets T_{i_1}, \dots, T_{i_p} contains h

Final question: $T_{i_1} \cup \dots \cup T_{i_p} = U \Rightarrow \langle U, \mathcal{F}, k \rangle \in \text{SET COVER? only if } p = k$

Reduction part 3

Idea 3 (enforce $p = k$): Introduce a **new coordinate** in the leftmost position of a_i 's, b_i 's and s

T_i	0	1	...	1	→	$a_i :=$	1	0	1	...	0	c	
	$(j+1)$ -st position												
	$b_j :=$	0	0	0	...	1	...	0	c				
	$s :=$	$\underbrace{k \ k \ k \ \dots \ k \ \dots \ k}_{n+1}$											c

Claim: If $\sum_{i=1}^p a_{i_j} + r_1 \cdot b_1 + \cdots + r_n b_n = s$, then $p = k$

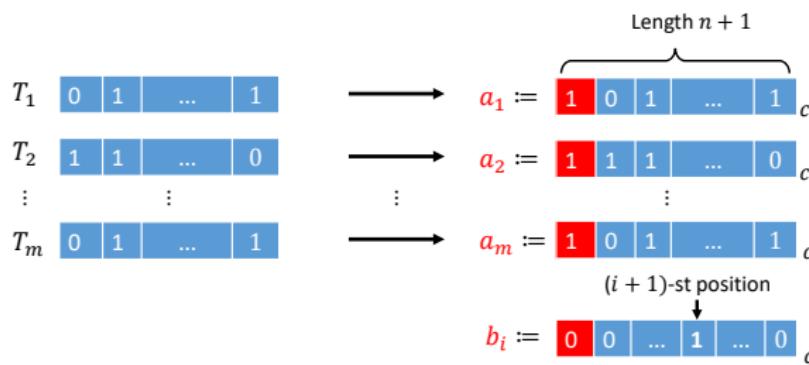
Proof

- The leftmost digit of $\sum_{j=1}^p a_{ij} + r_1 \cdot b_1 + \cdots + r_n b_n = s$ is k (base c)
- The leftmost digit of b_i is 0
- The leftmost digit of a_{ij} is 1
- **No carry over** (since the base $c = m + kn + 1$ is large enough)
- Hence, it must be that $p = k$

The Complete Reduction

Given: $\langle U = \{1, \dots, n\}, \mathcal{F} = \{T_1, \dots, T_m\}, k \rangle$

Define: $X = \{a_1, \dots, a_m, \underbrace{b_1, \dots, b_1, \dots, b_n, \dots, b_n}_{k-1 \text{ times}}, \dots, b_n\}$, $s := \overbrace{\underbrace{k \ k \ k \ \dots \ k}_{k-1 \text{ times}} \ c}^{\text{Length } n+1}$ where:



Correctness (\Rightarrow)

Suppose: $\langle U, \mathcal{F}, k \rangle \in \text{SET COVER}$

- ▶ Therefore, $\exists T_{i_1}, \dots, T_{i_k}$ s.t. $\bigcup_{j=1}^k T_{i_j} = U$
- ▶ First coordinate of $\sum_{j=1}^k a_{i_j}$ is k
- ▶ Let t_h be the $(h+1)$ st coordinate of $\sum_{j=1}^k a_{i_j}$
- ▶ Since each element is covered we have $1 \leq t_h \leq k$
- ▶ By adding $(k - t_h)$ copies of b_h we can make the $(h+1)$ st digit equal to k without affecting other digits
- ▶ Thus, $\sum_{j=1}^k a_{i_j} + (k - t_1)b_1 + \dots + (k - t_n) \cdot b_n = s$
- ▶ Hence, $\langle X, s \rangle \in \text{SUBSET-SUM}$

Correctness (\Leftarrow)

Suppose: $\langle X, s \rangle \in \text{SUBSET-SUM}$ Thus $\exists a_{i_1}, \dots, a_{i_p}, \underbrace{b_1, \dots, b_1}_{r_1 \text{ times}}, \dots, \underbrace{b_n, \dots, b_n}_{r_n \text{ times}} \in X$

s.t.

$$\sum_{j=1}^p a_{i_j} + r_1 \cdot b_1 + \dots + r_n \cdot b_n = s = \begin{array}{|c|c|c|} \hline k & \dots & k \\ \hline c & & \end{array}$$

Let $T_{i_1}, \dots, T_{i_k} \in \mathcal{F}$ be the sets corresponding to a_{i_1}, \dots, a_{i_k}

Step 1: $p = k$

- There is no carry over when computing the sum
- The first digit in the sum = number of a_{i_j} 's = p
- The first digit in $s = k$ and so $p = k$

Step 2: for every $h \in \{1, 2, \dots, n\}$ some set T_{i_q} contains h

- The $(h+1)$ st digit of $\sum_{j=1}^k a_{i_j} + r_1 \cdot b_1 + \dots + r_n \cdot b_n$ is k
- The $(h+1)$ st digit of b_i is 1 if $i = h$ and 0 otherwise
- Since $r_h \leq k = 1$ the $(h+1)$ st digit of $\sum_{j=1}^k a_{i_j}$ is at least 1
- Therefore the $(h+1)$ st digit of at least one of a_{i_1}, \dots, a_{i_k} is 1
- So some set T_{i_q} contains h

Conclusion: $\bigcup_{j=1}^k T_{i_j} = U$ and so $\langle U, \mathcal{F}, k \rangle \in \text{SET COVER}$

NP-complete problems you can use:

CLIQUE, SAT, 3SAT, INDSET

VERTEXCOVER, SETCOVER, SUBSET-SUM,

PERFECT-3-MATCHING