
Homework I, Theory of Computation 2025
Submission: The deadline for Homework 1 is 23:59 on 20 March. Please submit your solutions
on Moodle. Typing your solutions using a typesetting system such as LATEX is strongly encouraged! If
you must handwrite your solutions, write cleanly and with a pen. Messy and unreadable homeworks will
not be graded. No late homeworks will be accepted.

Writing: Please be precise, concise and (reasonably) formal. Keep in mind that many of the problems
ask you to provide a proof of a statement (as opposed to, say, just to provide an example). Therefore,
make sure that your reasoning is correct and there are no holes in it. A solution that is hard/impossible
to decipher/follow might not get full credit (even if it is in principle correct). You do not need to reprove
anything that was shown in the class—just state clearly what was proved and where.

Collaboration: These problem sets are meant to be worked on in groups of 2–4 students. Please
submit only one writeup per team—it should contain the names of all the students. You are strongly
encouraged to solve these problems by yourself. If you must, you may use books or online resources to
help solve homework problems, but you must credit all such sources in your writeup and you must never
copy material verbatim. Even though only one writeup is submitted, it is expected that each one of the
team members is able to fully explain the solutions if requested to do so.

Grading: Each of the two problems will be graded on a scale from 0 to 5.

Warning: Your attention is drawn to the EPFL policy on academic dishonesty. In particular, you
should be aware that copying solutions, in whole or in part, from other students in the class or any other
source (e.g., ChatGPT) without acknowledgement constitutes cheating. Any student found to be cheating
risks automatically failing the class and being referred to the appropriate office.

Page 1 (of 5)

CS-251 Theory of Computation • Spring 2025



Homework 1

1 We say that a word u = a1 · · · an is a compression of w ∈ Σ∗, denoted by u ⪯ w, if there are
words w0, . . . , wn ∈ Σ∗ such that w = w0a1w1a2 · · · anwn. For a language L ⊆ Σ∗ define

↑L = {u ∈ Σ∗ : w ⪯ u for some w ∈ L},
↓L = {u ∈ Σ∗ : u ⪯ w for some w ∈ L}.

Show that if L is regular, then both ↑L and ↓L are also regular.

2 Let Σn = {1, 2, ..., n} be an alphabet with n symbols. Define language Ln to be the set of all
words w ∈ Σ∗

n such that at least one symbol of Σn does not appear in w. So, for instance,
2112, 23, 2222 ∈ L3 and 123, 3312 /∈ L3.

2a Give a NFA for Ln with O(n) states.

2b Give a DFA for Ln with 2n states.

2c Show that any DFA for Ln has at least 2n states.

(Hint: If a DFA uses fewer than 2n states, use a pigeonhole argument to find two (cleverly
chosen) words that lead to the same state.)

1 Solution to Question 1

We say that a word u = a1 · · · an is a compression of w ∈ Σ∗, denoted by u ⪯ w, if there are
words w0, . . . , wn ∈ Σ∗ such that w = w0a1w1a2 · · · anwn. For a language L ⊆ Σ∗ define

↑L = {u ∈ Σ∗ : w ⪯ u for some w ∈ L},
↓L = {u ∈ Σ∗ : u ⪯ w for some w ∈ L}.

Show that if L is regular, then both ↑L and ↓L are also regular.
Solution : To prove that ↑L is regular we design a NFA that accepts ↑L. Since L is a

regular language this means that there exists a DFA that accepts it. Let M = (Q,Σ, δ, q0, F ) be
this DFA. A word u belongs to ↑L if and only if there exist a compression of u that belongs to
L. Essentially, this means that if we remove some characters of u we obtain a string in L. The
problem is that we do not know which characters we should keep in u and which one we should
remove. This is why we will build an NFA for ↑L. The NFA will account for this uncertainty.

Let N↑ = (Q,Σ, δ↑, q0, F ) be a NFA. Note that the individual components of N↑ are practically
identic to the ones of M up to transition function that differs. We define the transition function
as follow :

δ↑(q, a) =

{
{δ(q, a), q}, if a ∈ Σ

∅, if a = ε

Claim : N↑ recognizes ↑ L. What the transition function δ↑ allows us to do is to ignore
some characters of u non-deterministically by staying in our current state q. If a word u belongs
to ↑L we know that u can be decomposed in the following way : u = w0a0w1a1...wnan with
w0, ...wn, a1, ..., an ∈ Σ∗ such that w = w0w1...wn ∈ L. This is because we know that there exists
at least one word w in L that is a compression of u. Thus, crossing out all the characters of

Page 2 (of 5)

CS-251 Theory of Computation • Spring 2025



a0, a1, ..., an in u will effectively yield a word in L. It is guaranteed that one of the computing
branches of the NFA N↑ will ignore exactly those characters in a0, a1, ..., an yielding to a path
that accepts u. Finally if u is not in ↑L then no matter what characters we ignore we will never
reach an accept state since no compression of u is in L. Consequently, all the computational
branches of N↑ will reject u. From this we get that u is accepted by N↑ if and only if u ∈↑L ie.
N↑ recognizes ↑L. From this we immediatly get that ↑L is regular.

Now let’s prove that ↓L is regular. Again, we will design a NFA that accepts ↓L for that
purpose. A word u belongs to ↓L if and only if it is a compression of some word w ∈ L. This
essentially means that u by inserting some characters in u we obtain a word w in L. The issue
here is that we do not know which characters to insert, nor do we know where. Hence why, again,
there is use for a non-deterministic finite automaton here.

Again, consider the DFA M = (Q,Σ, δ, q0, F ) that accepts L. Let N↓ = (Q,Σ, δ↓, q0, F ) be a
NFA. Note that, again, the components of the tuple of N↓ are identical to the elements of M up
to the transition function. We define the transition function as follow :

δ↓(q, a) =

{
{δ(q, a)}, if a ∈ Σ

{q′ ∈ Q | ∃s ∈ Σ : δ(q, s) = q′}, if a = ε

Claim : N↓ recognizes ↓L. N↓ is quite similar to M. The only change we made is that we added
some epsilon transitions to it. These epsilon transitions allow us to do as if we were adding some
characters to our string u to make it belong to L. This is done in a non-deterministic way to
account for the fact that we do not know where and what characters to insert in u. More formally,
given a word u ∈↓L, we now that there exists a word w ∈ L such that w can be decomposed in
the following way : w = u0a0u1a1...unan with u0, ..., un, a0, ..., an ∈ Σ∗ such that u = u0u1...un.
By inserting the words a0, ..., an in u in the right positions, we would obtain the word w ∈ L.
There is at least one computational path in N↓ that will take the right epsilon transitions to
do as if those words a0, ..., an were added to u at the right position. This path will lead to an
accept state as w ∈ L. Thus N↓ will accept u. Conversely if u does not belong to ↓L then no
matter what words and where we insert these words in u we will never obtain a word w in L.
Suppose that one computational branch in N↓ ends up in an accept state. This would mean that
by inserting some characters in u (or inserting none) we obtain a word belonging to L. This
would imply that u belongs to ↓L, contradicting our hypothesis. Thus no computational branch
in N↓ terminates in an accept state ie. N↓ does not accept u. We have showed that N↓ accepts u
if and only if u belongs to ↓L. Thus, ↓L is indeed regular.

2 Grading scheme to Question 1

1. (1.5 Points) Explains clearly that since L is regular it has a corresponding DFA/NFA. Uses
the DFA/NFA of L to build a DFA/NFA for ↑L and ↓L.

2. (1.0 Points) Gives a correct DFA/NFA for ↑L

3. (0.5 Points) Solid explanation for the correctness of the given DFA/NFA for ↑L. Full points
for an argument involving a double implication (u ∈ L(N) ⇐⇒ u ∈↑L).

4. (1.0 Points) Gives a correct DFA/NFA for ↓L

5. (0.5 Points) Solid explanation for the correctness of the given DFA/NFA for ↓L. Full points
for an argument involving a double implication (u ∈ L(N) ⇐⇒ u ∈↓L).

6. (0.5 Points) The formalism is correct. The notation used is clear. No confusion between
singletons and states (between q and {q}).

Page 3 (of 5)

CS-251 Theory of Computation • Spring 2025



3 Solution to Question 2

2a: Construction of an NFA

Consider a language Mn,i := {x ∈ Σ∗
n | x does not contain i}. Then Ln =

⋃
i∈[n]Mn,i (here

[n] = {1, 2, . . . , n}).

Lemma 3.1. If languages S1, . . . , Sn are recognized by NFAs N1, . . . , Nn of sizes ℓ1, . . . , ℓn
respectively, then S :=

⋃
i∈[n] Sn is recognized by an NFA of size

∑
i∈[n] ℓi.

Proof. Construct the NFA for S as follows: let us unite the NFAs N1, . . . , Nn preserving the
transitions and final state, set the starting state qstart of the NFA as the starting state of N1 and
add ϵ-transitions from qstart to the starting states of N2, . . . , Nn. Then any word accepted by any
of N1, . . . , Nn is accepted by the new NFA (take the corresponding ϵ-transition and follow an
accepting path in the corresponding NFA). On the other hand, if a word w is accepted by the
constructed NFA, observe that the accepting path must either be within the copy of N1 or start
with an ϵ-transition and continue within some Ni, hence, removing the first ϵ-transition we get
an accepting path in one of Ni.

By Lemma 3.1 it suffices to show that each Mn,i is recognizable by an DFA∗ with O(1) states.
Consider an DFA with Q = {accept, reject} and with the transitions defined as δ(accept, i) =

reject, and δ(q, j) = q for (q, j) ∈ {accept, reject} × [n] \ (accept, i). The starting and the only
accepting state is accept. It is easy to see that the given DFA recognizes Mn,i: for a word
w = u ◦ i ◦ v ∈ Mn,i we have

δ(accept, w) = δ(δ(δ(accept, u), i), v) = δ(δ(q, i), v) = δ(reject, v) = reject.

For a word w ̸∈ Mn,i δ(accept, w) = accept, since the i-transition is never taken.

2b: Construction of a DFA

Let Dn,i = (Qi,Σn, δi, accepti, accepti) be the 2-state DFA that recognizes Mn,i. We need to
construct a DFA that accepts a word if and only if one of Dn,1, . . . , Dn,n accepts it. Let D =
(Q1 × · · · ×Qn,Σn, δ, (accept1, . . . , acceptn), F ) with δ((q1, . . . , qn), a) = (δ1(q1, a), . . . , δn(qn, a))
and F = {(q1, . . . , qn) | ∃i ∈ [n] : qi = accepti}. In words, the state of D after reading a
word w is the tuple of states of Mn,1, . . . ,Mn,i after reading w. The number of states in D is
|Q1| · |Q2| · · · · · |Qn| = 2n as required. By definition of accepting states, D accepts precisely the
words in

⋃
i∈[n]Mn,i = Ln.

2c: Lower bound on the number of states in a DFA

Suppose that there exists a DFA D with fewer than 2n states accepting Ln. For every set
I ⊆ [n] define wI = i1 ◦ · · · ◦ i|I| where I = {i1, . . . , i|I|} and i1 < · · · < i|I| (the ordering is
just for concreteness, any word containing all symbols in I and only them works). Then by
the pigeonhole principle there exist two words wI and wJ such that I ̸= J and δ(qstart, wI) =
δ(qstart, wJ) = q. Without loss of generality, suppose I \ J ̸= ∅. Then q1 := δ(qstart, wJ ◦w[n]\I) is
an accepting state since wJ ◦ w[n]\I does not contain any symbols in I \ J . On the other hand,
q2 := δ(qstart, wI ◦w[n]\I) is not an accepting state since the word wI ◦w[n]\I contains all symbols
of Σn. But q1 = q2 = δ(q, w[n]\I), which is a contradiction.

∗An NFA would have sufficed, but an NFA has a constant number of state if and only if a DFA does.

Page 4 (of 5)

CS-251 Theory of Computation • Spring 2025



Grading Scheme

(2a) 1.5 points; -0.5 points if the proof of correctness is imperfect or missing;

(2b) 1.5 points; -0.5 points if the proof of correctness is imperfect or missing;

(2c) 2 points:

• 0.5 points if there is some intuitive justification or a proof in assumption that the DFA
must adhere to the structure described in 2b.

• 2 points for a perfect proof; -0.5 points for minor issues in a correct proof.

A common mistake: applying the pigeonhole principle we get that some words w and w′

both arrive at some state q of an automaton. One cannot then assume that w and w′

have some extra properties that some of the words in the collection do not have (e.g. w
containing all symbols of Σn).

Page 5 (of 5)

CS-251 Theory of Computation • Spring 2025


	Solution to Question 1
	Grading scheme to Question 1
	Solution to Question 2

