
Exercise III, Algorithms 2024-2025
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. There are many problems on this set, solve as many as you can and ask
for help if you get stuck for too long. Problems marked * are more difficult but also more
fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

1 Asymptotics and recursions

1 (Previous exam question) Give tight asymptotic bounds for the following recurrences (assuming

that T (1) = Θ(1)):

(i) T (n) = 3T (n/3) + Θ(1)

(ii) T (n) = 3T (n/3) + Θ(n)

(iii) T (n) = 3T (n/3) + Θ(n2)

(iv) T (n) = T (n/5) + 2T (2n/5) + Θ(n)

(v) T (n) = 25T (n/5) + Θ(n2)

Solution:

(i) Θ(n) (Master Theorem)

(ii) Θ(n log n) (Master Theorem)

(iii) Θ(n2) (Master Theorem)

(iv) Θ(n log n) (Substitution method)

(v) Θ(n2 log n) (Master Theorem)

2 (previous exam question)
Suppose you are choosing between the following five Divide-and-Conquer algorithms:

Algorithm A solves problems of size n by dividing (in constant time) them into two sub-
problems each of size n/2, recursively solving each subproblem, and then combining the
solutions in Θ(n3) time.

Algorithm B solves problems of size n by dividing (in constant time) them into nine sub-
problems each of size n/3, recursively solving each subproblem, and then combining the
solutions in Θ(n2) time.

Algorithm C solves problems of size n by dividing (in constant time) them into ten subproblems
each of size n/3, recursively solving each subproblem, and then combining the solutions in
Θ(n) time.

Algorithm D solves problems of size n by dividing (in constant time) them into eight sub-
problems each of size n/2, recursively solving each subproblem, and then combining the
solutions in constant time.

Page 1 (of ??)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa and Ola Svensson



Algorithm E solves problems of size n by dividing (in constant time) them into two subprob-
lems each of size n − 1, recursively solving each subproblem, and then combining the
solutions in constant time.

What are the running times of each of these algorithms (in Θ notation), and which would
you choose?

Solution:

Algorithm A has running time proportional to the recursion T (n) = 2T (n/2) + Θ(n3) which,
by the master theorem, is Θ(n3).

Algorithm B has running time proportional to the recursion T (n) = 9T (n/3) + Θ(n2) which,
by the master theorem, is Θ(n2 lg n).

Algorithm C has running time proportional to the recursion T (n) = 10T (n/3) + Θ(n) which,
by the master theorem, is Θ(nlog3 10).

Algorithm D has running time proportional to the recursion T (n) = 8T (n/2) + Θ(1) which,
by the master theorem, is Θ(n3).

Algorithm E has running time proportional to the recursion T (n) = 2T (n − 1) + Θ(1) which
is Θ(2n).

The running time of the algorithms are thus so that B < C < A = D < E. Therefore, we choose
algorithm B.

Page 2 (of ??)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa and Ola Svensson



Maximum-Subarray Problem

3 In class we saw a divide-and-conquer algorithm for Maximum Subarray that runs in time
O(n log n). Illustrate how it works by showing/explaining the divide, conquer and merge step of
each subproblem when the algorithm is given the following input

-1 4 -1 -1 2 -5 2 1

Solution:

1. Divide/Conquer Step: Divide the input into two smaller subproblems and then conquer
these subproblems by recursively applying the procedure until we have singletons:

-1 4 -1 -1 2 -5 2 1

-1 4 -1 -1 2 -5 2 1

-1 4 -1 -1 2 -5 2 1

2. Combining or Merging Step: Let Ai be an array resulting at recursion level i. If i is the last
recursion level (i.e Ai is a singelton), then the maximum subarray of Ai is just the whole
array. Otherwise, the solution of the problem on Ai is the maximum among the solution
of the left subproblem, the solution of right subproblem, and the maximum subarray that
crosses the mid-point (this can be done in linear time). If we let red denote the current
solution, we obtain:

-1 4 -1 -1 2 -5 2 1

-1 4 -1 -1 2 -5 2 1

-1 4 -1 -1 2 -5 2 1

-1 4 -1 -1 2 -5 2 1

Matrix Multiplication

4 (Exercise 4.2-1 in the book)
Use Strassen’s algorithm to compute the matrix product(
1 3
7 5

)(
6 8
4 2

)
Show your work.

Solution: Let A =

(
1 3
7 5

)
, B =

(
6 8
4 2

)
Denote by C the 2× 2 output matrix.

1. Divide the matrices A, B and C into 1× 1 matrices.
A11 = 1, A12 = 3, A21 = 7, A22 = 5
B11 = 6, B12 = 8, B21 = 4, B22 = 2

Page 3 (of ??)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa and Ola Svensson



2. Create the 10 matrices S1, S2, ..., S10.
S1 = B12 −B22 = 8− 2 = 6,
S2 = A11 +A12 = 1 + 3 = 4,
S3 = A21 +A22 = 7 + 5 = 12,
S4 = B21 −B11 = 4− 6 = −2,
S5 = A11 +A22 = 1 + 5 = 6,
S6 = B11 +B22 = 6 + 2 = 8,
S7 = A12 −A22 = 3− 5 = −2,
S8 = B21 +B22 = 4 + 2 = 6,
S9 = A11 −A21 = 1− 7 = −6,
S10 = B11 +B12 = 6 + 8 = 14.

3. Compute the 7 products P1, P2, ..., P7.
P1 = A11 ∗ S1 = 1 ∗ 6 = 6,
P2 = S2 ∗B22 = 4 ∗ 2 = 8,
P3 = S3 ∗B11 = 12 ∗ 6 = 72,
P4 = A22 ∗ S4 = 5 ∗ (−2) = −10,
P5 = S5 ∗ S6 = 6 ∗ 8 = 48,
P6 = S7 ∗ S8 = (−2) ∗ 6 = −12,
P7 = S9 ∗ S10 = (−6) ∗ 14 = −84.

4. Add and subtract the Pi matrices to obtain the output C.
C11 = P5 + P4 − P2 + P6 = 48 + (−10)− 8 + (−12) = 18,
C12 = P1 + P2 = 6 + 8 = 14,
C21 = P3 + P4 = 72 + (−10) = 62,
C22 = P5 + P1 − P3 − P7 = 48 + 6− 72− (−84) = 66

Therefore C =

(
18 14
62 66

)
5 (Exercise 4.2-3 in the book)

How would you modify Strassen’s algorithm to multiply n × n matrices in which n is not an
exact power of 2? Show that the resulting algorithm runs in time Θ(nlg 7).

Solution: In class, we showed that we can compute the product of two n × n matrics in time
Θ(nlg 7) using Strassen’s algorithm. Let’s suppose we want to compute the product of two n×n
matrices A and B where n isn’t a power of 2, that is 2i < n < 2i+1 for some i > 0.
In order to compute AB, we extend the dimension of A,B to n′ = 2i+1 by appending zeros to
the colums and rows of A,B obtaining A′, B′. Given that dimension of A′ & B′ is a power of
2, we can compute A′B′ by using Strassen’s algorithm. Furthermore by computing the product
A′B′, we can obtain AB.

A′ ×B′ =



0 · · · 0
A 0 · · · 0

0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
0 0 · · · 0 0 · · · 0


×



0 · · · 0
B 0 · · · 0

0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
0 0 · · · 0 0 · · · 0


=



0 · · · 0
AB 0 · · · 0

0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
0 0 · · · 0 0 · · · 0


The running time of Strassen’s on A′B′ is Θ(n′ lg 7). Now, n′ = 2i+1 = 2 × 2i ≤ 2n. Hence, the
running time will be Θ((2n)lg 7) which is the same as Θ(nlg 7).

Page 4 (of ??)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa and Ola Svensson



6 (half *, Exercise 4.2-4 in the book)
What is the largest k such that if you can multiply 3 × 3 matrices using k multiplications (not
assuming commutativity of multiplication), then you can multiply n×n matrices in time o(nlg 7)?
What would the running time of this algorithm be?

Note: lg x corresponds to the base 2 logarithm of x, i.e. lg x = log2 x.

Solution: If you can multiply 3 × 3 matrices using k multiplications, then you can multiply
n× n matrices by recursively multiplying n/3× n/3 matrices, in time T (n) = kT (n/3)+Θ(n2).
Using the master method to solve this recurrence, consider the ratio of nlog3 kand n2:

• If log3 k = 2, case 2 applies and T (n) = Θ(n2 lg n). In this case, k = 9 and T (n) = o(nlg 7).

• If log3 k < 2, case 3 applies and T (n) = Θ(n2). In this case, k < 9 and T (n) = o(nlg 7).

• If log3 k > 2, case 1 applies and T (n) = Θ(nlog3 k). In this case, k > 9. T (n) = o(nlg 7)
when log3 k < lg 7, i.e., when k < 3lg 7 ≈ 21.85. The largest such integer k is 21.

Thus, k = 21 and the running time is Θ(nlog3 k) = Θ(nlog3 21) = O(n2.80) (since log3 21 ≈ 2.77).

Page 5 (of ??)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa and Ola Svensson



More general questions

7 (previous exam question) Consider the procedure Power that takes as input a number a, a
non-negative integer n and returns an:

Power(a, n)

1. if n = 0
2. return 1
3. if n = 1
4. return a
5. q = ⌊n4 ⌋ + 1
6. return Power(a, q)· Power(a, n− q)

7a (10 pts) Let T (n) be the time it takes to invoke Power(a, n). Then the recurrence relation
of T (n) is

T (n) =

{
Θ(1) if n = 0 or n = 1,

T (⌊n/4⌋+ 1) + T (n− ⌊n/4⌋ − 1) + Θ(1) if n ≥ 2.

Prove that T (n) = O(n) using the substitution method.

In your proof you may ignore the floor function, i.e., you can replace ⌊n/4⌋ by n/4.

Solution:
We shall show that T (n) = O(n).

Claim 1.1 There exist positive constants b, b′ and n0 such that T (n) ≤ bn− b′ for all n ≥ n0.

Proof. As always in the substitution method we do not need to worry about the base case as
we can always select b large enough so that the base case holds.

Now consider the inductive step, i.e., assume statement true for all k < n and we prove it for
n:

T (n) ≤ T (n/4 + 1) + T (3n/4− 1) + c for some absolute constant c

≤ b(n/4 + 1)− b′ + b(3n/4− 1)− b′ + c

= bn− 2b′ + c selecting b′ to be a greater constant than c gives us
≤ bn− b′,

as required.
□

Page 6 (of ??)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa and Ola Svensson



7b (15 pts) Design and analyze a modified procedure FastPower(a, n) that returns the
same value an but runs in time Θ(log n).

A solution that only works when n is a power of 2, i.e., n = 2k for some integer k ≥ 0,
gives partial credits.

(Note that an is not a basic instruction and should therefore not be used.)

Solution:
Note that

an =


1 if n = 0,

(a⌊n/2⌋)2 if n > 0 is even,
(a⌊n/2⌋)2 · a if n > 0 is odd.

This motivates the following Divide-and-Conquer solution which modifies the previous solu-
tion:

FastPower(a, n)

1. if n = 0
2. return 1
3. tmp =FastPower(a, ⌊n/2⌋)
4. if n is even
5. return tmp · tmp
6. else (n is odd)
7. return tmp · tmp · a.

To analyze this, let T (n) be the time it takes to execute FastPower(a, n). Note that the
divide and combine part both takes time Θ(1). Further we conquer one subproblem of size
⌊n/2⌋ ≈ n/2. Therefore we have that T (n) = T (n/2) + Θ(1) and T (0) = Θ(1). By the Master
method we thus have that T (n) = Θ(log n) as required.

8 (∗, Exercise 4.1-5 in the book) Use the following ideas to develop a nonrecursive, linear-time
algorithm for the maximum-subarray problem. Start at the left end of the array, and progress
toward the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of A[1 . . j], extend the answer to find a maximum subarray ending at index j + 1
by using the following observation: a maximum subarray of A[1 . . j + 1] is either a maximum
subarray of A[1 . . j] or a subarray of the form A[i . . j + 1], for some 1 ≤ i ≤ j + 1.
Determine a maximum subarray of the form A[i . . j + 1] in constant time based on knowing a
maximum subarray ending at index j.

Solution: Let maxSub(A[i · · · j]) be the maximum subarray of A[i · · · j] and sum(A[i . . . j]) be
the summation of the entries in array A from index i to index j. Then maxSub(A[1 · · ·n]) can
be computed as follows.

maxSub(A[1 · · ·n]) = max(maxSub(A[1 · · ·n− 1]),
n

max
i=1

sum(A[i · · ·n]))

That is, maximum subarray of A[1 · · ·n] either includes A[n] (2nd part in the above recurrence)
or not (maxSub(A[1 · · ·n]) = maxSub(A[1 · · ·n− 1])).

Page 7 (of ??)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa and Ola Svensson



input: array A of length n
max_so_far=-infinity
max_ending_here=-1
for i in 1:n
if(max_ending_here<0)

max_ending_here=A[i]
else

max_ending_here=max_ending_here+A[i]
endif
max_so_far=max(max_ending_here, max_so_far)

endfor
output: max_so_far

Note the −∞ above can be replaced with the smallest number in the array (this takes linear
time). Alternatively,

input: array A of length n
max_so_far=0
max_ending_here=0
for i in 1:n

max_ending_here=max(max_ending_here+a[i],0)
max_so_far=max(max_ending_here, max_so_far)

output: max_so_far

Note that the above algorithm (second one) assumes that the maximum subarray has a non-
negative sum. In order to take care of the case when the maximum subarray has a negative sum
(this exists when the array is only made of negative numbers), we can check if this is the case
and just output the maximum negative element in linear time.
Both algorithms run in linear time since each line takes Θ(1) and each line us run at most n times
because of the loop, thus Θ(n) total running time. Hence, we obtain a linear time, non-recursive
algorithm solving the maximum subarray problem.

Page 8 (of ??)

CS-250 Algorithms • Spring 2025
Alessandro Chiesa and Ola Svensson


