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Binary Search Trees

Key property:
▶ If y is in the left subtree of x then y .key < x .key
▶ If y is in the right subtree of x then y .key ≥ x .key
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Binary Search Trees

Key property:
▶ If y is in the left subtree of x then y .key < x .key
▶ If y is in the right subtree of x then y .key ≥ x .key
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< 10

Tree T has a root: T.root

height h = 3
(number of edges in
longest path from root to
leaf)
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Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
▶ If y is in the left subtree of x then y .key < x .key
▶ If y is in the right subtree of x then y .key ≥ x .key
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height h = 14
(number of edges in
longest path from root to
leaf)

Basic operations take time proportional to height: O(h)

Lecture 9, 18.03.2025



QUERYING A BINARY SEARCH TREE
(Searching, Minimum, Maximum, Successor, Predecessor)
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Searching

What is the running time? O(h)
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Minimum and Maximum

By key property:

▶ Minimum is located in leftmost node

▶ Maximum is located in rightmost node

Minimum Maximum
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Minimum and Maximum

What is the running time? O(h)

Minimum Maximum
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Successor

Successor of a node x is the node y such that y .key is the

“smallest key” > x .key

▶ What is the successor of 6?
▶ What is the successor of 5?
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Successor of a node x is the node y such that y .key is the

“smallest key” > x .key
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Successor

Successor of a node x is the node y such that y .key is the

“smallest key” > x .key

▶ What is the successor of 6?

▶ What is the successor of 5?
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Successor

Successor of a node x is the node y such that y .key is the

“smallest key” > x .key

▶ What is the successor of 6?
▶ What is the successor of 5?
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Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x

Case 2: x has an empty right subtree

x
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Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

Case 2: x has an empty right subtree

x
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Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

x
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Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

x
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Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we’re visiting smaller
keys

x ’s successor is y is the node
that x is the predecessor of
(x is the maximum in y ’s left
subtree) x
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Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we’re visiting smaller
keys

x ’s successor is y is the node
that x is the predecessor of
(x is the maximum in y ’s left
subtree) x
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Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we’re visiting smaller
keys

x ’s successor is y is the node
that x is the predecessor of
(x is the maximum in y ’s left
subtree) x

y
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Successor (Predecessor is symmetric)

What is the running time? O(h)
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Successor (Predecessor is symmetric)

What is the running time? O(h)
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Successor (Predecessor is symmetric)

What is the running time?

O(h)
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Successor (Predecessor is symmetric)

What is the running time? O(h)
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PRINTING A BINARY SEARCH TREE
(Inorder, Preorder, Postorder)
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Printing Inorder (Idea)

▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8
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Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output:

1,2,3,4,5,6,8,9,10,11,12
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Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,

2,3,4,5,6,8,9,10,11,12
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Printing Inorder (Idea)
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Printing Inorder (Idea)
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Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively
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2 6 10
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Printing Inorder (Idea)
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Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively
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Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,

6,8,9,10,11,12
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Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,

8,9,10,11,12
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Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,

9,10,11,12
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Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,
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Printing Inorder (Idea)
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Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively
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Printing Inorder (Idea)
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Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,11,12
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Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,11,12
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Inorder tree walk

What is the running time? Θ(n)
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Inorder tree walk

What is the running time?

Θ(n)
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Inorder tree walk

What is the running time? Θ(n)
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Printing Preorder and Postorder

Preorder-Tree-Walk(x)

1. if x , NIL
2. print key [x ]
3. Preorder-Tree-Walk(x .left)
4. Preorder-Tree-Walk(x .right)

Postorder-Tree-Walk(x)

1. if x , NIL
2. Postorder-Tree-Walk(x .left)
3. Postorder-Tree-Walk(x .right)
4. print key [x ]
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Printing Preorder and Postorder

Preorder-Tree-Walk(x)

1. if x , NIL
2. print key [x ]
3. Preorder-Tree-Walk(x .left)
4. Preorder-Tree-Walk(x .right)

Postorder-Tree-Walk(x)

1. if x , NIL
2. Postorder-Tree-Walk(x .left)
3. Postorder-Tree-Walk(x .right)
4. print key [x ]
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Printing Preorder and Postorder

Preorder-Tree-Walk(x)

1. if x , NIL
2. print key [x ]
3. Preorder-Tree-Walk(x .left)
4. Preorder-Tree-Walk(x .right)

Postorder-Tree-Walk(x)

1. if x , NIL
2. Postorder-Tree-Walk(x .left)
3. Postorder-Tree-Walk(x .right)
4. print key [x ]
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MODIFYING A BINARY SEARCH TREE
(Insertion and Deletion)
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Idea of inserting z

▶ Search for z .key
▶ When arrived at nil insert z at that position

Ex: insert z with key 7

1 3 5 9 11

2 6 10

4 12

8
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Idea of inserting z

▶ Search for z .key
▶ When arrived at nil insert z at that position

Ex: insert z with key 7

7
z

1 3 5 9 11

2 6 10

4 12

8
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Idea of inserting z

▶ Search for z .key
▶ When arrived at nil insert z at that position

Ex: insert z with key 13

1 3 5 9 11

2 6 10

4 12

8
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Idea of inserting z

▶ Search for z .key
▶ When arrived at nil insert z at that position

Ex: insert z with key 13

13
z

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Idea of inserting z

▶ Search for z .key
▶ When arrived at nil insert z at that position

Ex: insert z with key 9.5

1 3 5 9 11

2 6 10

4 12

8
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Idea of inserting z

▶ Search for z .key
▶ When arrived at nil insert z at that position

Ex: insert z with key 9.5

9.5
z

1 3 5 9 11

2 6 10

4 12

8
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Insertion

“search” phase

“insert” phase

What is the running time? O(h)
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Insertion

“search” phase

“insert” phase

What is the running time?

O(h)
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Insertion

“search” phase

“insert” phase

What is the running time? O(h)
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Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it

▶ If z has one child, then make that child take z’s position in the tree
▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

z

2

1 3 11

10 14

4 12

8
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Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it

▶ If z has one child, then make that child take z’s position in the tree
▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2
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10 14

4 12
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Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree

▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z
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Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree

▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z
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Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree

▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z
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Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree
▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z
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Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree
▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z
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Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree
▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2
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Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree
▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3 11

14

4 12

10
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Deletion Implementation: Transplant

Transplant(T , u, v) replaces subtree rooted at u with that rooted at v

u

v+ =
v
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Deletion Procedure
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Summary of Binary Search Trees

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time

Modifying operations: Insertion, Deletion: O(h) time

Exist efficient procedures to keep tree balanced (AVL trees, red-black trees,
etc.)
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Summary of Binary Search Trees

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time

Modifying operations: Insertion, Deletion: O(h) time

Exist efficient procedures to keep tree balanced (AVL trees, red-black trees,
etc.)
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Comparison of Data Structures

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Linked List: No fixed capacity, Insertion and deletion O(1)
time, supports search but O(n) time

Binary Search Trees: No fixed capacity, supports most
operations (insertion, deletion, search, max, min, . . . )
in time O(height of tree)
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Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Linked List: No fixed capacity, Insertion and deletion O(1)
time, supports search but O(n) time

Binary Search Trees: No fixed capacity, supports most
operations (insertion, deletion, search, max, min, . . . )
in time O(height of tree)

Lecture 9, 18.03.2025



Comparison of Data Structures

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Linked List: No fixed capacity, Insertion and deletion O(1)
time, supports search but O(n) time

Binary Search Trees: No fixed capacity, supports most
operations (insertion, deletion, search, max, min, . . . )
in time O(height of tree)
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Comparison of Data Structures

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Linked List: No fixed capacity, Insertion and deletion O(1)
time, supports search but O(n) time

Binary Search Trees: No fixed capacity, supports most
operations (insertion, deletion, search, max, min, . . . )
in time O(height of tree)
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DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)
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DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
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DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
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√
16?
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√
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What is 25 + 3 −
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What is 25 + 3 −
√

16?
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Dynamic Programming (DP)

Main idea:
▶ Remember calculations already made
▶ Saves enormous amounts of computation

Allows to solve many optimization problems
▶ Always at least one question in google code jam needs DP
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First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

1, 1, 2, 3, 5, 8, 13, 21, ?
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First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

F0 = 1
F1 = 1
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, 2, 3, 5, 8, 13, 21, ?
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Calculating the n-th Fibonacci number

First idea:

Fib(n)

1. if n = 0 or n = 1
2. return 1
3. else
4. return Fib(n − 1) + Fib(n − 2)

What is the problem?

Same calculations again and again
⇒ exponential time!

Fib(n)

Fib(n − 1) Fib(n − 2)

Fib(n − 2) Fib(n − 3) Fib(n − 3) Fib(n − 4)
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First idea:

Fib(n)

1. if n = 0 or n = 1
2. return 1
3. else
4. return Fib(n − 1) + Fib(n − 2)

What is the problem? Same calculations again and again
⇒ exponential time!
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The solution

Remember what we have done

Two different ways:

1 Top-down with memoization
▶ Solve recursively but store each result in a table
▶ Memoizing is remembering what we have computed previously

2 Bottom-up
▶ Sort the subproblems and solve the smaller ones first
▶ That way, when solving a subproblem, have already solved the

smaller subproblems we need
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The solution

Remember what we have done

Two different ways:

1 Top-down with memoization
▶ Solve recursively but store each result in a table
▶ Memoizing is remembering what we have computed previously

2 Bottom-up
▶ Sort the subproblems and solve the smaller ones first
▶ That way, when solving a subproblem, have already solved the
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Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)
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Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)
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Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

M-F-A(n − 1, r)

M-F-A(3, r)
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Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

M-F-A(n − 1, r)

M-F-A(3, r)

M-F-A(2, r)
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Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

M-F-A(n − 1, r)

M-F-A(3, r)

M-F-A(2, r)

M-F-A(1, r) M-F-A(0, r)
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Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

M-F-A(n − 1, r)

M-F-A(3, r)

M-F-A(2, r)

M-F-A(1, r) M-F-A(0, r)

M-F-A(1, r)

Already calculated
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Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)
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2. return r [n]
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8. return r [n]
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Already calculated
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Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

M-F-A(n − 1, r)

M-F-A(3, r)

M-F-A(2, r)

M-F-A(1, r) M-F-A(0, r)

M-F-A(1, r)

Already calculated

M-F-A(n − 3, r)

Already calculated

M-F-A(n − 2, r)

Already calculated
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Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

Time analysis:

▶ Steps 1-3 in Memoized-Fib take time Θ(n)
▶ Each call to Memoized-Fib-Aux takes time Θ(1)
▶ Number of calls to Memoized-Fib-Aux is Θ(n)
▶ Total time is thus Θ(n)
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Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
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7. r [n]← ans
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Time analysis:
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Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1

Time?

Θ(n)
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Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1

Time?

Θ(n)
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Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2

Time?
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Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3

Time?

Θ(n)
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Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3 5

Time?

Θ(n)
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Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3 5 8

Time?

Θ(n)
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Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3 5 8 13

Time?

Θ(n)
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Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3 5 8 13 21

Time?

Θ(n)
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2. r [0]← 1
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3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:
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Time?

Θ(n)

Lecture 9, 18.03.2025



Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3 5 8 13 21

Time? Θ(n)
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Summary

▶ We had a recursive formulation of our problem

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

▶ Introduced memory (array r)

▶ Filled in table“top-down with memoization” or with
“bottom-up”
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Key elements in designing a DP-algorithm

Optimal substructure
▶ Show that a solution to a problem consists of making a choice,

which leaves one or several subproblems to solve

and the optimal
solution solves the subproblems optimally

Overlapping subproblems
▶ A naive recursive algorithm may revisit the same (sub)problem over

and over.
▶ Top-down with memoization

Solve recursively but store each result in a table
▶ Bottom-up

Sort the subproblems and solve the smaller ones first; that way, when solving a
subproblem, have already solved the smaller subproblems we need
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Key elements in designing a DP-algorithm

Optimal substructure
▶ Show that a solution to a problem consists of making a choice,

which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Overlapping subproblems
▶ A naive recursive algorithm may revisit the same (sub)problem over

and over.
▶ Top-down with memoization

Solve recursively but store each result in a table
▶ Bottom-up

Sort the subproblems and solve the smaller ones first; that way, when solving a
subproblem, have already solved the smaller subproblems we need
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ROD CUTTING
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Rod cutting
Instance: ▶ A length n of a metal rod.

▶ A table of prices pi for rods of lengths i = 1, . . . , n.

Objective: Decide how to cut the rod into pieces and maximize the
price.
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Rod cutting
Instance: ▶ A length n of a metal rod.

▶ A table of prices pi for rods of lengths i = 1, . . . , n.

Objective: Decide how to cut the rod into pieces and maximize the
price.
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Size of the Problem

▶ There 2n−1 possible solutions—either cut or do not cut after every
length unit.

▶ Need structure for an efficient algorithm.

Theorem
If:
▶ the leftmost cut in an optimal solution is after i units.
▶ an optimal way to cut a solution of size n − i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .
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Proof of Structural Theorem

Theorem
If:
▶ the leftmost cut in an optimal solution is after i units.
▶ an optimal way to cut a solution of size n − i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Proof
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First Algorithm
If we let r(n) be the optimal revenue from a rod of length n, then, by the
structural theorem, we can express r(n) recursively as follows

r(n) =
{

0 if n = 0 ,

max1≤i≤n {pi + r(n − i)} otherwise if n ≥ 1 .
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Problem

▶ The procedure is extremely inefficient—in fact exponential.

▶ What went wrong?

▶ The procedure repeatedly calculates the same profits.
▶ Dynamic programming can save the extra calculations.
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Top-Down Dynamic Programming

General Approach

▶ Keep the recursive structure of the pseudocode.
▶ Memoize (store) the result of every recursive call.
▶ At each recursive call, try to avoid work using memoized results.

Pseudocode
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What did we gain?

Memoization helps us avoid recalculations.

⇒

Subproblem Graph

One can think of all the recursive calls using a memoized value as
additional parents of the call generating this value.
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Time Complexity

▶ The initialization takes O(n) time.
▶ Processing each sub-problem takes linear time in the number of

sub-problems it evokes.
▶ The time complexity is proportional to the number of nodes and

edges in the subproblem graph.

Time Complexity
O(n2)
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Bottom-Up Dynamic Programming
General Approach

▶ Sort the sub-problems by size.
▶ Solve the smaller ones first.
▶ When reaching a sub-problem, the smaller ones are already solved.

Pseudocode

Time Complexity
O(n2)
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Reconstructing an Optimal Solution

▶ The above algorithms only return the optimal profit.
▶ Sometimes one needs also to find an optimal solution.

Approach
▶ Each cell of the memoization table corresponds to a decision: the

location of the left most cut.
▶ Store the decision corresponding to every cell in a separate table.
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Reconstructing an Optimal Solution (cont.)

Output

i 0 1 2 3 4 5 6 7 8
r[i] 0 1 5 8 10 13 17 18 22
s[i] 0 1 2 3 2 2 6 1 2
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Reconstructing an Optimal Solution (cont.)

Output

i 0 1 2 3 4 5 6 7 8
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Summary

▶ We had a recursive formulation for the optimal value for our
problem

r(n) =
{

0 if n = 0 ,

max1≤i≤n {pi + r(n − i)} otherwise if n ≥ 1 .

▶ Speed up the calculations by filling in a table either “top-down with
memoization” or with “bottom-up”.

▶ Recovered an optimal solution using an additional table.
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Problem Solving: the Change-Making Problem

▶ How can a given amount of money be made with the least number
of coins of given denominations?

Formally:

Input: n distinct coin denominators (integers)
0 < w1 < w2 < . . . < wn and an amount W (the change)
which is also a positive integer.

Output: The minimum number of coins needed in order to make
the change:

min
{ n∑

j=1
xj :

n∑
j=1

wjxj = W and xj ’s are integers
}

.

Example: On input w1 = 1, w2 = 2, w3 = 5 and W = 8, the output
should be 3 since the best way of giving 8 is x1 = x2 = x3 = 1.
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Summary

▶ Identify choices and optimal substructure

▶ Write optimal solution recursively as a function of smaller
subproblems

▶ Use top-down with memoization or bottom-up to solve the
recursion efficiently (without repeatedly solving the same subproblems)
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