
Algorithms: Recall Binary Search Trees and
a Dynamic Programming

Theophile Thiery

School of Computer and Communication Sciences

Lecture 9, 18.03.2025



RECALL BINARY SEARCH TREES

Lecture 9, 18.03.2025



Binary Search Trees

Key property:
▶ If y is in the left subtree of x then y .key < x .key
▶ If y is in the right subtree of x then y .key ≥ x .key

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8
8 <

< 12

< 10

Lecture 9, 18.03.2025



Binary Search Trees

Key property:
▶ If y is in the left subtree of x then y .key < x .key
▶ If y is in the right subtree of x then y .key ≥ x .key

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8
8 <

< 12

< 10

Tree T has a root: T.root

height h = 3
(number of edges in
longest path from root to
leaf)

Lecture 9, 18.03.2025



Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
▶ If y is in the left subtree of x then y .key < x .key
▶ If y is in the right subtree of x then y .key ≥ x .key

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

height h = 14
(number of edges in
longest path from root to
leaf)

Basic operations take time proportional to height: O(h)

Lecture 9, 18.03.2025



QUERYING A BINARY SEARCH TREE
(Searching, Minimum, Maximum, Successor, Predecessor)

Lecture 9, 18.03.2025



Searching

What is the running time? O(h)

Lecture 9, 18.03.2025



Minimum and Maximum

By key property:

▶ Minimum is located in leftmost node

▶ Maximum is located in rightmost node

Minimum Maximum

Lecture 9, 18.03.2025



Minimum and Maximum

What is the running time? O(h)

Minimum Maximum

Lecture 9, 18.03.2025



Successor

Successor of a node x is the node y such that y .key is the

“smallest key” > x .key

▶ What is the successor of 6?
▶ What is the successor of 5?

Lecture 9, 18.03.2025



Successor

Successor of a node x is the node y such that y .key is the

“smallest key” > x .key

▶ What is the successor of 6?
▶ What is the successor of 5?

Lecture 9, 18.03.2025



Successor

Successor of a node x is the node y such that y .key is the

“smallest key” > x .key

▶ What is the successor of 6?

▶ What is the successor of 5?

Lecture 9, 18.03.2025



Successor

Successor of a node x is the node y such that y .key is the

“smallest key” > x .key

▶ What is the successor of 6?
▶ What is the successor of 5?

Lecture 9, 18.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x

Case 2: x has an empty right subtree

x

Lecture 9, 18.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

Case 2: x has an empty right subtree

x

Lecture 9, 18.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

x

Lecture 9, 18.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

x

Lecture 9, 18.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we’re visiting smaller
keys

x ’s successor is y is the node
that x is the predecessor of
(x is the maximum in y ’s left
subtree) x

Lecture 9, 18.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we’re visiting smaller
keys

x ’s successor is y is the node
that x is the predecessor of
(x is the maximum in y ’s left
subtree) x

Lecture 9, 18.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we’re visiting smaller
keys

x ’s successor is y is the node
that x is the predecessor of
(x is the maximum in y ’s left
subtree) x

Lecture 9, 18.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we’re visiting smaller
keys

x ’s successor is y is the node
that x is the predecessor of
(x is the maximum in y ’s left
subtree) x

Lecture 9, 18.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we’re visiting smaller
keys

x ’s successor is y is the node
that x is the predecessor of
(x is the maximum in y ’s left
subtree) x

y

Lecture 9, 18.03.2025



Successor (Predecessor is symmetric)

What is the running time? O(h)

Lecture 9, 18.03.2025



Successor (Predecessor is symmetric)

What is the running time? O(h)

Lecture 9, 18.03.2025



Successor (Predecessor is symmetric)

What is the running time?

O(h)

Lecture 9, 18.03.2025



Successor (Predecessor is symmetric)

What is the running time? O(h)

Lecture 9, 18.03.2025



PRINTING A BINARY SEARCH TREE
(Inorder, Preorder, Postorder)

Lecture 9, 18.03.2025



Printing Inorder (Idea)

▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output:

1,2,3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output:

1,2,3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output:

1,2,3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output:

1,2,3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,

2,3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,

3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,

3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,

4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,

5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,

5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,

5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,

6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,

8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,

9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,

9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,

9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,

9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,

10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,

11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,

11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,11,

12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Printing Inorder (Idea)
▶ Print left subtree recursively
▶ Print root
▶ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Inorder tree walk

What is the running time? Θ(n)

Lecture 9, 18.03.2025



Inorder tree walk

What is the running time?

Θ(n)

Lecture 9, 18.03.2025



Inorder tree walk

What is the running time? Θ(n)

Lecture 9, 18.03.2025



Printing Preorder and Postorder

Preorder-Tree-Walk(x)

1. if x , NIL
2. print key [x ]
3. Preorder-Tree-Walk(x .left)
4. Preorder-Tree-Walk(x .right)

Postorder-Tree-Walk(x)

1. if x , NIL
2. Postorder-Tree-Walk(x .left)
3. Postorder-Tree-Walk(x .right)
4. print key [x ]

Lecture 9, 18.03.2025



Printing Preorder and Postorder

Preorder-Tree-Walk(x)

1. if x , NIL
2. print key [x ]
3. Preorder-Tree-Walk(x .left)
4. Preorder-Tree-Walk(x .right)

Postorder-Tree-Walk(x)

1. if x , NIL
2. Postorder-Tree-Walk(x .left)
3. Postorder-Tree-Walk(x .right)
4. print key [x ]

Lecture 9, 18.03.2025



Printing Preorder and Postorder

Preorder-Tree-Walk(x)

1. if x , NIL
2. print key [x ]
3. Preorder-Tree-Walk(x .left)
4. Preorder-Tree-Walk(x .right)

Postorder-Tree-Walk(x)

1. if x , NIL
2. Postorder-Tree-Walk(x .left)
3. Postorder-Tree-Walk(x .right)
4. print key [x ]

Lecture 9, 18.03.2025



MODIFYING A BINARY SEARCH TREE
(Insertion and Deletion)

Lecture 9, 18.03.2025



Idea of inserting z

▶ Search for z .key
▶ When arrived at nil insert z at that position

Ex: insert z with key 7

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Idea of inserting z

▶ Search for z .key
▶ When arrived at nil insert z at that position

Ex: insert z with key 7

7
z

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Idea of inserting z

▶ Search for z .key
▶ When arrived at nil insert z at that position

Ex: insert z with key 13

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Idea of inserting z

▶ Search for z .key
▶ When arrived at nil insert z at that position

Ex: insert z with key 13

13
z

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Idea of inserting z

▶ Search for z .key
▶ When arrived at nil insert z at that position

Ex: insert z with key 9.5

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Idea of inserting z

▶ Search for z .key
▶ When arrived at nil insert z at that position

Ex: insert z with key 9.5

9.5
z

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Insertion

“search” phase

“insert” phase

What is the running time? O(h)

Lecture 9, 18.03.2025



Insertion

“search” phase

“insert” phase

What is the running time?

O(h)

Lecture 9, 18.03.2025



Insertion

“search” phase

“insert” phase

What is the running time? O(h)
Lecture 9, 18.03.2025



Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it

▶ If z has one child, then make that child take z’s position in the tree
▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

z

2

1 3 11

10 14

4 12

8

Lecture 9, 18.03.2025



Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it

▶ If z has one child, then make that child take z’s position in the tree
▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 11

10 14

4 12

8

Lecture 9, 18.03.2025



Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree

▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

z

2

1 3 11

10 14

4 12

8

Lecture 9, 18.03.2025



Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree

▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3 11

10 14

12

8

Lecture 9, 18.03.2025



Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree

▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3

11

10 14

12

8

Lecture 9, 18.03.2025



Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree
▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3

z

11

10 14

4 12

8

Lecture 9, 18.03.2025



Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree
▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3

z

y

11

10 14

4 12

8

Lecture 9, 18.03.2025



Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree
▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3

z

y

11

10 14

4 12

8

Lecture 9, 18.03.2025



Idea of deletion
Conceptually 3 cases:
▶ If z has no children, remove it
▶ If z has one child, then make that child take z’s position in the tree
▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3 11

14

4 12

10

Lecture 9, 18.03.2025



Deletion Implementation: Transplant

Transplant(T , u, v) replaces subtree rooted at u with that rooted at v

u

v+ =
v

Lecture 9, 18.03.2025



Deletion Procedure

Lecture 9, 18.03.2025



Summary of Binary Search Trees

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time

Modifying operations: Insertion, Deletion: O(h) time

Exist efficient procedures to keep tree balanced (AVL trees, red-black trees,
etc.)

Lecture 9, 18.03.2025



Summary of Binary Search Trees

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time

Modifying operations: Insertion, Deletion: O(h) time

Exist efficient procedures to keep tree balanced (AVL trees, red-black trees,
etc.)

Lecture 9, 18.03.2025



Summary of Binary Search Trees

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time

Modifying operations: Insertion, Deletion: O(h) time

Exist efficient procedures to keep tree balanced (AVL trees, red-black trees,
etc.)

Lecture 9, 18.03.2025



Comparison of Data Structures

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Linked List: No fixed capacity, Insertion and deletion O(1)
time, supports search but O(n) time

Binary Search Trees: No fixed capacity, supports most
operations (insertion, deletion, search, max, min, . . . )
in time O(height of tree)

Lecture 9, 18.03.2025



Comparison of Data Structures

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Linked List: No fixed capacity, Insertion and deletion O(1)
time, supports search but O(n) time

Binary Search Trees: No fixed capacity, supports most
operations (insertion, deletion, search, max, min, . . . )
in time O(height of tree)

Lecture 9, 18.03.2025



Comparison of Data Structures

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Linked List: No fixed capacity, Insertion and deletion O(1)
time, supports search but O(n) time

Binary Search Trees: No fixed capacity, supports most
operations (insertion, deletion, search, max, min, . . . )
in time O(height of tree)

Lecture 9, 18.03.2025



Comparison of Data Structures

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Linked List: No fixed capacity, Insertion and deletion O(1)
time, supports search but O(n) time

Binary Search Trees: No fixed capacity, supports most
operations (insertion, deletion, search, max, min, . . . )
in time O(height of tree)

Lecture 9, 18.03.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

Lecture 9, 18.03.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?

Lecture 9, 18.03.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
What is 25 + 3 −

√
16?

Lecture 9, 18.03.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
What is 25 + 3 −

√
16?

What is 25 + 3 −
√

16?

Lecture 9, 18.03.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
What is 25 + 3 −

√
16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

Lecture 9, 18.03.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
What is 25 + 3 −

√
16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

Lecture 9, 18.03.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
What is 25 + 3 −

√
16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

Lecture 9, 18.03.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
What is 25 + 3 −

√
16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

Lecture 9, 18.03.2025



Dynamic Programming (DP)

Main idea:
▶ Remember calculations already made
▶ Saves enormous amounts of computation

Allows to solve many optimization problems
▶ Always at least one question in google code jam needs DP

Lecture 9, 18.03.2025



First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

1, 1, 2, 3, 5, 8, 13, 21, ?

Lecture 9, 18.03.2025



First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

1, 1

, 2, 3, 5, 8, 13, 21, ?

Lecture 9, 18.03.2025



First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

1, 1, 2

, 3, 5, 8, 13, 21, ?

Lecture 9, 18.03.2025



First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

1, 1, 2, 3

, 5, 8, 13, 21, ?

Lecture 9, 18.03.2025



First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

1, 1, 2, 3, 5

, 8, 13, 21, ?

Lecture 9, 18.03.2025



First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

1, 1, 2, 3, 5, 8

, 13, 21, ?

Lecture 9, 18.03.2025



First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

1, 1, 2, 3, 5, 8, 13

, 21, ?

Lecture 9, 18.03.2025



First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

1, 1, 2, 3, 5, 8, 13, 21

, ?

Lecture 9, 18.03.2025



First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

1, 1, 2, 3, 5, 8, 13, 21, ?

Lecture 9, 18.03.2025



Calculating the n-th Fibonacci number

First idea:

Fib(n)

1. if n = 0 or n = 1
2. return 1
3. else
4. return Fib(n − 1) + Fib(n − 2)

What is the problem?

Same calculations again and again
⇒ exponential time!

Fib(n)

Fib(n − 1) Fib(n − 2)

Fib(n − 2) Fib(n − 3) Fib(n − 3) Fib(n − 4)

Lecture 9, 18.03.2025



Calculating the n-th Fibonacci number

First idea:

Fib(n)

1. if n = 0 or n = 1
2. return 1
3. else
4. return Fib(n − 1) + Fib(n − 2)

What is the problem?

Same calculations again and again
⇒ exponential time!

Fib(n)

Fib(n − 1) Fib(n − 2)

Fib(n − 2) Fib(n − 3) Fib(n − 3) Fib(n − 4)

Lecture 9, 18.03.2025



Calculating the n-th Fibonacci number

First idea:

Fib(n)

1. if n = 0 or n = 1
2. return 1
3. else
4. return Fib(n − 1) + Fib(n − 2)

What is the problem?

Same calculations again and again
⇒ exponential time!

Fib(n)

Fib(n − 1) Fib(n − 2)

Fib(n − 2) Fib(n − 3) Fib(n − 3) Fib(n − 4)

Lecture 9, 18.03.2025



Calculating the n-th Fibonacci number

First idea:

Fib(n)

1. if n = 0 or n = 1
2. return 1
3. else
4. return Fib(n − 1) + Fib(n − 2)

What is the problem?

Same calculations again and again
⇒ exponential time!

Fib(n)

Fib(n − 1) Fib(n − 2)

Fib(n − 2) Fib(n − 3) Fib(n − 3) Fib(n − 4)

Lecture 9, 18.03.2025



Calculating the n-th Fibonacci number

First idea:

Fib(n)

1. if n = 0 or n = 1
2. return 1
3. else
4. return Fib(n − 1) + Fib(n − 2)

What is the problem? Same calculations again and again
⇒ exponential time!

Fib(n)

Fib(n − 1) Fib(n − 2)

Fib(n − 2) Fib(n − 3) Fib(n − 3) Fib(n − 4)

Lecture 9, 18.03.2025



The solution

Remember what we have done

Two different ways:

1 Top-down with memoization
▶ Solve recursively but store each result in a table
▶ Memoizing is remembering what we have computed previously

2 Bottom-up
▶ Sort the subproblems and solve the smaller ones first
▶ That way, when solving a subproblem, have already solved the

smaller subproblems we need

Lecture 9, 18.03.2025



The solution

Remember what we have done

Two different ways:

1 Top-down with memoization
▶ Solve recursively but store each result in a table
▶ Memoizing is remembering what we have computed previously

2 Bottom-up
▶ Sort the subproblems and solve the smaller ones first
▶ That way, when solving a subproblem, have already solved the

smaller subproblems we need

Lecture 9, 18.03.2025



The solution

Remember what we have done

Two different ways:

1 Top-down with memoization
▶ Solve recursively but store each result in a table
▶ Memoizing is remembering what we have computed previously

2 Bottom-up
▶ Sort the subproblems and solve the smaller ones first
▶ That way, when solving a subproblem, have already solved the

smaller subproblems we need

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

M-F-A(n − 1, r)

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

M-F-A(n − 1, r)

M-F-A(3, r)

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

M-F-A(n − 1, r)

M-F-A(3, r)

M-F-A(2, r)

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

M-F-A(n − 1, r)

M-F-A(3, r)

M-F-A(2, r)

M-F-A(1, r) M-F-A(0, r)

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

M-F-A(n − 1, r)

M-F-A(3, r)

M-F-A(2, r)

M-F-A(1, r) M-F-A(0, r)

M-F-A(1, r)

Already calculated

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

M-F-A(n − 1, r)

M-F-A(3, r)

M-F-A(2, r)

M-F-A(1, r) M-F-A(0, r)

M-F-A(1, r)

Already calculated

M-F-A(n − 3, r)

Already calculated

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

M-F-A(n, r)

M-F-A(n − 1, r)

M-F-A(3, r)

M-F-A(2, r)

M-F-A(1, r) M-F-A(0, r)

M-F-A(1, r)

Already calculated

M-F-A(n − 3, r)

Already calculated

M-F-A(n − 2, r)

Already calculated

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

Time analysis:

▶ Steps 1-3 in Memoized-Fib take time Θ(n)
▶ Each call to Memoized-Fib-Aux takes time Θ(1)
▶ Number of calls to Memoized-Fib-Aux is Θ(n)
▶ Total time is thus Θ(n)

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

Time analysis:
▶ Steps 1-3 in Memoized-Fib take time Θ(n)

▶ Each call to Memoized-Fib-Aux takes time Θ(1)
▶ Number of calls to Memoized-Fib-Aux is Θ(n)
▶ Total time is thus Θ(n)

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

Time analysis:
▶ Steps 1-3 in Memoized-Fib take time Θ(n)
▶ Each call to Memoized-Fib-Aux takes time Θ(1)

▶ Number of calls to Memoized-Fib-Aux is Θ(n)
▶ Total time is thus Θ(n)

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

Time analysis:
▶ Steps 1-3 in Memoized-Fib take time Θ(n)
▶ Each call to Memoized-Fib-Aux takes time Θ(1)
▶ Number of calls to Memoized-Fib-Aux is Θ(n)

▶ Total time is thus Θ(n)

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)

1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i]← −∞
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ← 1
5. else
6. ans ←Memoized-Fib-Aux(n − 1, r)+
6. Memoized-Fib-Aux(n − 2, r)
7. r [n]← ans
8. return r [n]

Time analysis:
▶ Steps 1-3 in Memoized-Fib take time Θ(n)
▶ Each call to Memoized-Fib-Aux takes time Θ(1)
▶ Number of calls to Memoized-Fib-Aux is Θ(n)
▶ Total time is thus Θ(n)

Lecture 9, 18.03.2025



Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1

Time?

Θ(n)

Lecture 9, 18.03.2025



Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1

Time?

Θ(n)

Lecture 9, 18.03.2025



Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2

Time?

Θ(n)

Lecture 9, 18.03.2025



Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3

Time?

Θ(n)

Lecture 9, 18.03.2025



Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3 5

Time?

Θ(n)

Lecture 9, 18.03.2025



Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3 5 8

Time?

Θ(n)

Lecture 9, 18.03.2025



Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3 5 8 13

Time?

Θ(n)

Lecture 9, 18.03.2025



Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3 5 8 13 21

Time?

Θ(n)

Lecture 9, 18.03.2025



Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3 5 8 13 21

Time?

Θ(n)

Lecture 9, 18.03.2025



Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)

1. Let r = [0 . . . n] be a new array
2. r [0]← 1
3. r [1]← 1
3. for i = 2 to n
4. r [i]← r [i − 1] + r [i − 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3 5 8 13 21

Time? Θ(n)

Lecture 9, 18.03.2025



Summary

▶ We had a recursive formulation of our problem

F0 = 1
F1 = 1
Fn = Fn−1 + Fn−2

▶ Introduced memory (array r)

▶ Filled in table“top-down with memoization” or with
“bottom-up”

Lecture 9, 18.03.2025



Key elements in designing a DP-algorithm

Optimal substructure
▶ Show that a solution to a problem consists of making a choice,

which leaves one or several subproblems to solve

and the optimal
solution solves the subproblems optimally

Overlapping subproblems
▶ A naive recursive algorithm may revisit the same (sub)problem over

and over.
▶ Top-down with memoization

Solve recursively but store each result in a table
▶ Bottom-up

Sort the subproblems and solve the smaller ones first; that way, when solving a
subproblem, have already solved the smaller subproblems we need

Lecture 9, 18.03.2025



Key elements in designing a DP-algorithm

Optimal substructure
▶ Show that a solution to a problem consists of making a choice,

which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Overlapping subproblems
▶ A naive recursive algorithm may revisit the same (sub)problem over

and over.
▶ Top-down with memoization

Solve recursively but store each result in a table
▶ Bottom-up

Sort the subproblems and solve the smaller ones first; that way, when solving a
subproblem, have already solved the smaller subproblems we need

Lecture 9, 18.03.2025



Key elements in designing a DP-algorithm

Optimal substructure
▶ Show that a solution to a problem consists of making a choice,

which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Overlapping subproblems
▶ A naive recursive algorithm may revisit the same (sub)problem over

and over.
▶ Top-down with memoization

Solve recursively but store each result in a table
▶ Bottom-up

Sort the subproblems and solve the smaller ones first; that way, when solving a
subproblem, have already solved the smaller subproblems we need

Lecture 9, 18.03.2025



ROD CUTTING

Lecture 9, 18.03.2025



Rod cutting
Instance: ▶ A length n of a metal rod.

▶ A table of prices pi for rods of lengths i = 1, . . . , n.

Objective: Decide how to cut the rod into pieces and maximize the
price.

Lecture 9, 18.03.2025



Rod cutting
Instance: ▶ A length n of a metal rod.

▶ A table of prices pi for rods of lengths i = 1, . . . , n.

Objective: Decide how to cut the rod into pieces and maximize the
price.

Lecture 9, 18.03.2025



Rod cutting
Instance: ▶ A length n of a metal rod.

▶ A table of prices pi for rods of lengths i = 1, . . . , n.

Objective: Decide how to cut the rod into pieces and maximize the
price.

Lecture 9, 18.03.2025



Size of the Problem

▶ There 2n−1 possible solutions—either cut or do not cut after every
length unit.

▶ Need structure for an efficient algorithm.

Theorem
If:
▶ the leftmost cut in an optimal solution is after i units.
▶ an optimal way to cut a solution of size n − i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Lecture 9, 18.03.2025



Size of the Problem

▶ There 2n−1 possible solutions—either cut or do not cut after every
length unit.

▶ Need structure for an efficient algorithm.

Theorem
If:
▶ the leftmost cut in an optimal solution is after i units.
▶ an optimal way to cut a solution of size n − i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Lecture 9, 18.03.2025



Size of the Problem

▶ There 2n−1 possible solutions—either cut or do not cut after every
length unit.

▶ Need structure for an efficient algorithm.

Theorem
If:
▶ the leftmost cut in an optimal solution is after i units.
▶ an optimal way to cut a solution of size n − i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Lecture 9, 18.03.2025



Proof of Structural Theorem

Theorem
If:
▶ the leftmost cut in an optimal solution is after i units.
▶ an optimal way to cut a solution of size n − i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Proof

Lecture 9, 18.03.2025



Proof of Structural Theorem

Theorem
If:
▶ the leftmost cut in an optimal solution is after i units.
▶ an optimal way to cut a solution of size n − i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Proof

Feasibility: Since s1, s2, . . . , sk is a feasible solution for an instance of size
n − i : ∑k

j=1 sj = n − i .

Lecture 9, 18.03.2025



Proof of Structural Theorem

Theorem
If:
▶ the leftmost cut in an optimal solution is after i units.
▶ an optimal way to cut a solution of size n − i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Proof

Feasibility: Since s1, s2, . . . , sk is a feasible solution for an instance of size
n − i : ∑k

j=1 sj = n − i .

Hence, i +
∑k

j=1 sj = n.

Lecture 9, 18.03.2025



Proof of Structural Theorem

Theorem
If:
▶ the leftmost cut in an optimal solution is after i units.
▶ an optimal way to cut a solution of size n − i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Proof

Optimality: Let i , o1, o2, . . . , oℓ be an optimal solution—exists by
assumption.

Lecture 9, 18.03.2025



Proof of Structural Theorem

Theorem
If:
▶ the leftmost cut in an optimal solution is after i units.
▶ an optimal way to cut a solution of size n − i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Proof

Optimality: Let i , o1, o2, . . . , oℓ be an optimal solution—exists by
assumption. Recall that s1, s2, . . . , sk is an optimal way to cut a rod of
size n − i , thus, ∑k

j=1 psj ≥
∑ℓ

j=1 poj .

Lecture 9, 18.03.2025



Proof of Structural Theorem

Theorem
If:
▶ the leftmost cut in an optimal solution is after i units.
▶ an optimal way to cut a solution of size n − i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Proof

Optimality: Let i , o1, o2, . . . , oℓ be an optimal solution—exists by
assumption. Recall that s1, s2, . . . , sk is an optimal way to cut a rod of
size n − i , thus, ∑k

j=1 psj ≥
∑ℓ

j=1 poj .

Hence, pi +
∑k

j=1 psj ≥ pi +
∑ℓ

j=1 poj .

Lecture 9, 18.03.2025



First Algorithm
If we let r(n) be the optimal revenue from a rod of length n, then, by the
structural theorem, we can express r(n) recursively as follows

r(n) =
{

0 if n = 0 ,

max1≤i≤n {pi + r(n − i)} otherwise if n ≥ 1 .

Lecture 9, 18.03.2025



First Algorithm
If we let r(n) be the optimal revenue from a rod of length n, then, by the
structural theorem, we can express r(n) recursively as follows

r(n) =
{

0 if n = 0 ,

max1≤i≤n {pi + r(n − i)} otherwise if n ≥ 1 .

Lecture 9, 18.03.2025



Problem

▶ The procedure is extremely inefficient—in fact exponential.

▶ What went wrong?

▶ The procedure repeatedly calculates the same profits.
▶ Dynamic programming can save the extra calculations.

Lecture 9, 18.03.2025



Problem

▶ The procedure is extremely inefficient—in fact exponential.
▶ What went wrong?

▶ The procedure repeatedly calculates the same profits.
▶ Dynamic programming can save the extra calculations.

Lecture 9, 18.03.2025



Problem

▶ The procedure is extremely inefficient—in fact exponential.
▶ What went wrong?

▶ The procedure repeatedly calculates the same profits.
▶ Dynamic programming can save the extra calculations.

Lecture 9, 18.03.2025



Problem

▶ The procedure is extremely inefficient—in fact exponential.
▶ What went wrong?

▶ The procedure repeatedly calculates the same profits.

▶ Dynamic programming can save the extra calculations.

Lecture 9, 18.03.2025



Problem

▶ The procedure is extremely inefficient—in fact exponential.
▶ What went wrong?

▶ The procedure repeatedly calculates the same profits.
▶ Dynamic programming can save the extra calculations.

Lecture 9, 18.03.2025



Top-Down Dynamic Programming

General Approach

▶ Keep the recursive structure of the pseudocode.
▶ Memoize (store) the result of every recursive call.
▶ At each recursive call, try to avoid work using memoized results.

Pseudocode

Lecture 9, 18.03.2025



Top-Down Dynamic Programming

General Approach
▶ Keep the recursive structure of the pseudocode.

▶ Memoize (store) the result of every recursive call.
▶ At each recursive call, try to avoid work using memoized results.

Pseudocode

Lecture 9, 18.03.2025



Top-Down Dynamic Programming

General Approach
▶ Keep the recursive structure of the pseudocode.
▶ Memoize (store) the result of every recursive call.

▶ At each recursive call, try to avoid work using memoized results.

Pseudocode

Lecture 9, 18.03.2025



Top-Down Dynamic Programming

General Approach
▶ Keep the recursive structure of the pseudocode.
▶ Memoize (store) the result of every recursive call.
▶ At each recursive call, try to avoid work using memoized results.

Pseudocode

Lecture 9, 18.03.2025



Top-Down Dynamic Programming

General Approach
▶ Keep the recursive structure of the pseudocode.
▶ Memoize (store) the result of every recursive call.
▶ At each recursive call, try to avoid work using memoized results.

Pseudocode

Lecture 9, 18.03.2025



Top-Down Dynamic Programming

General Approach
▶ Keep the recursive structure of the pseudocode.
▶ Memoize (store) the result of every recursive call.
▶ At each recursive call, try to avoid work using memoized results.

Pseudocode

Lecture 9, 18.03.2025



What did we gain?

Memoization helps us avoid recalculations.

⇒

Subproblem Graph

One can think of all the recursive calls using a memoized value as
additional parents of the call generating this value.

Lecture 9, 18.03.2025



What did we gain?
Memoization helps us avoid recalculations.

⇒

Subproblem Graph

One can think of all the recursive calls using a memoized value as
additional parents of the call generating this value.

Lecture 9, 18.03.2025



What did we gain?
Memoization helps us avoid recalculations.

⇒

Subproblem Graph

One can think of all the recursive calls using a memoized value as
additional parents of the call generating this value.

Lecture 9, 18.03.2025



What did we gain?
Memoization helps us avoid recalculations.

⇒

Subproblem Graph

One can think of all the recursive calls using a memoized value as
additional parents of the call generating this value.

Lecture 9, 18.03.2025



What did we gain?
Memoization helps us avoid recalculations.

⇒

Subproblem Graph

One can think of all the recursive calls using a memoized value as
additional parents of the call generating this value.

Lecture 9, 18.03.2025



Time Complexity

▶ The initialization takes O(n) time.
▶ Processing each sub-problem takes linear time in the number of

sub-problems it evokes.
▶ The time complexity is proportional to the number of nodes and

edges in the subproblem graph.

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Time Complexity

▶ The initialization takes O(n) time.

▶ Processing each sub-problem takes linear time in the number of
sub-problems it evokes.

▶ The time complexity is proportional to the number of nodes and
edges in the subproblem graph.

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Time Complexity

▶ The initialization takes O(n) time.
▶ Processing each sub-problem takes linear time in the number of

sub-problems it evokes.

▶ The time complexity is proportional to the number of nodes and
edges in the subproblem graph.

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Time Complexity

▶ The initialization takes O(n) time.
▶ Processing each sub-problem takes linear time in the number of

sub-problems it evokes.

▶ The time complexity is proportional to the number of nodes and
edges in the subproblem graph.

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Time Complexity

▶ The initialization takes O(n) time.
▶ Processing each sub-problem takes linear time in the number of

sub-problems it evokes.
▶ The time complexity is proportional to the number of nodes and

edges in the subproblem graph.

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Time Complexity

▶ The initialization takes O(n) time.
▶ Processing each sub-problem takes linear time in the number of

sub-problems it evokes.
▶ The time complexity is proportional to the number of nodes and

edges in the subproblem graph.

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Bottom-Up Dynamic Programming
General Approach

▶ Sort the sub-problems by size.
▶ Solve the smaller ones first.
▶ When reaching a sub-problem, the smaller ones are already solved.

Pseudocode

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Bottom-Up Dynamic Programming
General Approach
▶ Sort the sub-problems by size.

▶ Solve the smaller ones first.
▶ When reaching a sub-problem, the smaller ones are already solved.

Pseudocode

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Bottom-Up Dynamic Programming
General Approach
▶ Sort the sub-problems by size.
▶ Solve the smaller ones first.

▶ When reaching a sub-problem, the smaller ones are already solved.
Pseudocode

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Bottom-Up Dynamic Programming
General Approach
▶ Sort the sub-problems by size.
▶ Solve the smaller ones first.
▶ When reaching a sub-problem, the smaller ones are already solved.

Pseudocode

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Bottom-Up Dynamic Programming
General Approach
▶ Sort the sub-problems by size.
▶ Solve the smaller ones first.
▶ When reaching a sub-problem, the smaller ones are already solved.

Pseudocode

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Bottom-Up Dynamic Programming
General Approach
▶ Sort the sub-problems by size.
▶ Solve the smaller ones first.
▶ When reaching a sub-problem, the smaller ones are already solved.

Pseudocode

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Reconstructing an Optimal Solution

▶ The above algorithms only return the optimal profit.
▶ Sometimes one needs also to find an optimal solution.

Approach
▶ Each cell of the memoization table corresponds to a decision: the

location of the left most cut.
▶ Store the decision corresponding to every cell in a separate table.

Lecture 9, 18.03.2025



Reconstructing an Optimal Solution

▶ The above algorithms only return the optimal profit.
▶ Sometimes one needs also to find an optimal solution.

Approach
▶ Each cell of the memoization table corresponds to a decision: the

location of the left most cut.

▶ Store the decision corresponding to every cell in a separate table.

Lecture 9, 18.03.2025



Reconstructing an Optimal Solution

▶ The above algorithms only return the optimal profit.
▶ Sometimes one needs also to find an optimal solution.

Approach
▶ Each cell of the memoization table corresponds to a decision: the

location of the left most cut.
▶ Store the decision corresponding to every cell in a separate table.

Lecture 9, 18.03.2025



Reconstructing an Optimal Solution (cont.)

Output

i 0 1 2 3 4 5 6 7 8
r[i] 0 1 5 8 10 13 17 18 22
s[i] 0 1 2 3 2 2 6 1 2

Lecture 9, 18.03.2025



Reconstructing an Optimal Solution (cont.)

Output

i 0 1 2 3 4 5 6 7 8
r[i] 0 1 5 8 10 13 17 18 22
s[i] 0 1 2 3 2 2 6 1 2

Lecture 9, 18.03.2025



Summary

▶ We had a recursive formulation for the optimal value for our
problem

r(n) =
{

0 if n = 0 ,

max1≤i≤n {pi + r(n − i)} otherwise if n ≥ 1 .

▶ Speed up the calculations by filling in a table either “top-down with
memoization” or with “bottom-up”.

▶ Recovered an optimal solution using an additional table.

Lecture 9, 18.03.2025



Problem Solving: the Change-Making Problem

▶ How can a given amount of money be made with the least number
of coins of given denominations?

Formally:

Input: n distinct coin denominators (integers)
0 < w1 < w2 < . . . < wn and an amount W (the change)
which is also a positive integer.

Output: The minimum number of coins needed in order to make
the change:

min
{ n∑

j=1
xj :

n∑
j=1

wjxj = W and xj ’s are integers
}

.

Example: On input w1 = 1, w2 = 2, w3 = 5 and W = 8, the output
should be 3 since the best way of giving 8 is x1 = x2 = x3 = 1.

Lecture 9, 18.03.2025



Problem Solving: the Change-Making Problem

▶ How can a given amount of money be made with the least number
of coins of given denominations?

Formally:

Input: n distinct coin denominators (integers)
0 < w1 < w2 < . . . < wn and an amount W (the change)
which is also a positive integer.

Output: The minimum number of coins needed in order to make
the change:

min
{ n∑

j=1
xj :

n∑
j=1

wjxj = W and xj ’s are integers
}

.

Example: On input w1 = 1, w2 = 2, w3 = 5 and W = 8, the output
should be 3 since the best way of giving 8 is x1 = x2 = x3 = 1.

Lecture 9, 18.03.2025



Problem Solving: the Change-Making Problem

▶ How can a given amount of money be made with the least number
of coins of given denominations?

Formally:

Input: n distinct coin denominators (integers)
0 < w1 < w2 < . . . < wn and an amount W (the change)
which is also a positive integer.

Output: The minimum number of coins needed in order to make
the change:

min
{ n∑

j=1
xj :

n∑
j=1

wjxj = W and xj ’s are integers
}

.

Example: On input w1 = 1, w2 = 2, w3 = 5 and W = 8, the output
should be 3 since the best way of giving 8 is x1 = x2 = x3 = 1.

Lecture 9, 18.03.2025



Summary

▶ Identify choices and optimal substructure

▶ Write optimal solution recursively as a function of smaller
subproblems

▶ Use top-down with memoization or bottom-up to solve the
recursion efficiently (without repeatedly solving the same subproblems)

Lecture 9, 18.03.2025


