I

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Midterm Exam, Algorithms 2013-2014

e You are only allowed to have a handwritten A4 page written on both sides.

e Communication, calculators, cell phones, computers, etc... are not allowed.

e Your explanations should be clear enough and in sufficient detail so that a fellow student
can understand it. For example, a description of an algorithm should be so that a fellow
student can easily implement the algorithm following the description.

Good luck!

Name:

N° Sciper:
Exercise 1 | Exercise 2 | Exercise 3 | Exercise 4 | Exercise 5
/ 15 points | / 25 points | / 15 points | / 20 points | / 25 points
Total / 100

Page 1 (of 10)

CS-250 Algorithms, Midterm Exam

Ola Svensson

e Autumn 2013

1 (15pts) Asymptotics.
la (5pts) Arrange the following functions in increasing order according to asymptotic growth.

4-16™2, 10log®?n, n° /n, 10logn, 100-2", n*log’n, 2-3"

Solution: 10logn, 1010g3/2n, \V/n, n*log?n, n® 100-27, 2-37, 4.16™/2

1b (10 pts) Give tight asymptotic bounds for the following recurrences (assuming that 7(1) = ©(1)):

(i) T(n) =3T(n/3) +O(1) (iv) T(n) =T(n/5) 4+ 2T(2n/5) + O(n)
(ii) T(n) =3T(n/3) + B(n) (v) T(n) = 25T(n/5) + O(n?)
(iii) T(n) = 3T(n/3) + ©(n?)

Solution:
(i
(ii

) ©(n) (Master Theorem)
) O
(ii) ©(n?) (Master Theorem)
) O
) O

nlogn) (Master Theorem)

(iv nlogn) (Substitution method)

n?logn) (Master Theorem)

(v

Page 2 (of 10)

CS-250 Algorithms, Midterm Exam e Autumn 2013
Ola Svensson

2 (25pts) Divide and Conquer. Consider the following procedure UNKNOWN that takes as input
an array A[¢...r] of r — £+ 1 numbers with the left-index ¢ and the right-index r:

UNKNOWN(A, ¢, r)

1.if 0 >r

2. return —oo
3. elseif /=r

4 return A[/]

3. else

4. g0+ LTT_EJ

5. ansL <~ UNKNOWN(A,/, q)
6 ansR < UNKNOWN(A,q+ 1,7)
7 if ansL > ansR

8 return ansL

9 else

10. return ansR

2a (5pts)Let A[1...8]=[6[4]2[9]2]8]7]5| Whatdoesacall to UNKNOWN(A, 1, 8)
return?

Solution: 9 (The maximum value in A.)

2b (8pts) Let T'(n) be the time it takes to invoke UNKNOWN(A, ¢,) where n = r — ¢ + 1 is
the number of elements in the array. Give the recurrence relation of 7'(n).

Solution: T'(n) = T(%) +T(%) +0O(1), T(1) = ©(1).

2c (12pts) Prove tight asymptotic bounds of T'(n) using the substitution method, i.e., show
that T'(n) = ©(f(n)) for some function f.

Solution: (on the next page)

Page 3 (of 10)

CS-250 Algorithms, Midterm Exam e Autumn 2013
Ola Svensson

Solution of 2c: The function T'(n) is:

2n

)+ TS

)+ 1.

We guess that the function T'(n) = ©(n) and we prove this using the substitution method. First,
we prove an upper bound on 7T'(n). We assume the following inductive hypothesis for all m < n:

T(m)<cm-—1

for some constant ¢; > 0. We will prove that the hypothesis holds for n: (We can assume that
n is divisible by 3.)

T(n) = T(§)+T(2%)+1
n 2n
S Clg—l—‘rCl?—l—'—l
= c¢in— 1.

Thus, we have T'(n) = O(n).
For the lower bound, we assume that T'(m) > com for all m < n and for some constant
co > 0. Then, we have:

n 2n
T(n) = T(3)+T(5)+1
> c n +c z—n
=z 23 2 3
= Ccan.

Thus, we have T'(n) = Q(n). We can conclude that T'(n) = ©(n).

Page 4 (of 10)

CS-250 Algorithms, Midterm Exam e Autumn 2013
Ola Svensson

3 (15pts) Palindrome. A word is a palindrome if its reverse is equal to itself. For example, ABBA
is a palindrome whereas OLA is not. One way of representing a word in a computer is to have a
single-linked list where we have a list-element for each letter. For example, ABBA is represented
by the single-linked list

Lhead= S A |« S B| T SB[« A/

and OLA is represented by the single-linked list

L.head/\o T LT ™A /

Design and analyze an algorithm that, given a pointer to the head of a single-linked list
which represents a word, outputs YES if the word is a palindrome and NO otherwise.

For full score your algorithm should run in linear time and should not use any other
data structures than single-linked lists, i.e., no arrays, stacks, queues, etc..

Solution: Let L be the linked list representing our word; the idea of the algorithm is to create
a new linked list () which contains the word of L reversed, and then compare the two words. We
create the linked list @ by “walking through” the list L and for each element in L, inserting this
element in the head of the list). At the end of this procedure, the list @) will be equal to the
reverse of L.

The following pseudocode describes this procedure. Note that the function INSERT(Q,y)
inserts the element y at the head of the linked list Q.

PALINDROME(L)

x < L.head
Q < new linked list
while x #NIL
y < new list element
y.key<+ x.key
INSERT(Q, v)
T < xr.next
end-while
9. © < L.head
10. y < @.head
11. while x #NIL
12. if z.key+# y.key
13. return NO
14. T < xr.next
15. Y < y.next
16. end-while
17. return YES

O NSOt W=

Both while loops will be executed n times, where n is the length of the word. Since each loop
consists of a constant number of operations, each of constant cost (recall that inserting into the
head of a list takes constant time), the total running time will be ©(n).

Page 5 (of 10)

CS-250 Algorithms, Midterm Exam e Autumn 2013
Ola Svensson

4 (20pts) Quadtrees. A quadtree is a search tree data structure in which each internal node
has exactly four children. Quadtrees are usually used to partition the two-dimensional plane by
recursively subdividing it into four quadrants or regions. In this exercise, we shall use quadtrees
to represent cities according to their geographical position.

Figure [I| shows an example of 4 cities in western Switzerland. It also shows the 4 quadrants
induced by the city Fribourg: the first, named NW (for north-west), contains the city Neuchatel;
the two following (NE for north-east and SE for south-east) are empty; the last (SW for south-
west) contains the two remaining cities, Yverdon and Lausanne.

A NE
Neuchatel °
NW Fribourg
®
Yverdon @ SE
L {]
ausanne SW

Figure 1. Geographical location of 4 cities in Switzerland

Each node v in the quadtree will store the name (v.name) and the coordinates (v.z and v.y)
of the cities. In addition, the node v will contain a pointer v.p to its parent (or NIL if its the
root) and pointers v.NW,v.NE v.SE,v.SW to its four children. Similar to binary search trees
the key properties that make quadtrees useful are the following:

e if u is in the quadtree rooted by v.NW then u.x < v.z and u.y > v.y;

e if u is in the quadtree rooted by v.NE then u.x > v.z and u.y > v.y;

e if u is in the quadtree rooted by v.SFE then v.x > v.z and u.y < v.y;

e if u is in the quadtree rooted by v.SW then u.x < v.x and u.y < v.y.

Figure [2| shows a possible quadtree representation of the cities in Figure The root is
the node corresponding to Fribourg that has z and y coordinates equal to 578461 and 183802,

respectively.
Fribourg
(578461,183802)
NW" NE; \SE “\§W
Neuchatel NIL NIL Lausanne
(561944,205330) (537895,152098)
NIL NIL NIL NIL NIL NIL NIL
Yverdon

(539316,181385)

- N
-, / \ N
- . \ N

NIL NIL NIL NIL

Figure 2. A possible quadtree representation of the cities in Figure

Page 6 (of 10)

CS-250 Algorithms, Midterm Exam e Autumn 2013
Ola Svensson

Design (give the pseudocode) and analyze the running times of the following procedures for
the quadtree data structure:

(10pts) SEARCH(Q.root, x, y) — prints the name of the city located at (z,y) if such a city exists
in the quadtree rooted at Q.root.

(10pts) PRINTSOUTHMOST(Q.root) — prints the name of the south most city (the city with the
smallest y coordinate) in the quadtree rooted at Q.root.

Your runtime analyses should be tight for the typical case when the height of the quadtree is
logarithmic in the number of cities that it contains. In addition, for full score, the running times
of your implementations should not be unnecessary large.

Solution: Let us begin with the SEARCH operation; this operation will be very similar to
searching in a binary tree, with the difference that now we have to operate along two dimensions.
Specifically, we will design a recursive procedure, which given an input node and two coordinates
x,y will compare these coordinates with the input node’s coordinates, in order to decide in which
direction the node we are searching for is; after this, we will apply SEARCH in the input node’s
child which is in the correct direction, and when we finally reach our target node, we will print
its name.

SEARCH(Q.root, z,y)

1. u < Q.root
2. if uw =NIL

3 return does not exist
4. ifur=rzand uy =y

D. return u

6. ifu.r <xand uy >y

7 SEARCH(u.NW x, y)
8. ifux >xand uy >y

9 SEARCH(u,NE,z, y)
10. if u.z >z and u.y <y
11. SEARCH(u.SE, z,y)
12, if ux <z and uy <y
13. SEARCH(u.SW,x,y)

Each execution of SEARCH executes a constant number of operations branches out to at
most one other execution of SEARCH, and the maximum recursion depth is h, where h is the
height of the tree; hence, the total running time is O(h).

Page 7 (of 10)

CS-250 Algorithms, Midterm Exam e Autumn 2013
Ola Svensson

Continuation of solution to 4:

Let us continue with the PRINTSOUTHMOST operation: here, we will again design a
recursive procedure RETURNSOUTHMOST, which returns the y-coordinate and the name of the
subtree rooted at the input node. It works as follows: first, it applies RETURNSOUTHMOST to
both the southwest and the southeast subtrees of the input node, and it stores the y-coordinate of
the most southern node in the southwest(southeast) subtree in variable w(e). Then, it compares
w and e in order to determine in which of the two subtrees the most southern node lies, and
then returns its y coordinate and name(wname for the southwest subtree and ename fot the
southeast tree).

RETURNSOUTHMOST(Q.root)

1. u < Q.root

2. w,e 4+ oo

3. if w.SW#£NIL

4. (w, wname) <~ RETURNSOUTHMOST (u.SW)
5. if u.SE#NIL

6. (e,ename) «+~ RETURNSOUTHMOST (u.SE)
7. ifw <euy

8. return (w, wname)

9. ife <w,u.y

10. return (e, ename)

11. if uy < e,w

12. return (u.y,u.name)

Finally, in order to actually print the name of the most southern node, all we have to do is
apply RETURNSOUTHMOST to the tree rooted at @.root, and print out its name.

PRINTSOUTHMOST(Q.root)
1. (s,sname) <~ RETURNSOUTHMOST(Q.root)

2. print sname

Let us analyze its running time: this recursive procedure will visit each node at most once.
Therefore, its running time is O(n), where n is the number of nodes in the tree.

This is tight as we do two recursive calls in each step (RETURNSOUTHMOST (u.SW) and
RETURNSOUTHMOST (u.SE)) and all remaining cities may be located in these subtrees.
That is we have in the worst case a running time proportional to T'(n) = 27'(n/2) + ©(1) which
is Q(n) even if the height of the tree is logarithmic.

Page 8 (of 10)

CS-250 Algorithms, Midterm Exam e Autumn 2013
Ola Svensson

5 (25 pts) Restaurant placement. Justin Bieber has surprisingly decided to open a series of
restaurants along the highway between Geneva and Bern. The n possible locations are along a
straight line, and the distances of these locations from the start of the highway in Geneva are,
in kilometers and in arbitrary order, my,mao, ..., m,. The constraints are as follows:

e At each location, Justin may open at most one restaurant. The expected profit from
opening a restaurant at location ¢ is p;, where p; >0 and ¢t =1,2,...,n.

e Any two restaurants should be at least k kilometers apart, where k is a positive integer.

As Justin is not famous for his algorithmic skills, he needs your help to find an optimal solution,
i.e., design and analyze an efficient algorithm to compute the maximum expected total profit
subject to the given constraints.

Solution: Let M be the array containing the distances of the restaurants from Geneva, in
increasing order; we can compute this array in O(nlogn) time (e.g. using mergesort, heap-
sort, etc.), and let p be the array whose i-th element contains the profit we gain by opening
a restaurant at position M[i]. Now consider the opening of the leftmost restaurant: since it is
the leftmost restaurant, there will be no restaurant closer to Geneva. Furthermore, opening this
restaurant restricts the set of locations where we can open other restaurants, since restaurants
must be at least k kilometers apart. Thus, given that the leftmost restaurant is opened at a
particular location i, we can use the following (recursive) strategy to open the most profitable
set of restaurants. Let c[i] be the entry in array c¢ containing the optimal profit for the possible
set of restaurant locations whose leftmost restaurant is opened at location M[i]. Formally we
have:

elil =pli] + i<i<n MM+

We implement this recursive formulation efficiently using the Bottom-up approach:

RESTAURANTS(M, p)

c[n] = p[n]
.fori=ntol
<0
for j=i+1ton
if c[j] > 1 and M[j] > M[i] + k
I clj
end-if
end-for
cli] < pli] +1
10. end-for

11. return max c[i]
1<i<n

© 0 NSOk W=

Let us analyze the running time of the above algorithm: the two nested loops will cause
lines 5-7 to be executed ©(n?) times. Line 11 requires ©(n) operations, while sorting requires
O(nlogn) operations. Hence, the total running time is ©(n?).

Note that we can design an algorithm with O(n log n) running time too. As a preprocessing
step, we sort the possible locations according to their distances, then, we calculate the nearest
possible location on the right of m; which is at least k kilometers away. We denote such location

Page 9 (of 10)

CS-250 Algorithms, Midterm Exam e Autumn 2013
Ola Svensson

for each i by b[i]. If no such location exists, we set b[i] = n + 1. The algorithm below returns
the array b in O(n) time.

LEFTPOSSIBLE(M)

1. pointer =1

2.fori=1toi=n

3. while pointer <= n+1 and M [pointer| — M[i] < k
4. pointer < pointer + 1

5. bli] < pointer

6. return b

Let d[i] be the maximum profit that can be achieved from opening restaurants from m; to
m,. At each position, we can either open a restaurant or keep it closed. If we open a restaurant,
our profit would be p[i] + d[b[i]]. If we do not open a restaurant in m;, then our profit would be
d[i + 1]. Here we implement this algorithm:

FASTRESTAURANT(M, p)

l.din+1]+0

2. b = LeftPossible(M)
J.fori=ntoi=1

4 d[i] = max (d[i + 1], d[b[i]] + pli])
5. return b[1]

The total running time for this algorithm is O(n log n) + ©(n).

Page 10 (of 10)

CS-250 Algorithms, Midterm Exam e Autumn 2013
Ola Svensson

