=Pr-L

Midterm Exam, CS-250: Algorithms I, 2025

Do not turn the page before the start of the exam. This document is double-sided
and has 8 pages. Do not unstaple.

e The exam consists of two parts. The first part consists of multiple-choice questions (Prob-
lem 1) and the second part consists of three open-ended questions (Problems 2, 3, 4).

e For the open-ended questions, your explanations should be clear enough and in sufficient
detail that a fellow student can understand them. In particular, do not only give pseu-
docode without explanations. A good guideline is that a description of an algorithm should
be such that a fellow student can easily implement the algorithm following the description.

e You are allowed to refer to material covered in the lectures including algorithms and the-
orems (without reproving them). You are however not allowed to simply refer to material
covered in exercises.

Good luck!

Page 1 (of 8)

CS-250 Algorithms | e Spring 2025
Alessandro Chiesa & Ola Svensson

Problem 1: Multiple Choice Questions (34 points)

For each question, select the correct alternative. Note that each question has exactly one cor-
rect answer. Wrong answers are not penalized with negative points.

la. Binary Search Trees (7 points). Consider a binary search tree with n nodes whose values
are distinct. Which one of the following answers is correct?

A. Finding the maximum value in the tree takes O(1) time.
B. Inserting any element in the tree takes ©(logn) time.
C. Finding an element in the tree takes O(n) time.

D. Deleting an element from the tree takes Q(logn) time.

Solution. The answer is C. |

1b. Asymptotics (9 points). Which of the following correctly orders the complexities from
smallest to largest?

A. O(n!),0(2"),0(n?),0(v/n), O(log n)
(logn), O(v/n), O(n*), O()
O(y/n), O(logn),0(n?),0(2"), O(n!)

(O(vn), 0(n%), O)

((()

o)

log),

= O a @

0]
0(2"),0(n!), 0(n2), O(log n), O(y/n

Solution. The answer is B. O

lc. Heaps (9 points). Consider the array A :’ 11 ‘ 9 ‘ 5 ‘ 7 ‘ 3 ‘ 1 ‘ 2 ‘indexed from 1 to 7.
Which one of the following arrays is the result of calling HEAP-EXTRACT-MAX(A, 7)?

A l9f7]5]2][3]1]

m U Q W
o
||
=
s
N
||

Solution. The answer is A. O

Page 2 (of 8)

CS-250 Algorithms | e Spring 2025
Alessandro Chiesa & Ola Svensson

1d. Data Structures (9 points). Let S be a stack and @ be a queue, initially empty. Consider
the following sequence of operations on S and Q:

PusH(S,2),

ENQUEUE(Q, 2),

Pusu(S, 1),

ENQUEUE(Q, PopP(S) + 1),
ENQUEUE(Q, 1),

PusH(S, DEQUEUE(Q)),
ENQUEUE(Q, 1),

Popr(95),

PusH(S, DEQUEUE(Q)).

We recall that PopP and DEQUEUE also return the item that they removed from the stack and
queue respectively. Which of the following statements about S and @ holds true after having
run the sequence of operations above?

A. The output of DEQUEUE(Q) is the same as POP(S5).
The queue @ contains both 1’s and 2’s.
The stack S contains 3 elements.

The output of Pop(S) is 2.

= O a @

The output of DEQUEUE(Q) is 2.

Solution. The answer is D. O

Page 3 (of 8)

CS-250 Algorithms | e Spring 2025
Alessandro Chiesa & Ola Svensson

Problem 2: Magical Path (22 points)

Your task is to design and analyze an algorithm that, given a binary tree and a target number,
determines whether there exists a root-to-leaf path whose sum of node values is equal to the
target number. The algorithm should return True if such a path exists and False otherwise.

For example, consider the following tree. For this tree there are exactly three target numbers for
which your algorithm should return True: 20 (path 10 — 5 — 3 — 2), 19 (path 10 — 5 — 4)
and 17 (path 10 — 7). For any other target number your algorithm should return False.

You may assume that every node u of the tree has the following attributes:

e u.value: the value stored in this node.
e u.left: the node corresponding to its left child or NULL if there is no such child.

e u.right: the node corresponding to its right child or NULL if there is no such child.
Your algorithm should run in O(n) time, where n is the number of nodes in the tree.

Solution. We will write an algorithm that recursively solves a similar problem in the subtrees
of a node and then uses those solutions to solve the initial problem.

Specifically, let’s say that we are at a node v and we want to determine whether there exists
a path from u to a leaf whose sum of values equals .

To solve this, we observe the following:

1. If u is a leaf node (i.e., it has no children), then the only path available is the single-node
path consisting of w itself. In this case, we check whether u’s value is exactly equal to x.
If so, we return True; otherwise, we return False.

2. If u is not a leaf, the problem reduces to its left and right subtrees. We subtract u’s value
from z, since we have already accounted for u, and then recursively check whether either
subtree has a root-to-leaf path that sums to the new target x — value of u.

3. If either the left or right subtree has a valid path sum, we return True; otherwise, we
return False.

To obtain the solution to our original problem, we simply need to call the above algorithm
with the root of the tree and the given target number.

Page 4 (of 8)

CS-250 Algorithms | e Spring 2025
Alessandro Chiesa & Ola Svensson

To analyze the time complexity, we define T'(n) as the time required to solve the problem for
a tree with n nodes. Our recursive function visits each node exactly once, performing a constant
amount of work per node (checking conditions, subtracting values, and making recursive calls).
Thus, the recurrence relation can be written as:

T(n)=T(ny)+T(ngr) + O(1)

where ny, and ng are the sizes of the left and right subtrees of the current node. By iteratively
applying this recurrence until we reach the leaf nodes (where T'(1) = O(1)), we get that T'(n) =
O(n).

Algorithm 1 Has-Path-Sum
1: procedure HASPATHSUM(node, x)
2 if node = null then
3 return False
4 end if
5: T < = — node.value
6
7
8

if node.left = NULL and node.right = null then > Check if it’s a leaf node
return (x == 0)
: end if
9: return (HASPATHSUM(node.left,z) or HASPATHSUM(node.right,))
10: end procedure

Page 5 (of 8)

CS-250 Algorithms | e Spring 2025
Alessandro Chiesa & Ola Svensson

Problem 3: Can the frog reach the end? (22 points)

A frog lives in a one-dimensional world which consists of n > 2 positions, labeled 0,...,n — 1.
Initially, the frog sits at position 0, and its objective is to reach position n— 1. For every position
i € {0,...,n — 2}, the frog is given access to a non-empty array PosJumps(i), which contains
non-negative integers and has length at most n.

The frog can make jumps according to the following rule: If the frog is currently positioned at
position ¢ # n—1, it may jump to position i+ k, for any k € PosJumps(7) such that i+k < n—1.
Then, the same rule is applied at the new position and so on.

Your task is to design an algorithm which decides, given the number of positions n, and the
arrays PosJumps(i) for i € {0,...,n — 2}, whether it is possible for the frog to reach position
n — 1 by any valid sequence of jumps. Your algorithm should return True if this is the case, and
False if this is not the case.

Your task is to design and analyze an algorithm that solves the above problem and runs in time

O(n?).

Examples. To simplify the notation for the following examples, we write the arrays PosJumps()
compactly as an array of n — 1 arrays. For example, if the input is given by n = 4 and
PosJumps(0) = [0, 1], PosJumps(1) = [1], PosJumps(2) = [4,8,10], we will instead simply
write PosJumps = [[0, 1], [1], [4, 8, 10]].

a) If n =6 and PosJumps = [[1, 2], [4], [1], [0], [0]], the answer is True. First, the frog makes
a jump of length 1 from position 0 to position 1. Then, it makes a jump of length 4 to the final
position 5. Notice that, even though 2 € PosJumps(0), allowing the frog to jump from position 0

to position 2 at the beginning, this strategy is not optimal, since from position 2 the frog cannot
reach position 5.

b) If n = 5 and PosJumps = [[1], [1], [1], [1]], the answer is True, since the frog can perform 4
consecutive jumps of length 1 each. If instead PosJumps(1) were [0], the answer would be False.

¢) If n = 5 and PosJumps = [[1,2, 3], [1,2],[1],[0]], the answer is False. This is because
reaching position 3 is unavoidable, and the frog cannot make any further jump from that position.

Solution. We solve the problem by a dynamic programming approach. We design an algorithm
which constructs an array dp[0...n — 1], such that dp[i] = True if and only if position n — 1 can
be reached by the frog from position 7. Assuming access to such an array, we only have to return
dpl0].

To construct dp, we go from right to left. First, notice that dp[n — 1] = True trivially. Then,
for any position 0 < i < n — 1, we have the following identity:

i {True, if 3k € PosJumps(i), such that i < i+ k <n —1 and dp[i + k] = True.
bt =

False, else.
Indeed, position n — 1 can be reached from position ¢ only if there exists a valid (non-zero) jump

Page 6 (of 8)

CS-250 Algorithms | e Spring 2025
Alessandro Chiesa & Ola Svensson

from index 7 to another position ¢ + k > 4, such that position n — 1 is reachable from position
i + k. Hence, assuming we already computed dp[j] for all i < j < n — 1, we can compute dp]i
using O(n) time. This follows because the array PosJumps(i) has length at most n, and so there
are at most n potential jumps k € PosJumps(i) which need to be checked.
Since the array dp has n entries, and each entry takes at most O(n) time to compute, the
total runtime complexity is given by O(n?).
O

Page 7 (of 8)

CS-250 Algorithms | e Spring 2025
Alessandro Chiesa & Ola Svensson

Problem 4: Almost sorted array (22 points)

Consider an array A containing n distinct integers. In this problem, we will design an algorithm
to completely sort an almost sorted array.

The array has the following structure: every element in the given array A is at most k positions
away from its sorted position. In other words, if we sort the array A, an element in index 7 of A
will end up in the range [max{1,i — k}, ..., min{n,i+ k}|.

For example, the array A = ’ 6 \ 5 \ 3 \ 2 \ 8 \ 10 \ 9 ‘is an almost sorted array with £ = 3.
If we completely sort A, we will get’ 2 ‘ 3 ‘ 5 ‘ 6 ‘ 8 ‘ 9 ‘ 10 ‘

Originally, 2 was at position ¢ = 4, and after sorting, it moved to position 1. Clearly, 1 €
max{0,4 — 3}, min{7,4 4+ 3}] = [1,7]. The number 5, initially at position ¢ = 2, moved to
position 3 after sorting. Again, 3 € [max{0,2 — 3}, min{7,2 + 3}] = [0,5]. Similarly, if we pick
any ¢ in A, we will observe that it moves to a position in the range [max{0,7—k}, min{n,i+k}].

Given the value k and a k-sorted array A containing n distinct integers, you need to design and
analyze an algorithm that completely sorts A.

Your algorithm must run in O(nlogk) time.

Solution. The key idea is to modify heap-sort to be more efficient. Since we know that the
array is k— sorted, for any index 7 in A, we need to find the minimum between ¢ to ¢ + k& with
the help of a min-heap. Note that the numbers on the left of ¢ are already in the correct sorted
position. Since we maintain a min-heap of length k, and the INSERT operation is worst case
O(log k) with n insertions, the algorithm runs in O(nlogk) time. Each POP operation is O(1).

Require: An array A of size n that is k-sorted
Create a min-heap H > Insert the first £ 4+ 1 elements into the heap
fori=1tok+1do
INSERT A[i] into H
end for
index < 0 > Extract the min element and insert the next element from the array
fori=k+2tondo
Alindezx] < POP(H)
INSERT A[i] into H
index < index + 1
end for > Extract remaining elements from heap
: while H is not empty do
Alindez] < POP(H)
index < index + 1
: end while

e e
Ll

Page 8 (of 8)

CS-250 Algorithms | e Spring 2025
Alessandro Chiesa & Ola Svensson

