Algorithms: Recall Binary Search Trees and

a Dynamic Programming

Theophile Thiery

=PFL School of Computer and Communication Sciences

Lecture 9, 18.03.2025

RECALL BINARY SEARCH TREES

Lecture 9, 18.03.2025

Binary Search Trees

Key property:
> If y is in the left subtree of x then y.key < x.key
> If y is in the right subtree of x then y.key > x.key

Lecture 9, 18.03.2025

Binary Search Trees

Key property:
> If y is in the left subtree of x then y.key < x.key
> If y is in the right subtree of x then y.key > x.key

Tree T has a root: T.root

height h =3

(number of edges in
longest path from root to
leaf)

Lecture 9, 18.03.2025

Binary Search Trees

Encodes a strategy whatever number we look for
Key property:
> If y is in the left subtree of x then y.key < x.key

> If y is in the right subtree of x then y.key > x.key

height h = 14

(number of edges in
longest path from root to
leaf)

Basic operations take time proportional to height: O(h)

Lecture 9, 18.03.2025

QUERYING A BINARY SEARCH TREE

(Searching, Minimum, Maximum, Successor, Predecessor)

Lecture 9, 18.03.2025

What is the running time? O(h)

TREE-SEARCH(x, k)
if x == NIL or k == key[x]
return x
if k < x.key
return TREE-SEARCH (x.left, k)
else return TREE-SEARCH (x.right, k)

Lecture 9, 18.03.2025

Minimum and Maximum

Minimum Maximum

By key property:
» Minimum is located in leftmost node

» Maximum is located in rightmost node

Lecture 9, 18.03.2025

Minimum and Maximum

Minimum Maximum

What is the running time? O(h)

TREE-MINIMUM (x) TREE-MAXIMUM (x)
while x.left # NIL while x.right # NIL
x = x.left X = x.right

return x return x

Lecture 9, 18.03.2025

Lecture 9, 18.03.2025

Successor of a node x is the node y such that y.key is the

“smallest key” > x.key

Lecture 9, 18.03.2025

Successor of a node x is the node y such that y.key is the

“smallest key” > x.key

» What is the successor of 67

Lecture 9, 18.03.2025

Successor of a node x is the node y such that y.key is the

“smallest key” > x.key

» What is the successor of 67

» What is the successor of 57

Lecture 9, 18.03.2025

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we're visiting smaller
keys

x's successor is y is the node
that x is the predecessor of

(x is the maximum in y's left
subtree)

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we're visiting smaller
keys

x's successor is y is the node
that x is the predecessor of

(x is the maximum in y's left
subtree)

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we're visiting smaller
keys

x's successor is y is the node
that x is the predecessor of

(x is the maximum in y's left
subtree)

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we're visiting smaller
keys

x's successor is y is the node
that x is the predecessor of

(x is the maximum in y's left
subtree)

2

-

Two cases when finding successor of x:

Case 1. x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we're visiting smaller
keys

x's successor is y is the node
that x is the predecessor of

(x is the maximum in y's left
subtree)

Successor (Predecessor is symmetric)

Lecture 9, 18.03.2025

Successor (Predecessor is symmetric)

TREE-SUCCESSOR (x)
if x.right # NIL
return TREE-MINIMUM (x. right)
y =x.p
while y 7 NIL and x == y.right
X =Y
y=yp
return y

Lecture 9, 18.03.2025

Successor (Predecessor is symmetric)

What is the running time?

TREE-SUCCESSOR (x)
if x.right # NIL
return TREE-MINIMUM (x. right)
y =x.p
while y 7 NIL and x == y.right
X =Y
y=yp
return y

Lecture 9, 18.03.2025

Successor (Predecessor is symmetric)

What is the running time? O(h)

TREE-SUCCESSOR (x)
if x.right # NIL
return TREE-MINIMUM (x. right)
y =x.p
while y 7 NIL and x == y.right
X =Y
y=yp
return y

Lecture 9, 18.03.2025

PRINTING A BINARY SEARCH TREE

(Inorder, Preorder, Postorder)

Lecture 9, 18.03.2025

Printing Inorder (ldea)

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,10,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,10,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,10,11,

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025

Inorder tree walk

INORDER-TREE-WALK (x)
if x # NIL
INORDER-TREE-WALK (x. left)
print key[x]
INORDER-TREE-WALK (x.right)

Lecture 9, 18.03.2025

Inorder tree walk

What is the running time?

INORDER-TREE-WALK (x)
if x # NIL
INORDER-TREE-WALK (x. left)
print key[x]
INORDER-TREE-WALK (x.right)

Lecture 9, 18.03.2025

Inorder tree walk

What is the running time? ©(n)

INORDER-TREE-WALK (x)
if x # NIL
INORDER-TREE-WALK (x. left)
print key[x]
INORDER-TREE-WALK (x.right)

Lecture 9, 18.03.2025

Printing Preorder and Postorder

Lecture 9, 18.03.2025

Printing Preorder and Postorder

PREORDER-TREE- WALK(x)

1. if x # NIL

2. print key[x]

3. PREORDER-TREE-WALK(x./eft)
4. PREORDER-TREE-WALK(x.right)

Lecture 9, 18.03.2025

Printing Preorder and Postorder

PREORDER-TREE- WALK(x) POSTORDER-TREE- WALK(x)

1. if x # NIL 1. if x # NIL

2. print key[x] 2. POSTORDER-TREE-WALK(x.left)
3. PREORDER-TREE-WALK(x.left) 3. POSTORDER-TREE-WALK(x.right)
4. PREORDER-TREE-WALK(x.right) 4. print key[x]

Lecture 9, 18.03.2025

MODIFYING A BINARY SEARCH TREE

(Insertion and Deletion)

Lecture 9, 18.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 7

Lecture 9, 18.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 7

Lecture 9, 18.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 13

Lecture 9, 18.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 13

Lecture 9, 18.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 9.5

Lecture 9, 18.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 9.5

Lecture 9, 18.03.2025

Insertion

TREE-INSERT(T, 2)
y = NIL
x = T.root
while x # NIL
“search” phase y=x
if 7. key < x.key
x = x.left
else x = x.right
Z.p=Yy
if y == NIL
T.root = 7 // tree T was empty
“insert” phase elseif z.key < y.key
y.left =z
else y.right = 7

Lecture 9, 18.03.2025

Insertion

TREE-INSERT(T, 2)
y = NIL
x = T.root
while x # NIL
“search” phase y=x
if 7. key < x.key
x = x.left
else x = x.right
Z.p=Yy
if y == NIL
T.root = 7 // tree T was empty
“insert” phase elseif z.key < y.key
y.left =z
else y.right = 7

What is the running time?

Lecture 9, 18.03.2025

Insertion

TREE-INSERT(T, 2)
y = NIL
x = T.root
while x # NIL
“search” phase y=x
if 7. key < x.key
x = x.left
else x = x.right
Z.p=Yy
if y == NIL
T.root = 7 // tree T was empty
“insert” phase elseif z.key < y.key
y.left =z
else y.right = 7

What is the running time? O(h)

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:

» If z has no children, remove it

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:

» If z has no children, remove it

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it

> If z has one child, then make that child take z's position in the tree

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it

> If z has one child, then make that child take z's position in the tree

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it

> If z has one child, then make that child take z's position in the tree

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z's position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z's position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z's position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z's position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 9, 18.03.2025

: ! TRANSPLANT(T, u, v)
Deletion Implementation: Transplant EEE=®

T.root = v
elseif u == u.p.left

u.p.left = v
else u.p.right = v
if v # NIL

V.p = u.p

TRANSPLANT(T, u, v) replaces subtree rooted at u with that rooted at v

AAL

Lecture 9, 18.03.2025

TREE-DELETE(T, z)

Deletion Procedure ISt

TRANSPLANT(T, z, z.right) // z has no left child
elseif z.right == NIL

TRANSPLANT(T, z, Z.left) // z has just a left child
else // z has two children.

y = TREE-MINIMUM (z.right) // y is z’s successor

ify.p#z

// y lies within z’s right subtree but is not the root of thi
TRANSPLANT(T, y, y.right)
y.right = z.right
y.right.p =y
// Replace z by y.
TRANSPLANT(T, z, y)
y.left = z.left
y.leftp =y

Lecture 9, 18.03.2025

Summary of Binary Search Trees

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time l

Modifying operations: Insertion, Deletion: O(h) time

Lecture 9, 18.03.2025

Summary of Binary Search Trees

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time i

Modifying operations: Insertion, Deletion: O(h) time

D
O 2

Lecture 9, 18.03.2025

Summary of Binary Search Trees

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time i

Modifying operations: Insertion, Deletion: O(h) time

Exist efficient procedures to keep tree balanced (AVL trees, red-black trees,
etc.)

D
O 2

Lecture 9, 18.03.2025

Comparison of Data Structures

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Lecture 9, 18.03.2025

Comparison of Data Structures

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Lecture 9, 18.03.2025

Comparison of Data Structures

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Linked List: No fixed capacity, Insertion and deletion O(1)
time, supports search but O(n) time

Lecture 9, 18.03.2025

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Linked List: No fixed capacity, Insertion and deletion O(1)
time, supports search but O(n) time

Binary Search Trees: No fixed capacity, supports most
operations (insertion, deletion, search, max, min, ...)
in time O(height of tree)

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

Lecture 9, 18.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167

Lecture 9, 18.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° + 3 — /167

Lecture 9, 18.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° 4+ 3 — /167
What is 2° 4+ 3 — /167

Lecture 9, 18.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° 4+ 3 — /167
What is 2° 4+ 3 — /167

What is 25 + 3 — /167

Lecture 9, 18.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167

What is 2° +3 — /167

Lecture 9, 18.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 25 + 3 — /167

What is 25 + 3 — /167

Lecture 9, 18.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2% 4+ 3 — /167
What is 25 +3 — /167
What is 2° + 3 — /167
What is 2° +3 — /167
What is 25 + 3 — /167
What is 2° + 3 — /167

What is 2° +3 — /167

Lecture 9, 18.03.2025

Dynamic Programming (DP)

Main idea:
» Remember calculations already made

> Saves enormous amounts of computation

Allows to solve many optimization problems
> Always at least one question in google code jam needs DP

Lecture 9, 18.03.2025

First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

Fo=1
F=1
Fn=Fo1+ Foo

Lecture 9, 18.03.2025

First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

Fo=1
F=1
Fn=Fo1+ Foo

1,1

Lecture 9, 18.03.2025

First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

Fo=1
F=1
Fo=Fi1+ Fro2

1,1,2

»

Lecture 9, 18.03.2025

First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

Fo=1
F=1
Fo=Fi1+ Fro2

1,1,2,3

Lecture 9, 18.03.2025

First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

Fo=1
F=1
Fo=Fi1+ Fro2

1,1,2,3,5

Lecture 9, 18.03.2025

First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

Fo=1
F=1
Fo=Fi1+ Fro2

1,1,2,3,5,8

Lecture 9, 18.03.2025

First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

Fo=1
F=1
Fo=Fi1+ Fro2

1,1,2,3,5,8,13

Lecture 9, 18.03.2025

First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

Fo=1
F=1
Fo=Fi1+ Fro2

1,1,2,3,5,8,13,21

Lecture 9, 18.03.2025

First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

Fo=1
F=1
Fo=Fi1+ Fro2

1,1,2,3,5,8,13,21,7

Lecture 9, 18.03.2025

Calculating the n-th Fibonacci number

Lecture 9, 18.03.2025

Calculating the n-th Fibonacci number

F1B(n)

1l.ifn=0orn=1
First idea: 2. returnl
3. else
4. return F1B(n — 1) + F1B(n — 2)

Lecture 9, 18.03.2025

Calculating the n-th Fibonacci number

F1B(n)

1l.ifn=0orn=1
First idea: 2. returnl
3. else
4. return F1B(n — 1) + F1B(n — 2)

What is the problem?

Lecture 9, 18.03.2025

Calculating the n-th Fibonacci number

F1B(n)
. . 1l.ifn=0orn=1
First idea: 2. returnl
3. else

4. return F1B(n — 1) + F1B(n — 2)

What is the problem?

FB(n — 1) FiB(n — 2)

(FIB(H = 2)) (FIB(n = 3)) (FIB(n = 3)) (FIB(H = 4))

/7 \ / \ / \ /7 \
/ \ / \ / \ / \
/ \ / \ / \ / \

Lecture 9, 18.03.2025

Calculating the n-th Fibonacci number

F1B(n)

1l.ifn=0orn=1
First idea: 2. returnl
3. else
4. return F1B(n — 1) + F1B(n — 2)

What is the problem? Same calculations again and again
= exponential time!

FB(n — 1) FiB(n — 2)

(FIB(H — 2)) (FIB(n — 3)) (FIB(n — 3)) (FIB(H — 4))

/7 \ / \ / \ /7 \
/ \ / \ / \ / \
/ \ / \ / \ / \

Lecture 9, 18.03.2025

The solution

Remember what we have done

Lecture 9, 18.03.2025

The solution

Remember what we have done

Two different ways:

Top-down with memoization

> Solve recursively but store each result in a table
> Memoizing is remembering what we have computed previously

Lecture 9, 18.03.2025

The solution

Remember what we have done

Two different ways:

Top-down with memoization

> Solve recursively but store each result in a table
> Memoizing is remembering what we have computed previously

Bottom-up

> Sort the subproblems and solve the smaller ones first
> That way, when solving a subproblem, have already solved the
smaller subproblems we need

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-F1B(n)

1. Let r =[0...n] be a new array
2. fori=0ton

3. rli] ¢+ -

4. return MEMOIZED-FIB-AUX(n, r)

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FIB-AuX(n, r)

.ifr[n] >0
return r[n]
.ifn=0o0rn=1

1
MEMOIZED-F1B(n) 2
3
4. ans<1
5
6

1. Let r =[0...n] be a new array
2. fori=0ton

3. rli] ¢+ -

4. return MEMOIZED-FIB-AUX(n, r)

. else
ans <— MEMOIZED-FIB-AuX(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)
. r[n] < ans
8. return r[n]

~

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FIB-AuX(n, r)

.ifr[n] >0
return r[n]
.ifn=0o0rn=1

1
MEMOIZED-F1B(n) 2
3
4. ans<1
5
6

1. Let r =[0...n] be a new array
2. fori=0ton

3. rli] ¢+ -

4. return MEMOIZED-FIB-AUX(n, r)

. else
ans <— MEMOIZED-FIB-AuX(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)
. r[n] < ans
8. return r[n]

~

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FIB-AuX(n, r)

.ifr[n] >0
return r[n]
.ifn=0o0rn=1

1
MEMOIZED-F1B(n) 2
3
4. ans<1
5
6

1. Let r =[0...n] be a new array
2. fori=0ton

3. rli] ¢+ -

4. return MEMOIZED-FIB-AUX(n, r)

. else
ans <— MEMOIZED-FIB-AuX(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)
. r[n] < ans
8. return r[n]

~

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FIB-AuX(n, r)

.ifr[n] >0
return r[n]
.ifn=0o0rn=1

1
MEMOIZED-F1B(n) 2
3
4. ans<1
5
6

1. Let r =[0...n] be a new array
2. fori=0ton

3. rli] ¢+ -

4. return MEMOIZED-FIB-AUX(n, r)

. else
ans <— MEMOIZED-FIB-AuX(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)
. r[n] < ans
8. return r[n]

~

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FIB-AuX(n, r)

.ifr[n] >0
return r[n]
.ifn=0o0rn=1

1
MEMOIZED-F1B(n) 2
3
4. ans<1
5
6

1. Let r =[0...n] be a new array
2. fori=0ton

3. rli] ¢+ -

4. return MEMOIZED-FIB-AUX(n, r)

. else
ans <— MEMOIZED-FIB-AuX(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)
. r[n] < ans
8. return r[n]

~

_—

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FIB-AuX(n, r)

.ifr[n] >0
return r[n]
.ifn=0o0rn=1

1
MEMOIZED-F1B(n) 2
3
4. ans<1
5
6

1. Let r =[0...n] be a new array
2. fori=0ton

3. rli] ¢+ -

4. return MEMOIZED-FIB-AUX(n, r)

. else
ans <— MEMOIZED-FIB-AuX(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)
. r[n] < ans
8. return r[n]

~

_—

M-F-A(2, r)

(M—F—A(l, r)) (M—F-A(O, r))

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FIB-AuX(n, r)

.ifr[n] >0
return r[n]
.ifn=0o0rn=1

1
MEMOIZED-F1B(n) 2
3
4. ans<1
5
6

1. Let r =[0...n] be a new array
2. fori=0ton

3. rli] ¢+ -

4. return MEMOIZED-FIB-AUX(n, r)

. else
ans <— MEMOIZED-FIB-AuX(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)
. r[n] < ans
8. return r[n]

~

(M-F.A(l7 r)) (M—F-A(O, ,)) Already calculated @

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FIB-AuX(n, r)

.ifr[n] >0
return r[n]
.ifn=0o0rn=1

1
MEMOIZED-F1B(n) 2
3
4. ans<1
5
6

1. Let r =[0...n] be a new array
2. fori=0ton

3. rli] ¢+ -

4. return MEMOIZED-FIB-AUX(n, r)

. else
ans <— MEMOIZED-FIB-AuX(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)
. r[n] < ans
8. return r[n]

~

' M-F-A(n —3,r)
M-F-A(3, r)
] ™ O
M-F-A(2, r) Already calculated

O
Ay
(M-F-A(1,r)) (M-F-A(0, ,)) Already calculated

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FIB-AuX(n, r)

.ifr[n] >0
return r[n]
.ifn=0o0rn=1

1
MEMOIZED-F1B(n) 2
3
4. ans<1
5
6

1. Let r =[0...n] be a new array
2. fori=0ton

3. rli] ¢+ -

4. return MEMOIZED-FIB-AUX(n, r)

. else
ans <— MEMOIZED-FIB-AuX(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)
. r[n] < ans
8. return r[n]

~

M-F-A(n, r)

(M-F-A(n -1, r)) (M—F—A(n -2, r))

-7 e
M-F-A(3, r) » WA = 8,6) Already calculated @
M-F-A(2, r) Already calculated

O
Ay
(M-F-A(1,r)) (M-F-A(0, ,)) Already calculated

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FIB(n)

1. Let r =[0...n] be a new array
2. fori=0ton

3. r[i] + —©

4. return MEMOIZED-FIB-AUX(n, r)

Time analysis:

Lecture 9, 18.03.2025

MEMOIZED-F1B-Aux(n, r)

1. if r[n] >0

2. return r[n]

3.ifn=0o0rn=1

4. ans<+1

5. else

6. ans < MEMOIZED-FIB-AuX(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)

. r[n] < ans

8. return r[n]

~

Top-down with memoization: Fibonacci numbers

MEMOIZED-F1B-Aux(n, r)

1
MEMOIZED-FIB(n) 2
1. Let r =[0...n] be a new array 2
2. fori=0ton 5'
3. r[i] + —© 6
4. return MEMOIZED-FIB-AUX(n, r)

7

8

.if r[n] >0

return r[n]

.ifn=00orn=1

ans <1

. else

ans <— MEMOIZED-FIB-Aux(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)

. r[n] < ans
. return r[n]

Time analysis:

> Steps 1-3 in MEMOIZED-FIB take time ©(n)

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-F1B-Aux(n, r)

1
MEMOIZED-FIB(n) 2
1. Let r =[0...n] be a new array 2
2. fori=0ton 5'
3. r[i] + —© 6
4. return MEMOIZED-FIB-AUX(n, r)

7

8

.if r[n] >0

return r[n]

.ifn=00orn=1

ans <1

. else

ans <— MEMOIZED-FIB-Aux(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)

. r[n] < ans
. return r[n]

Time analysis:

> Steps 1-3 in MEMOIZED-FIB take time ©(n)
> Each call to MEMOIZED-FIB-AUX takes time ©(1)

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-F1B-Aux(n, r)

1
MEMOIZED-FIB(n) 2
1. Let r =[0...n] be a new array 2
2. fori=0ton 5'
3. r[i] + —© 6
4. return MEMOIZED-FIB-AUX(n, r)

7

8

.if r[n] >0

return r[n]

.ifn=00orn=1

ans <1

. else

ans <— MEMOIZED-FIB-Aux(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)

. r[n] < ans
. return r[n]

Time analysis:

> Steps 1-3 in MEMOIZED-FIB take time ©(n)
> Each call to MEMOIZED-FIB-AUX takes time ©(1)
> Number of calls to MEMOIZED-FIB-AUX is ©(n)

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FI1B-AUX(n, r)
1.ifr[n] >0

MEMOIZED-F1B(n) 2. return r[n]

1. Let r =[0...n] be a new array 3.#fn=00rn=1

. 4. ans<+1

2. fori=0ton

3. r[i] + —© 5. else

4. return MEMOIZED-FIB-AUX(n, r) 6. ans FMh/éfdl\g(I’ZIéEDiﬂf;;}?Ai‘z'(’"_—;,r;)+
7. r[n] < ans
8. return r[n]

Time analysis:
> Steps 1-3 in MEMOIZED-FIB take time ©(n)
> Each call to MEMOIZED-FIB-AUX takes time ©(1)
> Number of calls to MEMOIZED-FIB-AUX is ©(n)
> Total time is thus ©(n)

Lecture 9, 18.03.2025

Bottom-up: Fibonacci numbers

BoTrToM-Up-FIB(n)

. Let r =[0...n] be a new array
r[0] + 1

1]+ 1

.fori=2ton

rli] < rli — 1] + r[i — 2]

. return r[n]

R WWN KR

Example n = 8:

r=11

Lecture 9, 18.03.2025

Bottom-up: Fibonacci numbers

BoTrToM-Up-FIB(n)

. Let r =[0...n] be a new array
r[0] + 1

1]+ 1

.fori=2ton

rli] < rli — 1] + r[i — 2]

. return r[n]

R WWN KR

Example n = 8:

r= 1111

Lecture 9, 18.03.2025

Bottom-up: Fibonacci numbers

BoTrToM-Up-FIB(n)

. Let r =[0...n] be a new array
r[0] + 1

1]+ 1

.fori=2ton

rli] < rli — 1] + r[i — 2]

. return r[n]

R WWN KR

Example n = 8:

r= 11112

Lecture 9, 18.03.2025

Bottom-up: Fibonacci numbers

BoTrToM-Up-FIB(n)

. Let r =[0...n] be a new array
r[0] + 1

1]+ 1

.fori=2ton

rli] < rli — 1] + r[i — 2]

. return r[n]

R WWN KR

Example n = 8:

r=11{112(3

Lecture 9, 18.03.2025

Bottom-up: Fibonacci numbers

BoTrToM-Up-FIB(n)

. Let r =[0...n] be a new array
r[0] + 1

1]+ 1

.fori=2ton

rli] < rli — 1] + r[i — 2]

. return r[n]

R WWN KR

Example n = 8:

r=11{112|3|5

Lecture 9, 18.03.2025

Bottom-up: Fibonacci numbers

BoTrToM-Up-FIB(n)

. Let r =[0...n] be a new array
r[0] + 1

1]+ 1

.fori=2ton

rli] < rli — 1] + r[i — 2]

. return r[n]

R WWN KR

Example n = 8:

Lecture 9, 18.03.2025

Bottom-up: Fibonacci numbers

BoTrToM-Up-FIB(n)

. Let r =[0...n] be a new array
r[0] + 1

1]+ 1

.fori=2ton

rli] < rli — 1] + r[i — 2]

. return r[n]

R WWN KR

Example n = 8:

Lecture 9, 18.03.2025

Bottom-up: Fibonacci numbers

BoTrToM-Up-FIB(n)

. Let r =[0...n] be a new array
r[0] + 1

1]+ 1

.fori=2ton

rli] < rli — 1] + r[i — 2]

. return r[n]

R WWN KR

Example n = 8:

Lecture 9, 18.03.2025

Bottom-up: Fibonacci numbers

BoTrToM-Up-FIB(n)

. Let r =[0...n] be a new array
r[0] + 1

1]+ 1

.fori=2ton

rli] < rli — 1] + r[i — 2]

. return r[n]

R WWN KR

Example n = 8:

Time?

Lecture 9, 18.03.2025

Bottom-up: Fibonacci numbers

BoTrToM-Up-FIB(n)

. Let r =[0...n] be a new array
r[0] + 1

1]+ 1

.fori=2ton

rli] < rli — 1] + r[i — 2]

. return r[n]

R WWN KR

Time? ©(n)

Lecture 9, 18.03.2025

» We had a recursive formulation of our problem

FOZ].
F=1
Fo=Fo1+Foo

> Introduced memory (array r)

> Filled in table“top-down with memoization” or with
“bottom-up”

Lecture 9, 18.03.2025

Key elements in designing a DP-algorithm

Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve

Lecture 9, 18.03.2025

Key elements in designing a DP-algorithm

Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Lecture 9, 18.03.2025

Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Overlapping subproblems

> A naive recursive algorithm may revisit the same (sub)problem over
and over.

» Top-down with memoization
Solve recursively but store each result in a table

» Bottom-up
Sort the subproblems and solve the smaller ones first; that way, when solving a

subproblem, have already solved the smaller subproblems we need

ROD CUTTING

Lecture 9, 18.03.2025

Instance: > A length n of a metal rod.
> A table of prices p; for rods of lengths i =1,... n.

lengthi |1 2 3 4 5 6 7 8 9 10
pricep; [1 5 8 9 10 17 17 20 24 30

Lecture 9, 18.03.2025

Instance: > A length n of a metal rod.
> A table of prices p; for rods of lengths i =1,... n.

lengthi |1 2 3 4 5 6 7 8 9 10
pricep; [1 5 8 9 10 17 17 20 24 30

Objective: Decide how to cut the rod into pieces and maximize the
price.

Lecture 9, 18.03.2025

Instance: > A length n of a metal rod.
> A table of prices p; for rods of lengths i =1,... n.

lengthi |1 2 3 4 5 6 7 8 9 10
pricep; [1 5 8 9 10 17 17 20 24 30

Objective: Decide how to cut the rod into pieces and maximize the
price.

9 1 8 5 5 8 1
e oD e ODo
(a) (b) (©) (d
1 1 5 1 5 1 5 1 1 1 1 1 1
@O OO oo oooo
(e) ® @ (h)

Lecture 9, 18.03.2025

Size of the Problem

> There 2"~ ! possible solutions—either cut or do not cut after every
length unit.

Lecture 9, 18.03.2025

Size of the Problem

> There 2"~ ! possible solutions—either cut or do not cut after every
length unit.

> Need structure for an efficient algorithm.

Lecture 9, 18.03.2025

Size of the Problem

> There 2"~ ! possible solutions—either cut or do not cut after every
length unit.

> Need structure for an efficient algorithm.

If:
> the leftmost cut in an optimal solution is after i units.
> an optimal way to cut a solution of size n — i is into rods of sizes:
S1,52y -« Sk-
Then, an optimal way to cut our rod is into rods of sizes: i, s, Sz, ..., Sk.

Lecture 9, 18.03.2025

Proof of Structural Theorem

If:

> the leftmost cut in an optimal solution is after i units.

> an optimal way to cut a solution of size n — i is into rods of sizes:
51,525« - -5 Sk-

Then, an optimal way to cut our rod is into rods of sizes: i, sy, Sy, . .., Sk.

Proof

Lecture 9, 18.03.2025

Proof of Structural Theorem

If:

> the leftmost cut in an optimal solution is after i units.

> an optimal way to cut a solution of size n — i is into rods of sizes:
57109 S0 o Sk

Then, an optimal way to cut our rod is into rods of sizes: i, sy, Sy, . .., Sk.

Proof

Feasibility: Since s1, sy, ..., sk is a feasible solution for an instance of size
n—i
Shas=n-i
1S =n—1i.

Lecture 9, 18.03.2025

Proof of Structural Theorem

If:

> the leftmost cut in an optimal solution is after i units.

> an optimal way to cut a solution of size n — i is into rods of sizes:
57109 S0 o Sk

Then, an optimal way to cut our rod is into rods of sizes: i, sy, Sy, . .., Sk.

Proof

Feasibility: Since s1, sy, ..., sk is a feasible solution for an instance of size
n—i
Shas=n-i
1S =n—1i.

. k
Hence, i+ ;s =n.

Lecture 9, 18.03.2025

Proof of Structural Theorem

If:

> the leftmost cut in an optimal solution is after i units.

> an optimal way to cut a solution of size n — i is into rods of sizes:

57109 S0 o Sk
Then, an optimal way to cut our rod is into rods of sizes: i, sy, Sy, . .., Sk.
Proof
Optimality: Let i, 01, 0,...,0¢ be an optimal solution—exists by
assumption.

Lecture 9, 18.03.2025

Proof of Structural Theorem

If:

> the leftmost cut in an optimal solution is after i units.

> an optimal way to cut a solution of size n — i is into rods of sizes:

57109 S0 o Sk
Then, an optimal way to cut our rod is into rods of sizes: i, sy, Sy, . .., Sk.
Proof
Optimality: Let i, 01, 0,...,0¢ be an optimal solution—exists by
assumption. Recall that s;,s5,..., sk is an optimal way to cut a rod of

size n — i, thus,
k ¢
> jm1Ps = 2 i Po; -

Lecture 9, 18.03.2025

Proof of Structural Theorem

If:

> the leftmost cut in an optimal solution is after i units.

> an optimal way to cut a solution of size n — i is into rods of sizes:

57109 S0 o Sk

Then, an optimal way to cut our rod is into rods of sizes: i, sy, Sy, . .., Sk.
Proof
Optimality: Let i, 01, 0,...,0¢ be an optimal solution—exists by
assumption. Recall that s;,s5,..., sk is an optimal way to cut a rod of

size n — i, thus,
k ¢
> jm1Ps = 2 i Po; -

Hence, pi+ Y1y s > pi+ Y051 Po-

Lecture 9, 18.03.2025

First Algorithm

If we let r(n) be the optimal revenue from a rod of length n, then, by the
structural theorem, we can express r(n) recursively as follows

r(n):{o ifn=0,

maxi<i<p {pi + r(n—i)} otherwiseif n>1 .

Lecture 9, 18.03.2025

First Algorithm

If we let r(n) be the optimal revenue from a rod of length n, then, by the
structural theorem, we can express r(n) recursively as follows

r(n):{o ifn=0,

maxi<i<p {pi + r(n—i)} otherwiseif n>1 .

CuTt-RoD(p,n)
ifn==
return 0
q = —00
fori = 1ton
g = max(q, p[i] + CUT-ROD(p,n —i))
return g

Lecture 9, 18.03.2025

> The procedure is extremely inefficient—in fact exponential.

Lecture 9, 18.03.2025

> The procedure is extremely inefficient—in fact exponential.

» What went wrong?

Lecture 9, 18.03.2025

> The procedure is extremely inefficient—in fact exponential.

» What went wrong?

Lecture 9, 18.03.2025

> The procedure is extremely inefficient—in fact exponential.

» What went wrong?

> The procedure repeatedly calculates the same profits.

Lecture 9, 18.03.2025

> The procedure is extremely inefficient—in fact exponential.

» What went wrong?

> The procedure repeatedly calculates the same profits.

> Dynamic programming can save the extra calculations.

Lecture 9, 18.03.2025

Top-Down Dynamic Programming

General Approach

Lecture 9, 18.03.2025

Top-Down Dynamic Programming

General Approach

> Keep the recursive structure of the pseudocode.

Lecture 9, 18.03.2025

Top-Down Dynamic Programming

General Approach

> Keep the recursive structure of the pseudocode.

> Memoize (store) the result of every recursive call.

Lecture 9, 18.03.2025

Top-Down Dynamic Programming

General Approach

> Keep the recursive structure of the pseudocode.
> Memoize (store) the result of every recursive call.

> At each recursive call, try to avoid work using memoized results.

Lecture 9, 18.03.2025

Top-Down Dynamic Programming

General Approach

> Keep the recursive structure of the pseudocode.
> Memoize (store) the result of every recursive call.
> At each recursive call, try to avoid work using memoized results.

Pseudocode

MEMOIZED-CUT-ROD(p, 1)

let r[0..n] be a new array
fori =0ton
rli] = —o0
return MEMOIZED-CUT-ROD-AUX (p,n, r)

Lecture 9, 18.03.2025

Top-Down Dynamic Programming

General Approach

> Keep the recursive structure of the pseudocode.
> Memoize (store) the result of every recursive call.

> At each recursive call, try to avoid work using memoized results.

Pseudocode
MEMOIZED-CUT-ROD-AUX (p,n,1) MEMOIZED-CUT-ROD(p, 1)
ifr[n] >0 let 7[0. . n] be a new array
_ return r[n] fori = 0ton
ifn ==_ 0 rli] = —o0
4= return MEMOIZED-CUT-ROD-AUX (p,n, r)
else ¢ = —o0

fori = 1ton

q = max(q, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))
rln] =q
return g

Lecture 9, 18.03.2025

What did we gain?

Lecture 9, 18.03.2025

What did we gain?

Memoization helps us avoid recalculations.

Lecture 9, 18.03.2025

What did we gain?

Memoization helps us avoid recalculations.

Lecture 9, 18.03.2025

What did we gain?

Memoization helps us avoid recalculations.

One can think of all the recursive calls using a memoized value as
additional parents of the call generating this value.

Lecture 9, 18.03.2025

What did we gain?

Memoization helps us avoid recalculations.

Subproblem Graph

()

©
= ©
.
©

One can think of all the recursive calls using a memoized value as
additional parents of the call generating this value.

Lecture 9, 18.03.2025

Time Complexity

Lecture 9, 18.03.2025

Time Complexity

> The initialization takes O(n) time.

MEMOIZED-CUT-ROD (p, n)

let [0..n] be a new array
fori =0ton
rli] = —o0
return MEMOIZED-CUT-ROD-AUX (p, 7, r)

Lecture 9, 18.03.2025

Time Complexity

> The initialization takes O(n) time.
> Processing each sub-problem takes linear time in the number of
sub-problems it evokes.

MEMOIZED-CUT-ROD-AUX (p,n, 1)

if r[n] >0

return r[n]
ifn==0

q=0
else g = —oo

fori = 1ton

q = max(q, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))

rin] =q
return g

Lecture 9, 18.03.2025

Time Complexity

> The initialization takes O(n) time.
> Processing each sub-problem takes linear time in the number of
sub-problems it evokes.

MEMOIZED-CUT-ROD-AUX (p,n, 1)

if r[n] >0

return r[n]
ifn==0

q=0
else g = —oo

fori = 1ton

q = max(q, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))

rin] =q
return g

> The time complexity is proportional to the number of nodes and
edges in the subproblem graph.

Lecture 9, 18.03.2025

Time Complexity

> The initialization takes O(n) time.

> Processing each sub-problem takes linear time in the number of
sub-problems it evokes.

> The time complexity is proportional to the number of nodes and
edges in the subproblem graph.

()

Lecture 9, 18.03.2025

Time Complexity

> The initialization takes O(n) time.

> Processing each sub-problem takes linear time in the number of
sub-problems it evokes.

> The time complexity is proportional to the number of nodes and
edges in the subproblem graph.

()

3
Time Complexity
‘9 o(n?)

@
©

Lecture 9, 18.03.2025

Bottom-Up Dynamic Programming

General Approach

Lecture 9, 18.03.2025

Bottom-Up Dynamic Programming

General Approach

> Sort the sub-problems by size.

Lecture 9, 18.03.2025

Bottom-Up Dynamic Programming

General Approach

> Sort the sub-problems by size.

> Solve the smaller ones first.

Lecture 9, 18.03.2025

Bottom-Up Dynamic Programming

General Approach

> Sort the sub-problems by size.
> Solve the smaller ones first.

> When reaching a sub-problem, the smaller ones are already solved.

Lecture 9, 18.03.2025

Bottom-Up Dynamic Programming

General Approach

> Sort the sub-problems by size.
> Solve the smaller ones first.
> When reaching a sub-problem, the smaller ones are already solved.

Pseudocode

BorToM-UP-CUT-ROD (p, 1)

let r[0..n] be a new array
r[0] =0
for j = 1ton
g = —00
fori = 1toj
q = max(q. plil +r[j —i])
rljl1=4q
return r[n]

Lecture 9, 18.03.2025

Bottom-Up Dynamic Programming

General Approach

> Sort the sub-problems by size.
> Solve the smaller ones first.
> When reaching a sub-problem, the smaller ones are already solved.

Pseudocode

BorToM-UP-CUT-ROD (p, 1)

let r[0..n] be a new array

r[0] =0
for j =_ l_to g Time Complexity
g - o(n?)
ori = 1toj
q = max(q. plil +r[j —i])
rljl1=4q

return r[n]

Lecture 9, 18.03.2025

Reconstructing an Optimal Solution

> The above algorithms only return the optimal profit.

> Sometimes one needs also to find an optimal solution.

Lecture 9, 18.03.2025

Reconstructing an Optimal Solution

> The above algorithms only return the optimal profit.

> Sometimes one needs also to find an optimal solution.

Approach

> Each cell of the memoization table corresponds to a decision: the
location of the left most cut.

Lecture 9, 18.03.2025

Reconstructing an Optimal Solution

> The above algorithms only return the optimal profit.

> Sometimes one needs also to find an optimal solution.

Approach

> Each cell of the memoization table corresponds to a decision: the
location of the left most cut.

> Store the decision corresponding to every cell in a separate table.

Lecture 9, 18.03.2025

Reconstructing an Optimal Solution (cont.)

EXTENDED-BOTTOM-UP-CUT-ROD (p, 1)

let r[0..n] and s[0. . n] be new arrays
r[0] =0
for j = 1ton
g = —©
fori =1toj
ifg < pli]+r[j —i]
q = plil+rlj—i]
s[il =i
rlil=4q
return r and s

Lecture 9, 18.03.2025

Reconstructing an Optimal Solution (cont.)

EXTENDED-BOTTOM-UP-CUT-ROD (p, 1)

let r[0..n] and s[0. . n] be new arrays
r[0] =0
for j = 1ton
g = —©
fori =1toj
ifg < pli]+r[j —i]
q = plil+rlj —i]
s[il =i
rlil=4q
return r and s

Output

i | 01 2 3 4 5 6 7 8
fijlo 1 5 8 10 13 17 18 22
sf]|o 1 2 3 2 2 6 1 2

Lecture 9, 18.03.2025

> We had a recursive formulation for the optimal value for our
problem

r(n):{o ifn=0,

maxi<ij<n{pi + r(n—i)} otherwiseif n>1 .

> Speed up the calculations by filling in a table either "top-down with
memoization” or with “bottom-up”.

> Recovered an optimal solution using an additional table.

Lecture 9, 18.03.2025

Problem Solving: the Change-Making Problem

» How can a given amount of money be made with the least number
of coins of given denominations?

Lecture 9, 18.03.2025

Problem Solving: the Change-Making Problem

» How can a given amount of money be made with the least number
of coins of given denominations?

Formally:

Input: n distinct coin denominators (integers)
0<w; <wy<...<w,and an amount W (the change)
which is also a positive integer.

Output: The minimum number of coins needed in order to make
the change:

n n
m|n{ E Xj E wjx; = W and x;'s are |ntegers} .
=1 =1

Lecture 9, 18.03.2025

» How can a given amount of money be made with the least number
of coins of given denominations?
Formally:

Input: n distinct coin denominators (integers)
0<w; <wy<...<w,and an amount W (the change)
which is also a positive integer.

Output: The minimum number of coins needed in order to make
the change:

n n
min { E Xj E wix; = W and x;'s are mtegers} .
j=1 Jj=1

Example: On input wy = 1,wp =2, w3 =5 and W = 8, the output
should be 3 since the best way of giving 8 is x; = xo = x3 = 1.

> Identify choices and optimal substructure

> Write optimal solution recursively as a function of smaller
subproblems

> Use top-down with memoization or bottom-up to solve the
recursion efficiently (without repeatedly solving the same subproblems)

Lecture 9, 18.03.2025

