1

=PiL

Exercise Il, Algorithms 2024-2025

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. There are many problems on this set, solve as many as you can and ask
for help if you get stuck for too long. Problems marked * are more difficult but also more
fun).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

(Exercise 2.3-4 in the book) We can express insertion sort as a recursive procedure as follows.
In order to sort A[l...n|, we recursively sort A[l,...n — 1] and then insert A[n] into the sorted
array A[l...n —1].

la

Write a recurrence for the worst-case running time of this recursive version of insertion
sort.

1b Solve the recurrence to give a tight asymptotic bound (in terms of the ©-notation).

Solution:

la.

1b.

Since our initial problem size decreases by 1 in each recursive call, we can see that we will
have n recursive calls. Because we are looking for the worst case, we can approximate the
cost to insert the new element at each recursive step at ©(n) (the time needed to check all
element of the array before inserting the new one). So we found the following recursion:
T(n)=T(n—1)+ O(n).

We can easily see that we are going to make n recursive calls and at each recursive call we
have a cost equal to cn for some constant ¢ > 0. So a good guess for a tight asymptotic
bound for the worst case running time is ©(n?). The following calculation makes us strongly
believe that our guess is good:

T(n)=T(n—-1)+cn
=Tn—-2)4+cn+cn—1)
=cn+cn—1)4+cn—-2)+...+3c+2c+c
:cZi
i=1
n(n+1)

=c =5 :®(n2)

Now we will prove that our guess is correct using the substitution method. We first need to
prove that n? is indeed an asymptotic upper bound, i.e., T'(n) = O(n?). We prove by weak
induction on n > 1 that there exists a constant a > 0 such that T'(n) < an? for all n > 1.

The base case holds as long as a > ¢, as T'(1) = ¢. We now provide the inductive step.
We have T'(n) < T'(n — 1) + cn, and hence by the inductive hypothesis

T(n) <a(n—1)%+cn =an®+a —2an + cn = an® + a + (c — 2a)n.

Page 1 (of 7)

CS-250 Algorithms e Spring 2025
Alessandro Chiesa and Ola Svensson

2

Choosing a > ¢, we ensure that a + (¢ —2a)n < a—an = a(1 —n) < 0, and thus T'(n) < an?,
as required. This completes the proof of the upper bound.

We now prove the lower bound of Q(n?). Similarly to the above, we prove by weak induction
on n that there exists a constant b > 0 such that T'(n) > bn? for all n > 1. The base case
holds as long as 0 < b < ¢, as T(1) = ¢. We now provide the inductive step. We have
T(n) =T(n — 1)+ cn, and hence by the inductive hypothesis
Tn)=T(n—1)+cn

>bn—1)%+cn

=bn®4+b—2bn+cn

=bn? + b+ n(c—2b)

> bn?

as long as 0 < b < ¢/2. This completes the proof of the lower bound.
Putting the two bounds together, we conclude that T'(n) = ©(n?), as required.

Use the substitution method (mathematical induction) to solve the following recurrences

2a Show that when n is an exact power of 2, the solution of the recurrence

p ifn =2,
T(n) = . k
2T(n/2)+n ifn=2"for k>1

is T'(n) = nlogy n.
2b Consider the recurrence T'(n) = 87'(n/2) + O(n?).

e Draw the recursion tree to make a qualified guess of the value of T'(n) in terms of the
O-notation.

o (half a *) Then verify this guess using the substitution method (i.e., mathematical
induction). Ask the TA’s for a hint if you get stuck for too long.

Solution:

2a. We will argue by induction on n that 7'(n) = nlogyn when n > 2% ¥ k& > 1. In the inductive
hypothesis, we assume that:

T(n/2) = (n/2)logy(n/2)
Here we need n/2 > 2, i.e. n > 4 . Using the inductive hypothesis, we get:

T(n)=2T(n/2)+n (1)
= 2(n/2) logy(n/2) + n)
= n(loggn —logy2) +n
=nlogon—n+n
=nlogyn

where (1) follows from the recurrence equation and (2) follows from the inductive hypothesis.
Since the induction step works for n > 4, it is sufficient to show that 7(n) = nlogyn for

n = 2 (the base case):
T(2) =2=2log,2

Page 2 (of 7)

CS-250 Algorithms e Spring 2025
Alessandro Chiesa and Ola Svensson

log

2b. Using the recursion tree method, we will make an educated guess that T'(n) = O(n?).

level 0 cn?
level 1 2 ///2\\2 2 2 2
T @ e®) e e®) e e®) (¥ <)

c(2)? . c()?
leveli
T(:1) T(:l) ..

The total running time is as follows:

logyn—1
— i n\?
T(n) = Z cx 8" x o
=0
logy n—1 2
—_— 7 —
= Z cx 8" x 7
=0
logy, n—1
=cxn? Z 2!
=0
— 2 9logy n
=cxn(2 1)
= ¢(n® —n?)

total cost

2

S e ()

glogan ¢

To verify our guess, we can use substitution method. In order to show that T'(n) = O(n?), we

will have to to show that T'(n) = Q(n?) and T'(n) = O(n?).

For O(n®)-part: The recurrence implies that T'(n) < 8T'(n/2)+cn for a constant ¢ > 0if n > 1,
and T(1) < ¢. We will argue by induction on n that T'(n) = O(n3). Specifically, we will show
by strong induction on n that T(n) < dn® — d'n® for some constants d,d’ > 0. Using the the

inductive hypothesis, we get:

T(n) < 8T(n/2) + cn?
< 8d(n/2)* — 8d'(n/2)? + cn?
= dn® + n*(—2d’ +¢)
<dn®—dn® ifd >c

Page 3 (of 7)

CS-250 Algorithms e Spring 2025
Alessandro Chiesa and Ola Svensson

The base case is provided by n = 1, where T'(n) = T'(1) < ¢ and is satisfied by choosing d,d’ so
that d — d’ > ¢. Thus, setting d = 2¢ and d’ = ¢ satisfies both constraints and completes the
proof.

For Q(n®)-part: The recurrence implies that T'(n) > 8T(n/2) + cn for a constant ¢ > 0,
and T(1) > ¢. We will argue by induction on n that T'(n) = Q(n?). Specifically, we will show
by strong induction on n that T(n) > dn? for a constant d > 0. Using the recurrence and the
inductive hypothesis, we get:

T(n) > 8T (n/2) + cn?
> 8d(n/2)% + cn?
= dn® + cn?

> dn® for any ¢,d > 0
The base case is provided by n = 1, where T'(1) > ¢, and is satisfied by choosing d < c.

(Exercise 4.5-1 in the book) Use the master method to give tight asymptotic bounds for the
following recurrences.

3a T(n)=2T(n/4) + 1.
3b T(n)=2T(n/4)+/n.
3¢ T(n) =2T(n/4) +n.
3d T(n) =2T(n/4) + n?
Solution:

3a. The recurrence is of the form T'(n) = aT (%) + f(n) where a = 2, b =4 and f(n) = 1,Vn
(i.e., constant). Let ¢ = 0, we have f(n) = ©(1) = ©(n¢) and ¢ = 0 < 3 = log,(2) = log;(a).
It follows from the first case of the master theorem that T'(n) = ©(n'°8(®) = @(n'°81(2)) =

O(nt) = O(/n).

3b. We have a =2, b=4 and f(n) = n: = O(n°) for ¢ = § =log,(2) = log,(a). It follows from
the second case of the master theorem that T'(n) = ©(n'°%(%) log(n)) = ©(y/nlog(n)).

3c. We have a =2, b =4 and f(n) =n = 0(n°) for c = 1 > 1 = log,(2) = log,(a). It follows
from the third case of the master theorem that 7'(n) = O(f(n)) = O(n).

3d. We have a = 2, b =4 and f(n) = n? = O(n°) for ¢ = 2 > 1 =log,(2) = logy(a). It follows
from the third case of the master theorem that T'(n) = ©(f(n)) = ©(n?).

Page 4 (of 7)

CS-250 Algorithms e Spring 2025
Alessandro Chiesa and Ola Svensson

4 Let f(n) and g(n) be the functions defined for positive integers as follows:

Function f(n): Function g(n):
1: ans <0 1: if n =1 then
2: fori=1,2,...,n—1do 2: return 1
3: forj=1,2,....n—ido 3: else
4: ans < ans + 1 4: return g(|n/2])+g(|n/2])
5: end for 5: end if
6: end for
7. return ans
4a Find closed-form formulas of f(n) and g(n).
4b What is, in ©-notation, the running time of these algorithms?
4c What is, in ©-notation, the running time of algorithm g(n) if we at line 4 replace g(|n/2])+
g([n/2]) by 29(|n/2])?
Solution:
4a. For f(n), in the i*" iteration, we add 1 to ans for n—i times. We do it for i = 1,2,--- ,n—1.
Thus, f(n) = Y75 (n - i) = "2

4b.

4c.

For g(n), from the description of the algorithm,

“w_{l ifn=1
T =N 2g(lnj2]) itn>2

List g(n) for small n, and we can make a guess g(n) = 2F=1 for 251 < n < 28 — 1 and
positive integer k. It’s not difficult to prove the correctness of this guess by induction on k.
We observe that k = |logyn| + 1 when 2=1 < n < 28 — 1. Therefore, g(n) = 2llog27J,
For f(n), the running time we need for the i*® iteration is ¢- (n — i) for some constant ¢ > 0,
and thus the total running time is O(1) + 32" ¢+ (n — i) = O(1) + cn(nT_l) = 0(n?).
For g(n), we denote the running time as 7'(n). We can get the following recurrence for 7'(n).

TWOZ{gﬂ) #n:l
(n/2)+T(n/2)+0O(1) ifn>2
Because we call g on |n/2] twice.

By the master method, we can get the total running time 7'(n) = O(n).

If we at line 4 replace g(|n/2])+g(|n/2]) by 2g(|n/2]), the new recurrence for the worst-case
running time 7'(n) would be

T — JO0) ifn=1
T\ Tm/2) +01) ifn>2

Because we only call g on [n/2] once.

By the master method, we can get the total running time 7'(n) = ©(logn).

Page 5 (of 7)

CS-250 Algorithms e Spring 2025
Alessandro Chiesa and Ola Svensson

5

(Problem 2-1 in the book) Although merge sort runs in ©(n logn) worst-case time and insertion
sort runs in ©(n?) worst-case time, the constant factors in insertion sort make it faster for small
n. Thus, it makes sense to use insertion sort within merge sort when subproblems become
sufficiently small. Consider a modification to merge sort in which n/k sublists of length k are
sorted using insertion sort and then merged using the standard merging mechanism, where k is
a value to be determined.

5a Show that the n/k sublists, each of length k, can be sorted by insertion sort in ©(nk)
worst-case time.

5b Show that the sublists can be merged in ©(nlog(n/k)) worst-case time.

5¢ Given that the modified algorithm runs in ©(nk + nlog(n/k)) worst-case time, what is the
largest asymptotic value of k, as a function of n, for which the modified algorithm has the
same asymptotic running time as standard merge sort?

5d How should & be chosen in practice?

Solution:

5a. We know that insertion sort has ©(n?) worst-case time. Since the length of each array is k,
then the worst-case time to sort each such array is ©(k?). Since we have n/k different lists
to sort, the worst-case time is equal to © (% - k%) = © (nk)

5b. Just extending the 2-list merge to merge all the lists at once would take ©(n - (n/k)) =
©(n?/k) time (n from copying each element once into the result list, n/k from examining
n/k lists at each step to select next item for result list). To achieve O(nlog(n/k)) time
merging, we merge the lists pairwise, then merge the resulting lists pairwise, and so on, until
there is just one list. The pairwise merging requires ©(n) work at each level, since we are still
working on n elements, even if they are partitioned among sublists. The number of levels,
starting with n/k lists (with k elements each) and finishing with 1 list (with n elements), is
log(n/k) Therefore, the total running time for the merging is O(nlog(n/k)).

5c. The modified algorithm runs in ©(nk +nlog(n/k)) worst-case time and the standard merge
sort runs in ©(nlogn) worst-case time. So if we want that both have the same asymptotic
running time we need the following equality to be true :

O(nk + nlog(n/k)) = ©(nk +nlogn —nlogk) = ©(nlogn).

This equation will be true either if nk = O(nlogn), or if nlog(n/k) = ©(nlogn). Since we
are looking for the biggest k, we will choose k = logn.

5d. In practice, k£ should be the largest list length on which insertion sort is faster than merge
sort.

(*, Problem 2-4 in the book) Let A[l : n] be an array of n distinct numbers. If i < j and
Ali] > Al[j], then the pair (4, j) is called an inversion.

6a List the five inversions of the array (2,3,8,6,1).

6b What array with elements from the set {1,2,...n} have the most inversions? How many
does it have?

Page 6 (of 7)

CS-250 Algorithms e Spring 2025
Alessandro Chiesa and Ola Svensson

6c What is the relationship between the running time of insertion sort and the number of
inversions in the input array? Justify your answer.

6d Give an algorithm that determines the number of inversions in any permutation on n
elements in ©(nlogn) worst-case time. (Hint: Modify merge sort.)

Solution:
6a. The five inversions of the array are (1,5), (2,5), (3,4), (3,5) and (4,5).

6b. The number of inversions in an array is upper-bounded by the possible number of the un-
ordered pairs (7, 7), namely Y " ;i—1= %_1) This upper bound is achieved with equality

when the array is in reversed order.

6¢c. The running time time of insertion sort on an array A[1,2...n] is ©(n + I), where I is the
number of inversions of A[l1,2...n].
Consider the pseudo-code of the insertion sort in CLRS [Chap2|. For every element k in the
array, the inner loop runs for 1 + |I|, where I, = {j : (j, k) is an inversion}. Hence the
overall running time of the algorithm is © (3"} _, (1 + Ix)) = © (n + I).

6d. let A be an array of size n, and let A; and A, denote the left and right sub-arrays of A
respectively. Define I(A) to be the number of inversions in an array A, Hence :

I(A) = I(A) + 1(Ar) + [{ (i,) - Auld) > Ar(j)}]

a'e e

1 (2)

In order to count the total number of inversions of an array A, we proceed as in merge
sort (CLRS [Chap2|) by dividing it into left and right halves and proceeding recursively
on each half to get (1). Note that the number of inversions in an array of size 1 (base-
case) is 0. In order to get (2), we mimic the merge-sort algorithm by modifying the merge
subroutine. When merging the left and right sorted sub-arrays, specifically while inserting
A;(i) in the resulting merged array, we increment the total number of inversions by the
number of elements in A, that are strictly less than A;(i) (namely, the number of elements
from A, that are already added to the merged array).

The running time of this algorithm is thus the same as merge sort, i.e. ©(nlogn).

Page 7 (of 7)

CS-250 Algorithms e Spring 2025
Alessandro Chiesa and Ola Svensson

