

Exam III, Theory of Computation 2018-2019

- Books, notes, communication, calculators, cell phones, computers, etc... are not allowed.
- Your explanations and proofs should be clear enough and in sufficient detail so that they are easy to understand and have no ambiguities.
- You are allowed to refer to material covered in the class including theorems without reproving them.
- **Do not touch until the start of the exam.**

Good luck!

Name: _____ N° Sciper: _____

Problem 1 / 8 points	Problem 2 / 6 points	Problem 3 / 8 points	Problem 4 / 6 points	Problem 5 / 6 points	Problem 6 / 6 points

Total / 40

1 **Basic questions.** (8 pts) Let $A \subseteq \{0, 1\}^*$ and $B \subseteq \{0, 1\}^*$ be two languages. Which of the following statements are true?

1. $A \leq_m B \implies A \leq_p B$.
2. If $\mathbf{P} = \mathbf{NP}$, then $\{\langle \phi \rangle \mid \phi \text{ is a satisfiable CNF formula}\}$ is in \mathbf{P} .
3. $\{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ doesn't halt on input } w\}$ is in \mathbf{NP} .
4. A is recognized by a DFA $\iff A$ is recognized by an NFA.
5. A is regular and $A \leq_m B \implies B$ is regular.
6. A is regular $\implies A$ is decidable $\implies A$ is in $\mathbf{P} \implies A$ is in \mathbf{NP} .
7. A is in \mathbf{P} and $B \leq_p A \implies B$ is in \mathbf{P} .
8. $A \in \text{TIME}(n^{100}) \implies A \in \mathbf{NP}$.
9. Suppose A is \mathbf{NP} -hard and B is \mathbf{NP} -complete. If B is in \mathbf{P} then A is in \mathbf{P} .
10. A is in \mathbf{P} and B is in $\mathbf{P} \implies A \circ B$ is in \mathbf{P} .
11. A is recognizable by a TM \implies its complement \bar{A} is recognizable by a TM.
12. $\{w \in \{0, 1\}^* \mid \text{number of 1's in } w \text{ is divisible by 2019}\}$ is regular.

*(A complete solution identifies **all** true statements. A fully correct solution is worth 8 points. A solution with one mistake is worth 7 points. A solution with two mistakes is worth 5 point. A solution with three mistakes is worth 3 points. A solution with four mistakes is worth 1 point. Solutions with more mistakes are worth 0 points. A mistake is to either indicate falsely that a false statement is true or to not indicate that a true statement is true.)*

2 Regular languages. (6 pts) Consider the following language on alphabet $\Sigma = \{0, 1\}$:

$$L_2 = \{w \in \{0, 1\}^* \mid w \text{ has more 0's than 1's}\}.$$

Is L_2 regular? Provide a proof of your claim.

*(In this problem you should decide whether L_2 is regular or not, and to give a **proof** of your claim. Recall that you are allowed to refer to material covered in the class including theorems without rephrasing them.)*

3 Graph coloring. (8 pts, consisting of subproblems (a) and (b)) A *coloring* of an undirected graph is an assignment of colors to its vertices so that no two adjacent vertices are assigned the same color. For each positive integer k , let

$$k\text{-COL} = \{\langle G \rangle \mid G \text{ is colorable with } k \text{ colors}\}.$$

In Homework 3 you proved that 3-COL is **NP**-complete. In this problem we will consider the related languages 2-COL and 4-COL. Specifically, we will show that 2-COL is in **P** whereas 4-COL is **NP**-hard.

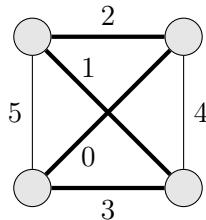
3a (3 pts) Show that 2-COL is in **P**.

*(In this problem you should show that 2-COL is in **P**. Recall that you are allowed to refer to material covered in the class including theorems without reproving them.)*

3b (5 pts) Show that $3\text{-COL} \leq_p 4\text{-COL}$.

(In this problem you should describe a polynomial time reduction from 3-COL to 4-COL and prove its correctness. Recall that you are allowed to refer to material covered in the class including theorems without re-proving them.)

4 **The traveling salesman problem.** (6 pts) An instance of the classic traveling salesman problem is defined by a tuple $H = (V, d)$ where V is a set of cities and $d : V \times V \rightarrow \mathbb{Z}$ defines their pairwise distances. That is for two cities $i \in V$ and $j \in V$, $d(i, j) = d(j, i)$ equals the distance required to travel between cities i and j . Notice that H can be thought of as a complete graph (every possible edge is present) with weights on the edges corresponding to the distances. A tour is a cycle that visits every city *exactly* once, i.e., it is a cycle of length $|V|$. The length of a tour is the total distance travelled which equals the sum of the distances of the edges in the tour. An example is depicted below. The instance has 4 cities and the thick edges depict a tour of length $0 + 2 + 1 + 3 = 6$.



Show that the following language is **NP**-complete:

$$\text{TSP} = \{\langle H = (V, d), k \rangle \mid H \text{ has a tour of length } \text{at most } k\}.$$

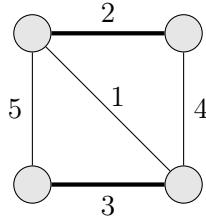
In your proof you may use that the following language is **NP**-complete:

$$\text{HAM} = \{\langle G \rangle \mid G \text{ is an undirected graph that is Hamiltonian}\}.$$

An undirected graph $G = (V, E)$ is said to be Hamiltonian if it contains a cycle of length $|V|$, i.e., a cycle that visits every vertex. Two examples of Hamiltonian graphs are the complete graph and the graph consisting of a single cycle of length $|V|$.

*(In this problem you are asked to prove that the language TSP is **NP**-complete. Recall that you are allowed to use that HAM is **NP**-complete and to refer to material covered in the class including theorems without reproving them.)*

5 **Perfect matchings of a given weight.** (6 pts) Let $G = (V, E, w)$ be an undirected graph with edge-weights $w : E \rightarrow \mathbb{Z}$. A subset $M \subseteq E$ of the edges is a *perfect matching* if every vertex is incident to exactly one edge in M . In other words, the edges in M pair up all the vertices. The weight of a matching M is the total weight of its edges, i.e., $\sum_{e \in M} w(e)$. An example is depicted below. The graph consists of 4 vertices, 5 edges with integer weights, and the thick edges indicate a perfect matching of weight $2 + 3 = 5$.



Show that the following language is **NP**-complete:

$$L_5 = \{\langle G = (V, E, w), k \rangle \mid G \text{ has a perfect matching of weight } k\}.$$

(In this problem you are asked to show that the language L_5 is **NP**-complete. Recall that you are allowed to refer to material covered in the class including theorems without reproving them. In particular, you are allowed to use any of the **NP**-complete languages that we saw in class.)

6 Decidability. (6 pts) Consider the following language on alphabet $\Sigma = \{0, 1\}$:

$$L_6 = \{\langle M \rangle \mid M \text{ is a TM and the language recognized by } M \text{ is NP-complete}\}.$$

Is L_6 decidable? Provide a proof of your claim.

*(In this problem you should decide whether L_6 is decidable or not, and give a **proof** of your claim. Recall that you are allowed to refer to material covered in the class including theorems without rephrasing them.)*