=Pi-L

Solutions to the Graded Programming Homework

Problem B - lesc.cpp

We model the sewage system as a rooted tree T' with vertices 0, ...,n and root 0, where vertices
u and v are connected if there is a pipe between them. Given T, we define the satisfaction
function s : {0,...,n} = Z as s(u) = ) 7, @, Where T}, denotes the subtree of T" rooted at v.

Note that s(u) = ay + 3, cchildren(u) 5(v), S0 if we have already computed the value s(v) for
every children of u, it is easy to compute the value of s(u). Hence, we can compute s(u) for every
u € {0,...,n} by starting a post-order DFS from the root vertex 0, which takes O(n) time.

If we do not remove any pipe, then the total satisfaction remains s(0) = s(0) — 0. If we
remove the pipe connecting a vertex u to its parent, the total satisfaction becomes s(0) — s(u).
If we close the plant, the total satisfaction becomes 0 = s(0) — s(0). To solve the problem, we
need to find the best out of these three possibilities, which is achieved by returning the value
5(0) — min{0, min,eyq, .. ny S(u)}. This part also takes O(n) time.

Problem C - stable_bridge.cpp

Given the costs ¢y, ..., ¢, and the budget X, we define the function f: {1,...,n—1} — N such
that f(k) is the minimum cost of a bridge where consecutive piers are within k& meters of each
other (and the bridge must have a pier at meter 0 and a pier at meter n — 1). Then, our goal is
to find the smallest £* € {1,...,n — 1} such that f(k*) < X if it exists.

Note that f(k) < f(k') for any k > K/, since larger k gives us more flexibility for deciding
where to place the piers. Therefore, for any k£ € {1,...,n — 1}, if f(k) < X then we know that
k* < k, and if instead f(k) > X then we know that k* > k. This observation suggest that
instead of trying all possible n — 1 values of k until we find k*, we use binary search: after trying
a certain value k, we only need to try either those below k or those above k, but not both.

Given some k, we want to compute f(k). Fori =0,...,n—1, let dp,(¢) be the minimum cost
to build a bridge that has a pier at meter 0 and at meter ¢, and where every two consecutive piers
are within k& meters of each other. Then, observe that f(k) = dpg(n — 1). Moreover, we have
the base case dpy(0) = co and the recurrence relation dpy (i) = ¢; + ming. yaxfo,i—k}<j<i APk (J)
for every i = 1,...,n— 1. A trivial implementation will take O(nk) time to compute dp,(n —1),
but we can use some data structures to compute min;. yax{0,i—k}<j<i dpg(j) in time faster than
O(k).

One option is to maintain the last k£ values dp (i — k), ...,dps(i — 1) in a binary search tree
where insertion, deletion, and finding the minimum element take time O(logk). This is what
stable_bridge.cpp does: when computing dp,(i), it fetches the minimum value among
dpi(i—k),...,dp(i—1) from the data structure; then, it removes the value dp (i — k) and adds
the newly computed value dpy(¢). This implementation takes O(nlogk) time to compute f(k).

The time complexity is O(log(|search space for k|) - (time to compute f(k))), so we get a
running time of O(nlog?n).

Page 1 (of 1)

CS-250 Algorithms e  Spring 2025
Alessandro Chiesa, Ola Svensson



