
Solutions to the Graded Programming Homework

Problem B - lesc.cpp

We model the sewage system as a rooted tree T with vertices 0, . . . , n and root 0, where vertices
u and v are connected if there is a pipe between them. Given T , we define the satisfaction
function s : {0, . . . , n} → Z as s(u) =

∑
v∈Tu

av, where Tv denotes the subtree of T rooted at v.
Note that s(u) = au +

∑
v∈children(u) s(v), so if we have already computed the value s(v) for

every children of u, it is easy to compute the value of s(u). Hence, we can compute s(u) for every
u ∈ {0, . . . , n} by starting a post-order DFS from the root vertex 0, which takes O(n) time.

If we do not remove any pipe, then the total satisfaction remains s(0) = s(0) − 0. If we
remove the pipe connecting a vertex u to its parent, the total satisfaction becomes s(0)− s(u).
If we close the plant, the total satisfaction becomes 0 = s(0) − s(0). To solve the problem, we
need to find the best out of these three possibilities, which is achieved by returning the value
s(0)−min{0,minu∈{0,...,n} s(u)}. This part also takes O(n) time.

Problem C - stable_bridge.cpp

Given the costs c0, . . . , cn and the budget X, we define the function f : {1, . . . , n− 1} → N such
that f(k) is the minimum cost of a bridge where consecutive piers are within k meters of each
other (and the bridge must have a pier at meter 0 and a pier at meter n− 1). Then, our goal is
to find the smallest k∗ ∈ {1, . . . , n− 1} such that f(k∗) ≤ X if it exists.

Note that f(k) ≤ f(k′) for any k ≥ k′, since larger k gives us more flexibility for deciding
where to place the piers. Therefore, for any k ∈ {1, . . . , n− 1}, if f(k) ≤ X then we know that
k∗ ≤ k, and if instead f(k) > X then we know that k∗ > k. This observation suggest that
instead of trying all possible n−1 values of k until we find k∗, we use binary search: after trying
a certain value k, we only need to try either those below k or those above k, but not both.

Given some k, we want to compute f(k). For i = 0, . . . , n−1, let dpk(i) be the minimum cost
to build a bridge that has a pier at meter 0 and at meter i, and where every two consecutive piers
are within k meters of each other. Then, observe that f(k) = dpk(n − 1). Moreover, we have
the base case dpk(0) = c0 and the recurrence relation dpk(i) = ci + minj:max{0,i−k}≤j<i dpk(j)
for every i = 1, . . . , n− 1. A trivial implementation will take O(nk) time to compute dpk(n− 1),
but we can use some data structures to compute minj:max{0,i−k}≤j<i dpk(j) in time faster than
O(k).

One option is to maintain the last k values dpk(i− k), . . . , dpk(i− 1) in a binary search tree
where insertion, deletion, and finding the minimum element take time O(log k). This is what
stable_bridge.cpp does: when computing dpk(i), it fetches the minimum value among
dpk(i−k), . . . , dpk(i−1) from the data structure; then, it removes the value dpk(i−k) and adds
the newly computed value dpk(i). This implementation takes O(n log k) time to compute f(k).

The time complexity is O(log(|search space for k|) · (time to compute f(k))), so we get a
running time of O(n log2 n).

Page 1 (of 1)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa, Ola Svensson

