Algorithms: Recall Binary Search Trees and

a Dynamic Programming

Theophile Thiery

=PFL School of Computer and Communication Sciences

Lecture 9, 18.03.2025

RECALL BINARY SEARCH TREES

Lecture 9, 18.03.2025

Binary Search Trees

Key property:
> If y is in the left subtree of x then y.key < x.key
> If y is in the right subtree of x then y.key > x.key

Tree T has a root: T.root

height h =3

(number of edges in
longest path from root to
leaf)

Lecture 9, 18.03.2025

Binary Search Trees

Encodes a strategy whatever number we look for
Key property:
> If y is in the left subtree of x then y.key < x.key

> If y is in the right subtree of x then y.key > x.key

height h = 14

(number of edges in
longest path from root to
leaf)

Basic operations take time proportional to height: O(h)

Lecture 9, 18.03.2025

QUERYING A BINARY SEARCH TREE

(Searching, Minimum, Maximum, Successor, Predecessor)

Lecture 9, 18.03.2025

What is the running time? O(h)

TREE-SEARCH(x, k)
if x == NIL or k == key[x]
return x
if k < x.key
return TREE-SEARCH (x.left, k)
else return TREE-SEARCH (x.right, k)

Lecture 9, 18.03.2025

Minimum and Maximum

Minimum Maximum

By key property:
» Minimum is located in leftmost node

» Maximum is located in rightmost node

Lecture 9, 18.03.2025

Minimum and Maximum

Minimum Maximum

What is the running time? O(h)

TREE-MINIMUM (x) TREE-MAXIMUM (x)
while x.left # NIL while x.right # NIL
x = x.left X = x.right

return x return x

Lecture 9, 18.03.2025

Successor of a node x is the node y such that y.key is the

“smallest key” > x.key

» What is the successor of 67

» What is the successor of 57

Lecture 9, 18.03.2025

Two cases when finding successor of x:

Case 1. x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we're visiting smaller
keys

x's successor is y is the node
that x is the predecessor of

(x is the maximum in y's left
subtree)

Successor (Predecessor is symmetric)

What is the running time? O(h)

TREE-SUCCESSOR (x)
if x.right # NIL
return TREE-MINIMUM (x. right)
y =x.p
while y # NIL and x == y.right
X =Y
y=ypr
return y

Lecture 9, 18.03.2025

PRINTING A BINARY SEARCH TREE

(Inorder, Preorder, Postorder)

Lecture 9, 18.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025

Inorder tree walk

What is the running time? ©(n)

INORDER-TREE-WALK (x)
if x # NIL
INORDER-TREE-WALK (x. left)
print key[x]
INORDER-TREE-WALK (x.right)

Lecture 9, 18.03.2025

Printing Preorder and Postorder

PREORDER-TREE- WALK(x) POSTORDER-TREE- WALK(x)

1. if x # NIL 1. if x # NIL

2. print key[x] 2. POSTORDER-TREE-WALK(x./eft)
3. PREORDER-TREE-WALK(x.left) 3. POSTORDER-TREE-WALK(x.right)
4. PREORDER-TREE-WALK(x.right) 4. print key[x]

Lecture 9, 18.03.2025

MODIFYING A BINARY SEARCH TREE

(Insertion and Deletion)

Lecture 9, 18.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 7

Lecture 9, 18.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 13

Lecture 9, 18.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 9.5

Lecture 9, 18.03.2025

Insertion

TREE-INSERT(T, 2)
y = NIL
x = T.root
while x # NIL
“search” phase y=x
if 7. key < x.key
x = x.left
else x = x.right
Z.p=Yy
if y == NIL
T.root = 7 // tree T was empty
“insert” phase elseif z.key < y.key
y.left =z
else y.right = 7

What is the running time? O(h)

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:

» If z has no children, remove it

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:

» If z has no children, remove it

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it

> If z has one child, then make that child take z's position in the tree

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it

> If z has one child, then make that child take z's position in the tree

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it

> If z has one child, then make that child take z's position in the tree

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z's position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z's position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z's position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 9, 18.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z's position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 9, 18.03.2025

: ! TRANSPLANT(T, u, v)
Deletion Implementation: Transplant RS

T.root = v
elseif u == u.p.left

u.p.left = v
else u.p.right = v
if v # NIL

V.p = u.p

TRANSPLANT(T, u, v) replaces subtree rooted at u with that rooted at v

AAL

Lecture 9, 18.03.2025

TREE-DELETE(T, z)

Deletion Procedure ISt

TRANSPLANT(T, z, z.right) // z has no left child
elseif z.right == NIL

TRANSPLANT(T, z, Z.left) // z has just a left child
else // z has two children.

y = TREE-MINIMUM (z.right) // y is z’s successor

ify.p#z

// y lies within z’s right subtree but is not the root of thi
TRANSPLANT(T, y, y.right)
y.right = z.right
y.right.p =y
// Replace z by y.
TRANSPLANT(T, z, y)
y.left = z.left
y.leftp =y

Lecture 9, 18.03.2025

Summary of Binary Search Trees

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time ‘

Modifying operations: Insertion, Deletion: O(h) time

Exist efficient procedures to keep tree balanced (AVL trees, red-black trees,
etc.)

D
O 2

Lecture 9, 18.03.2025

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Linked List: No fixed capacity, Insertion and deletion O(1)
time, supports search but O(n) time

Binary Search Trees: No fixed capacity, supports most
operations (insertion, deletion, search, max, min, ...)
in time O(height of tree)

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2% 4+ 3 — /167
What is 25 +3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 25 + 3 — /167
What is 2° + 3 — /167

What is 2° +3 — /167

Lecture 9, 18.03.2025

Dynamic Programming (DP)

Main idea:
» Remember calculations already made

> Saves enormous amounts of computation

Allows to solve many optimization problems
> Always at least one question in google code jam needs DP

Lecture 9, 18.03.2025

First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

Fo=1
F=1
Fo=Fi1+ Fro2

1,1,2,3,5,8,13,21,7

Lecture 9, 18.03.2025

Calculating the n-th Fibonacci number

F1B(n)

1l.ifn=0orn=1
First idea: 2. returnl
3. else
4. return F1B(n — 1) + F1B(n — 2)

What is the problem? Same calculations again and again
= exponential time!

FB(n — 1) FiB(n — 2)

(FIB(H — 2)) (FIB(n — 3)) (FIB(n — 3)) (FIB(H — 4))

/7 \ / \ / \ /7 \
/ \ / \ / \ / \
/ \ / \ / \ / \

Lecture 9, 18.03.2025

The solution

Remember what we have done

Two different ways:

Top-down with memoization

> Solve recursively but store each result in a table
> Memoizing is remembering what we have computed previously

Bottom-up

> Sort the subproblems and solve the smaller ones first
> That way, when solving a subproblem, have already solved the
smaller subproblems we need

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FIB-AuX(n, r)

.ifr[n] >0
return r[n]
.ifn=0o0rn=1

1
MEMOIZED-F1B(n) 2
3
4. ans<1
5
6

1. Let r =[0...n] be a new array
2. fori=0ton

3. rli] -

4. return MEMOIZED-FIB-AUX(n, r)

. else
ans <— MEMOIZED-FIB-AuX(n — 1, r)+
MEMOIZED-FIB-AUX(n — 2, r)
. r[n] < ans
8. return r[n]

~

M-F-A(n, r)

(M-F-A(n -1, r)) (M—F—A(n -2, r))

-7 e
M-F-A(3, r) » WA = 8,6) Already calculated @
M-F-A(2, r) Already calculated

O
Ay
(M-F-A(1,r)) (M-F-A(0, ,)) Already calculated

Lecture 9, 18.03.2025

Top-down with memoization: Fibonacci numbers

MEMOIZED-FI1B-AUX(n, r)
1.ifr[n] >0

MEMOIZED-F1B(n) 2. return r[n]

1. Let r =[0...n] be a new array 3.#fn=00rn=1

. 4. ans<+1

2. fori=0ton

3. r[i] + —© 5. else

4. return MEMOIZED-FIB-AUX(n, r) 6. ans FMh/éfdl\g(I’ZIéEDiﬂf;;}?Ai‘z'(’"_—;,r;)+
7. r[n] < ans
8. return r[n]

Time analysis:
> Steps 1-3 in MEMOIZED-FIB take time ©(n)
> Each call to MEMOIZED-FIB-AUX takes time ©(1)
> Number of calls to MEMOIZED-FIB-AUX is ©(n)
> Total time is thus ©(n)

Lecture 9, 18.03.2025

Bottom-up: Fibonacci numbers

BoTrToM-Up-FIB(n)

. Let r =[0...n] be a new array
r[0] + 1

1]+ 1

.fori=2ton

rli] < rli — 1] + r[i — 2]

. return r[n]

AR WWN KR

Time? ©(n)

Lecture 9, 18.03.2025

» We had a recursive formulation of our problem

FOZ].
F=1
Fo=Fo1+Foo2

> Introduced memory (array r)

> Filled in table“top-down with memoization” or with
“bottom-up”

Lecture 9, 18.03.2025

Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Overlapping subproblems

> A naive recursive algorithm may revisit the same (sub)problem over
and over.

» Top-down with memoization
Solve recursively but store each result in a table

» Bottom-up
Sort the subproblems and solve the smaller ones first; that way, when solving a

subproblem, have already solved the smaller subproblems we need

ROD CUTTING

Lecture 9, 18.03.2025

Instance: > A length n of a metal rod.
> A table of prices p; for rods of lengths i =1,... n.

lengthi |1 2 3 4 5 6 7 8 9 10
pricep; [1 5 8 9 10 17 17 20 24 30

Objective: Decide how to cut the rod into pieces and maximize the
price.

9 1 8 5 5 8 1
e oD e oo
(a) (b) (©) (d
1 1 5 1 5 1 5 1 1 1 1 1 1
OO OO oo oooo
(e) ® @ (h)

Lecture 9, 18.03.2025

Size of the Problem

> There 2"~ ! possible solutions—either cut or do not cut after every
length unit.

> Need structure for an efficient algorithm.

If:
> the leftmost cut in an optimal solution is after i units.
> an optimal way to cut a solution of size n — i is into rods of sizes:
S1,52y -« Sk-
Then, an optimal way to cut our rod is into rods of sizes: i, sy, Sz, ..., Sk.

Lecture 9, 18.03.2025

Proof of Structural Theorem

If:

> the leftmost cut in an optimal solution is after i units.

> an optimal way to cut a solution of size n — i is into rods of sizes:
57109 S0l o Sk

Then, an optimal way to cut our rod is into rods of sizes: i, sy, Sy, . .., Sk.

Proof

Feasibility: Since s1, sy, ..., sk is a feasible solution for an instance of size
n—i
Shas=n-i
1S =n—1i.

. k
Hence, i+ ;s =n.

Lecture 9, 18.03.2025

Proof of Structural Theorem

If:

> the leftmost cut in an optimal solution is after i units.

> an optimal way to cut a solution of size n — i is into rods of sizes:

57109 S0l o Sk

Then, an optimal way to cut our rod is into rods of sizes: i, sy, Sy, . .., Sk.
Proof
Optimality: Let i, 01, 0,..., 00 be an optimal solution—exists by
assumption. Recall that s;,s5,..., sk is an optimal way to cut a rod of

size n — i, thus,
k ¢
> jm1Ps = 2 i1 Po; -

Hence, pi + Y11 s > pi++ Y25y P

Lecture 9, 18.03.2025

First Algorithm

If we let r(n) be the optimal revenue from a rod of length n, then, by the
structural theorem, we can express r(n) recursively as follows

r(n):{o ifn=0,

maxi<i<p {pi + r(n—i)} otherwiseif n>1 .

CuTt-RoD(p,n)
ifn==
return 0
q = —00
fori = lton
g = max(q, p[i] + CUT-ROD(p,n —i))
return g

Lecture 9, 18.03.2025

> The procedure is extremely inefficient—in fact exponential.

» What went wrong?

> The procedure repeatedly calculates the same profits.

> Dynamic programming can save the extra calculations.

Lecture 9, 18.03.2025

Top-Down Dynamic Programming

General Approach

> Keep the recursive structure of the pseudocode.
> Memoize (store) the result of every recursive call.

> At each recursive call, try to avoid work using memoized results.

Pseudocode
MEMOIZED-CUT-ROD-AUX (p,n,1) MEMOIZED-CUT-ROD(p, 1)
ifr[n] >0 let 7[0. . n] be a new array
_ return r[n] fori = 0ton
ifn ==_ 0 rli] = —o0
4= return MEMOIZED-CUT-ROD-AUX (p,n, r)
else ¢ = —o0

fori = 1ton

q = max(q, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))
rln] = q
return g

Lecture 9, 18.03.2025

What did we gain?

Memoization helps us avoid recalculations.

Subproblem Graph

O,

©
= ©
.
©

One can think of all the recursive calls using a memoized value as
additional parents of the call generating this value.

Lecture 9, 18.03.2025

Time Complexity

> The initialization takes O(n) time.
> Processing each sub-problem takes linear time in the number of
sub-problems it evokes.

MEMOIZED-CUT-ROD-AUX (p,n, 1)

if r[n] >0

return r[n]
ifn==0

q=0
else g = —oo

fori = 1ton

q = max(q, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))

rin] =q
return g

> The time complexity is proportional to the number of nodes and
edges in the subproblem graph.

Lecture 9, 18.03.2025

Time Complexity

> The initialization takes O(n) time.

> Processing each sub-problem takes linear time in the number of
sub-problems it evokes.

> The time complexity is proportional to the number of nodes and
edges in the subproblem graph.

()

3)
Time Complexity
‘9 o(n?)

@
©

Lecture 9, 18.03.2025

Bottom-Up Dynamic Programming

General Approach

> Sort the sub-problems by size.
> Solve the smaller ones first.
» When reaching a sub-problem, the smaller ones are already solved.

Pseudocode

BorTOM-UP-CUT-ROD (p, 1)

let r[0..n] be a new array

r[0] =0
for j =_ l_to " Time Complexity
g - o(n?)
ori = 1toj
q = max(q. plil +r[j —i])
rljl1=4q

return r[n]

Lecture 9, 18.03.2025

Reconstructing an Optimal Solution

> The above algorithms only return the optimal profit.

> Sometimes one needs also to find an optimal solution.

Approach

> Each cell of the memoization table corresponds to a decision: the
location of the left most cut.

> Store the decision corresponding to every cell in a separate table.

Lecture 9, 18.03.2025

Reconstructing an Optimal Solution (cont.)

EXTENDED-BOTTOM-UP-CUT-ROD(p, 1)

let r[0..n] and s[0. . n] be new arrays
r[0] =0
for j = 1ton
g = —©
fori =1toj
ifg < pli]+r[j —i]
q = plil+rlj —i]
s[il =i
rlil=4q
return r and s

Output

i | 01 2 3 4 5 6 7 8
fijlo 1 5 8 10 13 17 18 22
sf]|o 1 2 3 2 2 6 1 2

Lecture 9, 18.03.2025

> We had a recursive formulation for the optimal value for our
problem

r(n):{o ifn=0,

maxi<ij<n{pi + r(n—i)} otherwiseif n>1 .

> Speed up the calculations by filling in a table either "top-down with
memoization” or with “bottom-up”.

> Recovered an optimal solution using an additional table.

Lecture 9, 18.03.2025

» How can a given amount of money be made with the least number
of coins of given denominations?
Formally:

Input: n distinct coin denominators (integers)
0<w; <wy<...<w,and an amount W (the change)
which is also a positive integer.

Output: The minimum number of coins needed in order to make
the change:

n n
min { E Xj E wix; = W and x;'s are mtegers} .
j=1 Jj=1

Example: On input wy = 1,wp =2, w3 =5 and W = 8, the output
should be 3 since the best way of giving 8 is x; = xo = x3 = 1.

> Identify choices and optimal substructure

> Write optimal solution recursively as a function of smaller
subproblems

> Use top-down with memoization or bottom-up to solve the
recursion efficiently (without repeatedly solving the same subproblems)

Lecture 9, 18.03.2025

