
Old Exam Questions, Algorithms 2013-2014
This document contains a sample of exam questions. In particular, the problems have previ-
ously appeared on a (midterm) exam. The points of the exercises reflect their importance to
the final score of the exams, where the total amount of points of an exam is 100. One should
note however, that these exams were during 3 hours whereas the mid-term will be during 2
hours. For some exercises, I have also written comments on how related the questions are to
this year’s version of the course.
Good luck with your preparation!

1 (5 pts) Consider the natural implementation of the three sorting algorithms (Insertion-Sort,
Merge-Sort, Heap-Sort) that we studied in class. Which one of these implementations is not
“in-place”?

Solution: Merge-Sort

2 (5 pts) Simplify and arrange the following functions in increasing order according to asymptotic
growth.

3N ,
√

4N , log2N,
√
N,N2, logN, 20N

Solution:

• First the logs: logN, log2N

• Second the polynomials:
√
N, 20N,N2

• Last the exponential functions:
√

4N = 2N , 3N

3 (10 pts) Let f(n) and g(n) be the functions defined for positive integers as follows:

Function f(n):
1: ans← 0
2: for i = 1, 2, . . . , n− 1 do
3: for j = 1, 2, . . . , n− i do
4: ans← ans+ 1
5: end for
6: end for
7: return ans

Function g(n):
1: if n = 1 then
2: return 1
3: else
4: return g(bn/2c) + g(bn/2c)
5: end if

3a (6 pts) What is, in Θ notation, the running time of these algorithms, given that addition
runs in time Θ(1)?

Solution: Running time of f(n) is Θ(n2). The running time of g(n) is proportional to the
recurrence relation T (n) = 2T (n/2) + Θ(1). Therefore, by the master method, the running time
of g(n) is Θ(n).

Page 1 (of 10)

CS-250 Algorithms • Autumn 2013
Ola Svensson

3b (4 pts) What is, in Θ notation, the running time of algorithm g(n) if we at line 4 replace
g(bn/2c) + g(bn/2c) by 2g(bn/2c)?
(Assume that multiplication runs in time Θ(1).)

Solution: Now the running time is proportional to the recurrence T (n) = T (n/2)+1. Therefore,
by the master method, the running time of the modified version is Θ(log n)

4 (10 pts) Let f(n) be the function given below in pseudocode:

Call: f(n)
1: a← 0
2: b← ln(n)
3: for i = 1, . . . , n do
4: a← a+ b
5: end for
6: for j = 1, . . . , n do
7: for k = 1, . . . , j do
8: for ` = j + 1, . . . , j + n do
9: a← a+ b

10: end for
11: end for
12: end for
13: return a

4a Find a closed-form formula for f(n).

Solution: We have the following:

f(n) =

n∑
i=1

b+

n∑
j=1

j∑
k=1

j+n∑
`=j+1

b

= nb+ n

n∑
j=1

j∑
k=1

b

= nb+ nb
n∑

j=1

j

= nb+ nb
n(n+ 1)

2

= n ln(n) +
n2(n+ 1) ln(n)

2
.

4b Find s and t such that
f(n) = θ

(
ns · ln(n)t

)
.

Solution: The final answer is f(n) = θ
(
n3 · ln(n)

)
, that is: s = 3 et t = 1.

4c What is, in θ notation, the running time of this algorithm, given that line 2 runs in time
θ(1)?

Solution: In this case, the running time is majorized by the running time of the triple loop in
lines 6,7,8, and 9, which is equal to the value of the triple sum in the expression above. Hence,
the running time is θ

(
n3
)
.

Page 2 (of 10)

CS-250 Algorithms • Autumn 2013
Ola Svensson

5 (10 pts)

5a (4 pts) Give a formal specification of the following problem: given an array of integers, and
another integer x, determine whether there are two elements in the array that sum up to
x. Note: What formal means is slightly unclear from the perspective of this year’s course.

Solution: The input set I is (∪∞n=1Zn)×Z. The output set O is {TRUE,FALSE}. The relation
is

R =
{

((σ, x),TRUE)
∣∣∣ ∃ 1 ≤ i < j ≤ |σ| : σi + σj = x

}
∪{

((σ, x),FALSE)
∣∣∣ ∀ 1 ≤ i < j ≤ |σ| : σi + σj 6= x

}
where |σ| is the length of the sequence σ.

5b (6 pts) Design an algorithm that solves the problem of the previous part in O(n log n)
steps, where n is the length of the array, and a step is either an addition or a comparison
of integers.

Solution: Given an array σ consisting of n elements, and the integer x, we first sort σ with say
Merge-Sort using O(n log n) operations. Next, we initialize two indices i and j to i = 1 and
j = n. As long as i < j, we perform the following: if σi + σj > x, then we decrease j by one.
If σi + σj < x, then we increase i by one. We stop and return the value TRUE if we hit (i, j)
with σi + σj . If during the course of the algorithm i ≥ j, then we return the value FALSE. The
running time of this algorithm is obviously O(n), so the total running time is O(n log n).

6 (10 pts) Suppose that, given a list of distinct integers and a positive integer i, we wish to find
the i largest integers on the list. Consider the following two approaches to solve the problem:

1. Use the MergeSort algorithm to sort the list in increasing order, and pick the last i items
from the resulting sequence.

2. Create a heap in a bottom-up fashion, and then obtain the i largest elements by calling
the DeleteMax operation i times.

What is the running time of each solution? Which approach is more favorable for finding the
10 largest items on a list of a billion integers?

Solution: Approach 1: According to the description of MergeSort, the running time is
O
(
n log(n)

)
;

Approach 2: We need first build up a max-heap and using the DeleteMax operation in
order to get a largest number. We build the Max-Heap using a bottom-up approach with O(n)
operations. Thereafter, we need i DeleteMax operations, each using O(log(n)) steps. The
total running time is therefore O(n+ i log(n)) steps.

The second approach is more favorable in this case since i = 10 is much smaller than
log(10, 000, 000, 000) which is roughly 33. Moreover, the MergeSort will need additional mem-
ory complexity, which is as much as O

(
n
)
. It will be very difficult if the cache/memory resource

is limited.

7 (15 pts) Suppose that you are given a sorted sequence of n distinct integers {a1, . . . , an}. Give
an algorithm to determine whether there exists an index i such that ai = i, outputting one i
if such an i exists, and which uses O(log(n)) steps. For example, in {−10,−3, 3, 5, 7}, a3 = 3,
whereas {2, 3, 4, 5, 6, 7} has no such i.

Page 3 (of 10)

CS-250 Algorithms • Autumn 2013
Ola Svensson

Solution: The key is the following realization: if ai < i, then for all ` ≤ i we have a` < `,
and if ai > i, then for all ` ≥ i we have a` > `. To see this, note that in the former case,
ai−` ≤ ai−` ≤ i−` since the ai’s are distinct and integers. In the latter case, a` ≥ ai+(`−i) ≥ `,
again since the ai’s are distinct.

Now we use binary search on the sequence (ai − i|1 ≤ i ≤ n) to find a zero of this sequence
if it exists.

8 (15 pts) Given an O(n log(k))-algorithm that merges k sorted list of integers with a total of n
elements into one sorted list. (Hint: use a heap of size k)

Solution: Note: in this solution the array of ` elements is indexed 0, 1, . . . , ` − 1 instead of
1, 2, . . . , ` as we have been doing in this year’s course.

Let the arrays be A1, . . . , Ak and assume that they are sorted in an ascending way. We will
create sorted array S consisting of the union of the Ai’s.

Create min-heap for elements (1,A_1[0]),...,(k,A_k[0]) where
the minimization is with respect to the second variable.
i = 0;
while (i < n) do

(j,A_j[l]) = DeleteMin of the Heap;
S[i] = A_j[l];
i = i+1;
if (l is not the length of A_j) then

Insert A_j[l+1] into the min-heap.

For every entry of S we need to do one deletemin operation and at most one insertion operation
into the heap. The heap size is at most k, so these operations cost O(log(k)). In total we will
have an O(n log(k))-algorithm.

9 (20 pts) Analysis of d-ary heaps: a d-ary heap is similar to a binary heap with one exception.
The non-leaf nodes have d children instead of 2 children.

9a How would you represent a d-ary heap in an array?

Solution: A d-ary heap can be represented by a 1-dimensional array as follows: The root is
kept in A[0]. The children of the node A[i] are stored in A[di + 1], . . . , A[d(i + 1)], i.e., the jth
child is stored in A[di+ j], Therefore, for i > 0, the parent of the node stored at A[i] is the node
stored at A[d(i− 1)/de].

9b What is the height of a d-ary heap of n elements in terms of n and d?

Solution: Since each intermediate node has exactly d children, the total number of nodes in a
tree of height h is at most 1 + d+ d2 + · · ·+ dh (when the tree is a complete d-ary tree) and at
least 2 + d+ d2 + · · ·+ dh−1 (when there is exactly one node of depth h and all the other nodes
are of depth h− 1). Therefore, we have

1 +d+d2 + · · ·+dh−1 =
dh − 1

d− 1
≤ 2 +d+ · · ·+dh−1 ≤ n ≤ 1 +d+d2 + · · ·+dh =

dh+1 − 1

d− 1
.

This gives us

(logd(n(d− 1) + 1))− 1 ≤ h ≤ logd(n(d− 1) + 1)

Therefore, h = dlogd(n(d− 1) + 1)e − 1 = θ(logd n).

Page 4 (of 10)

CS-250 Algorithms • Autumn 2013
Ola Svensson

9c Let EXTRACT-MAX be an algorithm that returns the maximum element from a d-ary heap
and removes it while maintaining the heap property. Give an efficient implementation of
EXTRACT-MAX for a d-ary heap. Analyze its running time in terms of d and n.

Solution: The procedure EXTRACT-MAX given in the course for binary heaps works for
d-ary heaps as well with only a minor change: the Max-Heapify procedure used should be
modified to consider all the d children of a node during the process, instead of just 2 children.
For a complete solution, you would need to explain the procedure in detail. One way would be
to give the pseudo-code but I leave this as an exercise.

9d Let INSERT be an algorithm that inserts an element in a d-ary heap. Give an efficient
implementation of INSERT for a d-ary heap. Analyze its running time in terms of d and n.

Solution: Again the insert procedure given in class works well; for a complete solution, you
would need to describe it in detail with pseudo-code for example As the procedure “walks” up
the heap, the running time is θ(h), where h is the height of the heap. For the d-ary heaps, as
we have shown in part 2 of this problem, h = θ(logd n). Therefore, the running time of Insert
is θ(logd n).

10 (20 pts) A contiguous subsequence of a sequence S is a subsequence consisting of consecutive
elements of S. For example, we might have

S = (2,−5, 10, 4,−12, 5, 0, 1),

for which (10, 4,−12) is a contiguous subsequence but (2, 4, 5, 1) and (−12, 4) are not.
Using dynamic programming, design a linear time algorithm that, given a sequence S =

(s1, . . . , sn) of integers, finds a contiguous subsequence of S with maximum sum. That is, a
contiguous subsequence (si, si+1, ..., sj) of S for which the summation of all entries (si + si+1 +
· · ·+ sj) is maximum.

Hint: for each j ∈ {1, ..., n}, consider the subproblem of finding the optimal contiguous sub-
sequence within the first j elements of S.

Solution: Denote the sequence by S = (s1, . . . , sn). For i ≥ 0 let Q[i] be the index ` in
{1, . . . , i+1} for which s`+s`+1+· · ·+si is maximized, and denote by P [i] the sum sQ[i]+· · ·+si.
We call P [i] a maximum-sum postfix of Si = (s1, . . . , si).

Since Q[0] = 1, we have P [0] = 0. Our first goal is to find a recursion for P [i + 1] in terms
of P [i]. If Q[i] ≤ i, then P [i] + si+1 = sQ[i], . . . , si + si+1 is no smaller than s` + · · ·+ si + si+1

for any 1 ≤ ` ≤ i, hence Q[i + 1] = Q[i] if P [i] + si+1 ≥ 0, and Q[i + 1] = i + 2 (and
hence P [i + 1] = 0) otherwise. The same conclusion holds if Q[i] = i + 1. Therefore, we have
P [i+ 1] = max(P [i] + si+1, 0).

Coming back to our problem, note that the maximum-sum contiguous subsequence is the
maximum-sum prefix of s1, . . . , si for some i. This gives the following algorithm.

Page 5 (of 10)

CS-250 Algorithms • Autumn 2013
Ola Svensson

Maximum Sum Contiguous Subsequence: (s, n)
1: P [0]← 0, Q[0]← 1
2: for i = 0, . . . , n− 1 do
3: if P [i] + si+1 > 0 then
4: P [i+ 1]← P [i] + si+1, Q[i+ 1]← Q[i]
5: else
6: P [i+ 1]← 0, Q[i+ 1]← i+ 2
7: end if
8: end for
9: i← arg maxn

j=1 P [j]
10: return sQ[i], . . . , si

11 (20 pts) Let x1...xm and y1...yn be two strings. For 0 ≤ i ≤ m and 0 ≤ j ≤ n, let c[i, j] be the
length of the longest common subsequence of x1...xi (or the empty string if i = 0) and y1...yj
(or the empty string if j = 0). In other words, c[i, j] is defined to be the maximum k such that
there exist indices 1 ≤ i1 < i2 < · · · < ik ≤ i and 1 ≤ j1 < j2 < · · · < jk ≤ j satisfying xi` = yj`
for all ` = 1, . . . , k.

11a (10 pts) Complete the recurrence relation for c[i, j] that can be used for dynamic program-
ming:

c[i, j] =


if i = 0 or j = 0

if i, j > 0 and xi = yj

if i, j > 0 and xi 6= yi

Solution:

c[i, j] =


0 if i = 0 or j = 0

c[i− 1, j − 1] + 1 if i, j > 0 and xi = yj

max(c[i, j − 1], c[i− 1, j]) if i, j > 0 and xi 6= yi

11b (10 pts) Use the recurrence relation to return the length of the longest common subsequence
of the two strings BABDBA and DACBCBA by filling in the table of c[i, j] values below
(in a bottom-up dynamic programming fashion).

Page 6 (of 10)

CS-250 Algorithms • Autumn 2013
Ola Svensson

j 0 1 2 3 4 5 6 7

i yj D A C B C B A

0 xi

1 B

2 A

3 B

4 D

5 B

6 A

Solution:

j 0 1 2 3 4 5 6 7

i yj D A C B C B A

0 xi 0 0 0 0 0 0 0 0

1 B 0 0 0 0 1 1 1 1

2 A 0 0 1 1 1 1 1 2

3 B 0 0 1 1 2 2 2 2

4 D 0 1 1 1 2 2 2 2

5 B 0 1 1 1 2 2 3 3

6 A 0 1 2 2 2 2 3 4

Longes commong subsequence is 4 (it is ABBA)

12 (20 pts) A max-min algorithm finds both the largest and the smallest elements in an array of
n integers. Design and analyze a divide-and-conquer max-min algorithm that uses d3n/2e − 2
comparisons for any integer n. (You will receive 10 points if you can show this for the case when
n is a power of 2, and an additional 10 points if you can prove it for general n.)

Hint: If T (n) denotes the number of comparisons of your algorithm, try to find a recursion
relating T (n+m) to T (n) and T (m). Then study first the case where n is a power of 2.

Solution:
a. First, we will show how to solve this problem when n is a power of 2. We will use

the procedure Max-min(A,n), which receives as input an array A of length n and returns (a, b)
where a and b are the maximum and minimum elements of A. The algorithm works by recursively
dividing A into smaller sub-arrays of approximately half the size of A.

Page 7 (of 10)

CS-250 Algorithms • Autumn 2013
Ola Svensson

Max-min: (A,n)
if n == 1 then

return (A[0], A[0])
end if
if n == 2 then

if A[0] ≥ A[1] then
return (A[0], A[1])

else
return (A[1], A[0])

end if
end if
if n > 2 then

(a1, b1)←Max-min(A[0 : dn2 e − 1], dn2 e)
(a2, b2)←Max-min(A[dn2 e : n− 1], n− dn2 e)
a← max{a1, a2}
b← min{b1, b2}
return (a, b)

end if

Let us now analyze how many comparisons this algorithm uses: clearly, each max or min
operation requires only one comparison. Therefore, the recurrence relation describing how many
comparisons we use is the following:

T (n) = T (dn
2
e) + T (bn

2
c) + 2

and T (1) = 0, T (2) = 1.
Since n is even, we have

T (n) = T (
n

2
) + T (

n

2
) + 2

Next, in order to solve our recurrence relation, we will use the substitution method; specifi-
cally, we will use T (k) ≤ d3k2 e− 2 as our induction hypothesis. Notice it holds for k = 1, 2, since
T (1) = 0, T (2) = 1. We will assume the induction hypothesis holds for all k ≤ n− 1, where k is
a power of 2, and prove it holds for k = n. We have

T (n) = T (
n

2
) + T (

n

2
) + 2 = 2T (

n

2
) + 2 ≤ 2(

3n

4
− 2) + 2 =

3n

2
− 2 = d3n

2
e − 2

which concludes the proof.
We saw how to solve this problem when n is a power of 2; our new algorithm will use this

fact, by dividing an array A of n integers into two arrays, the larger of which has size equal to
the largest power of 2 which is less than n. The procedure we use is Max-min-general(A,n).

Page 8 (of 10)

CS-250 Algorithms • Autumn 2013
Ola Svensson

Max-min-general: (A,n)
if n == 1 then

return (A[0], A[0])
end if
if n == 2 then

if A[0] ≥ A[1] then
return (A[0], A[1])

else
return (A[1], A[0])

end if
end if
if n > 2 then
k ←largest power of 2 which is less than n
(a1, b1)←Max-min-general(A[0 : k − 1], k)
(a2, b2)←Max-min-general(A[k, n− 1], n− k)
a← max{a1, a2}
b← min{b1, b2}
return (a, b)

end if

Let us analyze how many comparisons this algorithm uses. Let f(n) be the largest power of
2 less than n. The recurrence relation we want to solve is

T (n) = T (f(n)) + T (n− f(n)) + 2

In order to take a deeper look at the above relation, consider the binary representation of

n =
∞∑
i=0

ani 2i, where ani ∈ {0, 1}, and let g(n) be the number of non-zero ani -s. Expanding T (n)

we get

T (n) = 2(g(n)− 1) +
∞∑
i=0

ani T (2i)

Let T (k) ≤ d3k2 e − 2 be our inductive hypothesis, and let it hold for all k ≤ n − 1. We will
prove that it holds for k = n. We will distinguish two cases:

• n is even: We can assume n > 2, and since we have already done the analysis for the case
n being a power of 2, we can also assume that n is not a power of 2; therefore, we can write

T (n) = T (x) + T (y) + 2

where x is the highest power of two which is less than n and y = n − x. Then by the
inductive hypothesis and since x, y are even

T (n) ≤ 3x

2
− 2 +

3y

2
− 2 + 2 =

3n

2
− 2 = d3n

2
e − 2

• n is odd: Again, we can write

T (n) = T (x) + T (y) + 2

where x is the highest power of two which is less than n and y = n − x. y is odd and by
the inductive hypothesis we have

T (n) ≤ 3x

2
− 2 + d3y

2
e − 2 + 2 =

3x

2
+

3y + 1

2
− 2 = d3n

2
e − 2

Page 9 (of 10)

CS-250 Algorithms • Autumn 2013
Ola Svensson

Since T (1) = 0 and T (2) = 1, the induction base is also true and our proof is concluded.

13 (20 pts, Note: this one is quite tricky and was a bonus problem) Consider a binary heap containing
n numbers where the root stores the largest number. Let k < n be a positive integer, and x
be another integer. Design an algorithm that determines whether the kth largest element of the
heap is greater than x or not. The algorithm should take O(k) time and may use O(k) additional
storage.

Hint: don’t try to find the kth largest element.

Solution: Starting from the root of the tree, traverse the children of a node until the value of
the node is strictly smaller than x. Put the index of this node into an array of length 2k. If there
is an overflow, then state that the kth largest element is strictly larger than x. Claim: if the
k-th largest element is smaller than or equal to x, then the array will contain at most 2k entries.
Proof. For every node in the array, the value of the ancestor is greater than or equal to x. There
are thus at most k such ancestors. Each ancestor has at most 2 children, hence the number of
entries in the array is at most 2k. Claim: running time is O(k). Proof. The number of nodes
traversed is at most the number of direct descendants of nodes whose values are greater than or
equal to x, hence at most 2k.

Now we will use the new array to see whether the kth largest element of the array is at least
x. We do this by doing one pass through the array counting every element that is greater than
x.

Page 10 (of 10)

CS-250 Algorithms • Autumn 2013
Ola Svensson

