
Exercise IX, Algorithms 2024-2025
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. There are many problems on this set, solve as many as you can and ask
for help if you get stuck for too long. Problems marked * are more difficult but also more
fun :).

More on maxflows

1 (⋆, Radar evasion) The People’s Republic of Isolatia is a perfectly rectangular country. It shares
its entire west border with the Republic of Westilia and its entire east border with the Republic
of Eastilia. Westilia would like to send aircraft to provide emergency aid to Eastilia. The only
way of reaching Eastilia is by flying through Isolatia’s airspace (dangerous uncharted territory
borders Isolatia on the south and north!), but Isolatia prohibits other countries from flying in
its airspace. Therefore, Isolatia has deployed radar installations throughout the country. Each
of the n radar sites is specified by its coordinates and the radius of its range. Westilia plans to
send saboteurs to Isolatia to disable some radar stations in order to allow it to fly planes from
the west border to the east border of Isolatia without being detected by radar.

A flight path is a continuous curve entirely contained in the airspace of Isolatia that connects
a point on the west border to a point on the east border. You can use the fact that there exists
a flight path if and only if there is no sequence of radars r1, r2, . . . , rk such that the range of r1
overlaps the north border, the range of ri overlaps the range of ri+1 for all i = 1 . . . k − 1 and
the range of rk overlaps the south border.

Give an efficient algorithm for determining the smallest number of radar sites to be disabled
to establish a flight path from Westilia to Eastilia that is outside the range of any radar station.

Figure 1. An example of radars in a rectangular region. Removal of the two radars indicated in
red provides a valid flight path between the east and west boundaries.

Solution: We first reduce the problem to finding a minimum vertex s-t cut in an undirected
graph. We then show how to find the minimum vertex cut using a maximum flow algorithm on
a modified graph. The value of the maximum flow in the graph obtained in our reduction is no
more than n, and the number of edges in the graph is O(n2). Thus, the runtime is O(n3) using
the Ford-Fulkerson algorithm for maximum flow.

Page 1 (of 3)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa, Ola Svensson

We first construct a graph G = (V,E) such that our problem reduces to the minimum vertex
s−t cut problem in G. We then reduce the vertex s−t cut problem to the edge s−t cut problem
in a graph G′ derived from G, and solve the minimum s− t cut problem in G′ using maximum
flow algorithms.

The graph G is constructed as follows. The vertex set V contains a vertex ci for each circle
Ci, i = 1, . . . , N , as well as a vertex s (source) corresponding to the north border, and a vertex t
(sink) corresponding to the south border. Connect ci to cj iff Ci overlaps with Cj , i, j = 1, . . . , N .
Connect s with Ci, i = 1, . . . , N iff Ci intersects the north border, connect t with Ci, i = 1, . . . , N
iff Ci intersects the south border.

We will use the following fact given in the statement of the problem: there exists a flight
path if and only if there is not sequence of circles C1, C2, . . . , Ck such that C1 overlaps the north
border, Ci overlaps Ci+1 for all i = 1 . . . k − 1 and Ck overlaps the south border. This means
that we need to find the smallest set of circles S such that removal of these circles disconnects
the source from the sink, i.e. we are interested in the minimum s− t vertex cut in the graph G.

We can solve the minimum vertex cut problem in G by solving the minimum edge cut problem
in the graph G′ obtained from G as follows. First replace each node u except for the source and
the sink by a pair of nodes {uin, uout}, and add an edge (uin, uout) of capacity 1. For each edge
{u, v} ∈ E of the graph G add directed edges (uout, vin), (vout, uin) of capacity +∞. For each
edge {s, u} ∈ E in G add an edge (s, uin) of capacity +∞, and for each edge {u, t} ∈ E in G
add an edge (uout, t) of capacity +∞.

Now note that there is a one to one correspondence between s− t paths in G and s− t paths
in G′, and vertices u of G are mapped to edges (uin, uout) in G′. Thus, the minimum number of
vertices that one needs to delete to disconnect s from t in G is equal to the minimum weight of
edges that one needs to delete to disconnect s from t in G′. The latter quantity is the minimum
s−t cut in G′, so it can be computed using max-flow covered in class. The value of the maximum
flow is at most n, and the number of edges in the graph is O(n2). Thus, the runtime is O(n3)
using the Ford-Fulkerson algorithm for maximum flow.

Minimum spanning trees

2 (Exam question 2012 worth 20 pts) Consider the following minimum spanning tree instance, i.e.,
an undirected connected graph with weights on the edges.

v

4

5

1
2

7

6

3 12

10

9 11
8

2a (5 pts) Write the weights of the edges of the minimum spanning tree in the order they are
added by Prim’s algorithm starting from vertex v.

Solution: 4,1,2,6,9,8.

Page 2 (of 3)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa, Ola Svensson

2b (5 pts) Write the weights of the edges of the minimum spanning tree in the order they are
added by Kruskal’s algorithm.

Solution: 1,2,4,6,8,9.

2c (*,10 pts) A bottleneck edge is an edge of highest weight in a spanning tree. A spanning tree
is a minimum bottleneck spanning tree if the graph does not contain a spanning tree with
a smaller bottleneck edge weight. Show that a minimum spanning tree is also a minimum
bottleneck spanning tree.

Solution: Suppose that there exists a minimum spanning tree T that is not a minimum bottle-
neck spanning tree. Identify the edge e in T of maximum weight and remove it. This leads to a
graph with two components and there must exist an edge e′ that connects them with w(e′) < w(e)
(take an edge of a minimum bottleneck spanning tree crossing the cut defined by the two com-
ponents).
Adding e′ yields a new spanning tree of lower cost which contradicts that we started with a
minimum spanning tree T .

3 (*, Exam question 2013 worth 10 pts) Consider three undirected edge-weighted connected graphs
G1 = (V,E1), G2 = (V,E2), and H = (V,E1 ∪E2) with non-negative weights w : E1 ∪E2 → R+

on the edges. Note that they are all graphs on the same vertex set but their edges differ: G1 has
only the edges in E1, G2 has only the edges in E2, and H has all the edges (E1 ∪ E2).

Let T, T1, T2 be minimum spanning trees of H,G1, and G2, respectively. Assuming that the
weights of the edges are unique, i.e., no two edges have the same weight, prove that T ⊆ T1∪T2.

For an example of the statement see the figure below. The solid edges are E1 and the dashed
edges are E2. Note that the minimum spanning tree of G1 is T1 = {1, 2, 4}, the minimum
spanning tree of G2 is T2 = {3, 5, 6}, and the minimum spanning tree of H is T = {1, 2, 3}. We
have thus that T ⊆ T1 ∪ T2 in this case. You should prove that it holds in general.

1

2

4

3

5

6

Solution:
Let e be an arbitrary edge in T . Consider the cut defined by the two connected components of

T \{e}. Then e is the minimum-cost edge in this cut. (Proof. Suppose e′ ̸= e is the minimum-cost
edge in the cut (A,B). Then T \{e}∪{e′} is a spanning tree of strictly better cost, contradicting
the assumption that T is a minimum spanning tree.)

Since e ∈ E1 ∪ E2, e ∈ Ei for some i ∈ {1, 2}, and e is the minimum-cost edge in (A,B) in
Gi; thus, e ∈ Ti from the cut property.

Alternative proof: Suppose that we run Kruskal’s algorithm on H,G1, G2 to find T, T1, T2.
Let m = |E1 ∪ E2|.

Page 3 (of 3)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa, Ola Svensson

Suppose toward contradiction that there exists an edge that Kruskal’s algorithm adds to T
but not to T1 or T2. Let e = {u, v} be the first such edge. Suppose that e ∈ E1 (the case e ∈ E2

is symmetric). If Kruskal’s algorithm don’t add e to T1, T1 already contains a path between u
and v that consists of edges of strictly smaller weight than e. However, as Kruskal’s algorithm
greedily adds edges of smallest edge first, we have that there must be a path between u and v in
T as well, which contradicts that e is added to T .

Alternative proof: Consider the edges in E1 ∪E2. Let m = |E1 ∪E2| and suppose that they
are ordered e1, e2, . . . , em such that w(e1) < w(e2) < · · · < w(em). Now note that if we run
Kruskal’s algorithm on H then an edge ei = {u, v} is added to the tree T if and only if the
vertices u and v are in different components in the graph with edges E<i = {e1, e2, . . . , ei−1}.
Therefore if ei is added to the tree T of H it is also clearly added by Kruskal’s algorithm to the
tree T1 of G1 if ei ∈ E1 or to the tree T2 of G2 if ei ∈ E2. To see this note that since u and v
are in different components in the graph with edges E<i, they are also in different components
in the graph with edges E<i ∩ E1 and in the graph with edges E<i ∩ E2.

4 (Exercise 23.2-1) Let (u, v) be a minimum-weight edge in a connected graph G. Show that (u, v)
belongs to some minimum spanning tree of G.

Solution: We give a constructive proof. Suppose that there is some minimum spanning tree T
that does not contain edge (u, v). If we add edge (u, v) to the tree T , we obtain a connected
graph with n edges that contains a single cycle, which includes edge (u, v). Note that if we
remove any edge from this cycle, the resulting graph is still connected and contains n− 1 edges,
and is therefore a spanning tree. Since we assumed that edge (u, v) is a minimum weight edge,
removing any edge (not equal to (u, v)) from this cycle will result in a graph with weight no
more than the weight of T . Thus, we have constructed a minimum spanning tree containing
edge (u, v).

5 (Exercise 23.2-8) Professor Borden proposes a new divide-and-conquer algorithm for computing
minimum spanning trees, which goes as follows. Given a graph G = (V,E), partition the set
V of vertices V1 and V2 such that |V1| and |V2| differ by at most 1. Let E1 be the set of edges
that are incident only on vertices in V1, and let E2 be the set of edges that are incident only on
vertices V2. Recursively solve a minimum-spanning-tree problem on each of the two subgraphs
G1 = (V1, E1) and G2 = (V2, E2). Finally, select the minimum-weight edge in E that crosses the
cut (V1, V2), and use this edge to unite the resulting two minimum spanning trees into a single
spanning tree.

Either argue that the algorithm correctly computes a minimum spanning tree of G, or provide
an example for which the algorithm fails.

Solution: The algorithm fails on the following example: Consider a triangle {(u, v), (v, w), (w, u)}
in which each edge has a unique, positive weight. Suppose that edge (u, v) has the largest edge
weight. If Professor Borden partitions the three vertices as follows, V1 = {u, v}, V2 = {w}, then
his algorithm will choose edge (u, v) as the minimum spanning tree of V1. Then he picks the
minimum weight edge crossing the cut (V1, V2)—either (v, w) or (u,w)—to merge the minimum
spanning trees on V1 and V2, the latter of which contains no edges. Note that, out of the three
original edges, the final spanning tree will contain the minimum weight edge and the maximum
weight edge (which is edge (u, v) by assumption). The actual minimum spanning tree will,
however, contain the two edges out of the original three that have the smallest weight.

Page 4 (of 3)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa, Ola Svensson

6 (part of Problem 23-3) A bottleneck spanning tree T of an undirected graph G is a spanning
tree of G whose largest edge weight is minimum over all spanning trees of G. We say that the
value of the bottleneck spanning tree is the weight of the maximum-weight edge in T .

Give a linear-time algorithm that given a graph G and an integer b, determines whether the
value of the bottleneck spanning tree is at most b.

Solution: We can run DFS ignoring all edges that have weight greater than b. We can use the
modification of DFS (a problem from a previous Exercise session) that keeps track of the number
of connected components. If there is only one connected component, then the graph containing
only edges with weight at most b is connected and therefore contains some spanning tree whose
maximum weight edge is at most b. If there are two or more components, then edges with weight
greater than b are necessary to construct any connected subgraph, e.g. a spanning tree. This
algorithm runs in the same asymptotic time as DFS: O(|E|+ |V |).

Page 5 (of 3)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa, Ola Svensson

