
Algorithms: Recall Binary Search Trees and
a Dynamic Programming

Theophile Thiery

School of Computer and Communication Sciences

Lecture 9, 18.03.2025



RECALL BINARY SEARCH TREES

Lecture 9, 18.03.2025



Binary Search Trees

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key → x .key

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8
8 <

< 12

< 10

Tree T has a root: T.root

height h = 3
(number of edges in
longest path from root to
leaf)

Lecture 9, 18.03.2025



Binary Search Trees

Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key → x .key

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

height h = 14
(number of edges in
longest path from root to
leaf)

Basic operations take time proportional to height: O(h)

Lecture 9, 18.03.2025



QUERYING A BINARY SEARCH TREE
(Searching, Minimum, Maximum, Successor, Predecessor)

Lecture 9, 18.03.2025



Searching

What is the running time? O(h)

Lecture 9, 18.03.2025



Minimum and Maximum

By key property:
↭ Minimum is located in leftmost node

↭ Maximum is located in rightmost node

Minimum Maximum

Lecture 9, 18.03.2025



Minimum and Maximum

What is the running time? O(h)

Minimum Maximum

Lecture 9, 18.03.2025



Successor

Successor of a node x is the node y such that y .key is the

“smallest key” > x .key

↭ What is the successor of 6?
↭ What is the successor of 5?

Lecture 9, 18.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in
the right subtree x

successor

Case 2: x has an empty right subtree

As long as we go to the left
up the tree we’re visiting smaller
keys
x ’s successor is y is the node
that x is the predecessor of
(x is the maximum in y ’s left
subtree) x

y

Lecture 9, 18.03.2025



Successor (Predecessor is symmetric)

What is the running time? O(h)

Lecture 9, 18.03.2025



PRINTING A BINARY SEARCH TREE
(Inorder, Preorder, Postorder)

Lecture 9, 18.03.2025



Printing Inorder (Idea)

↭ Print left subtree recursively
↭ Print root
↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,11,12

Lecture 9, 18.03.2025



Inorder tree walk

What is the running time? !(n)

Lecture 9, 18.03.2025



Printing Preorder and Postorder

Preorder-Tree-Walk(x)
1. if x ! NIL
2. print key [x ]
3. Preorder-Tree-Walk(x .left)
4. Preorder-Tree-Walk(x .right)

Postorder-Tree-Walk(x)
1. if x ! NIL
2. Postorder-Tree-Walk(x .left)
3. Postorder-Tree-Walk(x .right)
4. print key [x ]

Lecture 9, 18.03.2025



MODIFYING A BINARY SEARCH TREE
(Insertion and Deletion)

Lecture 9, 18.03.2025



Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 7

7
z

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 13

13
z

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 9.5

9.5
z

1 3 5 9 11

2 6 10

4 12

8

Lecture 9, 18.03.2025



Insertion

“search” phase

“insert” phase

What is the running time? O(h)
Lecture 9, 18.03.2025



Idea of deletion

Conceptually 3 cases:
↭ If z has no children, remove it

↭ If z has one child, then make that child take z’s position in the tree
↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

z

2

1 3 11

10 14

4 12

8

Lecture 9, 18.03.2025



Idea of deletion

Conceptually 3 cases:
↭ If z has no children, remove it

↭ If z has one child, then make that child take z’s position in the tree
↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 11

10 14

4 12

8

Lecture 9, 18.03.2025



Idea of deletion

Conceptually 3 cases:
↭ If z has no children, remove it
↭ If z has one child, then make that child take z’s position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

z

2

1 3 11

10 14

4 12

8

Lecture 9, 18.03.2025



Idea of deletion

Conceptually 3 cases:
↭ If z has no children, remove it
↭ If z has one child, then make that child take z’s position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3 11

10 14

12

8

Lecture 9, 18.03.2025



Idea of deletion

Conceptually 3 cases:
↭ If z has no children, remove it
↭ If z has one child, then make that child take z’s position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3

11

10 14

12

8

Lecture 9, 18.03.2025



Idea of deletion

Conceptually 3 cases:
↭ If z has no children, remove it
↭ If z has one child, then make that child take z’s position in the tree
↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3

z

11

10 14

4 12

8

Lecture 9, 18.03.2025



Idea of deletion

Conceptually 3 cases:
↭ If z has no children, remove it
↭ If z has one child, then make that child take z’s position in the tree
↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3

z

y

11

10 14

4 12

8

Lecture 9, 18.03.2025



Idea of deletion

Conceptually 3 cases:
↭ If z has no children, remove it
↭ If z has one child, then make that child take z’s position in the tree
↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3

z

y

11

10 14

4 12

8

Lecture 9, 18.03.2025



Idea of deletion

Conceptually 3 cases:
↭ If z has no children, remove it
↭ If z has one child, then make that child take z’s position in the tree
↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3 11

14

4 12

10

Lecture 9, 18.03.2025



Deletion Implementation: Transplant

Transplant(T , u, v) replaces subtree rooted at u with that rooted at v

u

v+ =

v

Lecture 9, 18.03.2025



Deletion Procedure

Lecture 9, 18.03.2025



Summary of Binary Search Trees

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time

Modifying operations: Insertion, Deletion: O(h) time

Exist e!cient procedures to keep tree balanced (AVL trees, red-black trees,
etc.)

Lecture 9, 18.03.2025



Comparison of Data Structures

Stacks: Last-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Queues: First-in-first-out, Insertion and deletion O(1) time,
Array implementation: fixed capacity

Linked List: No fixed capacity, Insertion and deletion O(1)
time, supports search but O(n) time

Binary Search Trees: No fixed capacity, supports most
operations (insertion, deletion, search, max, min, . . . )
in time O(height of tree)

Lecture 9, 18.03.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 ↑
↓

16?
What is 25 + 3 ↑

↓
16?

What is 25 + 3 ↑
↓

16?

What is 25 + 3 ↑
↓

16?

What is 25 + 3 ↑
↓

16?

What is 25 + 3 ↑
↓

16?

What is 25 + 3 ↑
↓

16?

Lecture 9, 18.03.2025



Dynamic Programming (DP)

Main idea:
↭ Remember calculations already made
↭ Saves enormous amounts of computation

Allows to solve many optimization problems
↭ Always at least one question in google code jam needs DP

Lecture 9, 18.03.2025



First application: Fibonacci numbers

Sequence of numbers defined 1000 years ago:

F0 = 1
F1 = 1
Fn = Fn→1 + Fn→2

1, 1, 2, 3, 5, 8, 13, 21, ?

Lecture 9, 18.03.2025



Calculating the n-th Fibonacci number

First idea:

Fib(n)
1. if n = 0 or n = 1
2. return 1
3. else
4. return Fib(n → 1) + Fib(n → 2)

What is the problem? Same calculations again and again
↔ exponential time!

Fib(n)

Fib(n → 1) Fib(n → 2)

Fib(n → 2) Fib(n → 3) Fib(n → 3) Fib(n → 4)

Lecture 9, 18.03.2025



The solution

Remember what we have done

Two di!erent ways:
1 Top-down with memoization

↭ Solve recursively but store each result in a table
↭ Memoizing is remembering what we have computed previously

2 Bottom-up
↭ Sort the subproblems and solve the smaller ones first
↭ That way, when solving a subproblem, have already solved the

smaller subproblems we need

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)
1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i] ↑ →↓
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)
1. if r [n] ↔ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ↑ 1
5. else
6. ans ↑ Memoized-Fib-Aux(n → 1, r)+
6. Memoized-Fib-Aux(n → 2, r)
7. r [n] ↑ ans
8. return r [n]

M-F-A(n, r)

M-F-A(n → 1, r)

M-F-A(3, r)

M-F-A(2, r)

M-F-A(1, r) M-F-A(0, r)

M-F-A(1, r)

Already calculated

M-F-A(n → 3, r)

Already calculated

M-F-A(n → 2, r)

Already calculated

Lecture 9, 18.03.2025



Top-down with memoization: Fibonacci numbers

Memoized-Fib(n)
1. Let r = [0 . . . n] be a new array
2. for i = 0 to n
3. r [i] ↑ →↓
4. return Memoized-Fib-Aux(n, r)

Memoized-Fib-Aux(n, r)
1. if r [n] ↔ 0
2. return r [n]
3. if n = 0 or n = 1
4. ans ↑ 1
5. else
6. ans ↑ Memoized-Fib-Aux(n → 1, r)+
6. Memoized-Fib-Aux(n → 2, r)
7. r [n] ↑ ans
8. return r [n]

Time analysis:
↭ Steps 1-3 in Memoized-Fib take time !(n)
↭ Each call to Memoized-Fib-Aux takes time !(1)
↭ Number of calls to Memoized-Fib-Aux is !(n)
↭ Total time is thus !(n)

Lecture 9, 18.03.2025



Bottom-up: Fibonacci numbers

Bottom-Up-Fib(n)
1. Let r = [0 . . . n] be a new array
2. r [0] ↑ 1
3. r [1] ↑ 1
3. for i = 2 to n
4. r [i] ↑ r [i → 1] + r [i → 2]
5. return r [n]

Example n = 8:

r = 1 1 2 3 5 8 13 21

Time? !(n)

Lecture 9, 18.03.2025



Summary

↭ We had a recursive formulation of our problem

F0 = 1
F1 = 1
Fn = Fn→1 + Fn→2

↭ Introduced memory (array r)

↭ Filled in table“top-down with memoization” or with
“bottom-up”

Lecture 9, 18.03.2025



Key elements in designing a DP-algorithm

Optimal substructure
↭ Show that a solution to a problem consists of making a choice,

which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Overlapping subproblems
↭ A naive recursive algorithm may revisit the same (sub)problem over

and over.
↭ Top-down with memoization

Solve recursively but store each result in a table
↭ Bottom-up

Sort the subproblems and solve the smaller ones first; that way, when solving a
subproblem, have already solved the smaller subproblems we need

Lecture 9, 18.03.2025



ROD CUTTING

Lecture 9, 18.03.2025



Rod cutting

Instance: ↭ A length n of a metal rod.
↭ A table of prices pi for rods of lengths i = 1, . . . , n.

Objective: Decide how to cut the rod into pieces and maximize the
price.

Lecture 9, 18.03.2025



Size of the Problem

↭ There 2n→1 possible solutions—either cut or do not cut after every
length unit.

↭ Need structure for an e!cient algorithm.

Theorem
If:

↭ the leftmost cut in an optimal solution is after i units.

↭ an optimal way to cut a solution of size n ↑ i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Lecture 9, 18.03.2025



Proof of Structural Theorem

Theorem
If:

↭ the leftmost cut in an optimal solution is after i units.

↭ an optimal way to cut a solution of size n ↑ i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Proof

Feasibility: Since s1, s2, . . . , sk is a feasible solution for an instance of size
n ↑ i : ∑k

j=1 sj = n ↑ i .

Hence, i +
∑k

j=1 sj = n.

Lecture 9, 18.03.2025



Proof of Structural Theorem

Theorem
If:

↭ the leftmost cut in an optimal solution is after i units.

↭ an optimal way to cut a solution of size n ↑ i is into rods of sizes:

s1, s2, . . . , sk .

Then, an optimal way to cut our rod is into rods of sizes: i , s1, s2, . . . , sk .

Proof

Optimality: Let i , o1, o2, . . . , oω be an optimal solution—exists by
assumption. Recall that s1, s2, . . . , sk is an optimal way to cut a rod of
size n ↑ i , thus, ∑k

j=1 psj →
∑ω

j=1 poj .

Hence, pi +
∑k

j=1 psj → pi +
∑ω

j=1 poj .

Lecture 9, 18.03.2025



First Algorithm

If we let r(n) be the optimal revenue from a rod of length n, then, by the
structural theorem, we can express r(n) recursively as follows

r(n) =
{

0 if n = 0 ,

max1↑i↑n {pi + r(n ↑ i)} otherwise if n → 1 .

Lecture 9, 18.03.2025



Problem

↭ The procedure is extremely ine!cient—in fact exponential.
↭ What went wrong?

↭ The procedure repeatedly calculates the same profits.
↭ Dynamic programming can save the extra calculations.

Lecture 9, 18.03.2025



Top-Down Dynamic Programming

General Approach
↭ Keep the recursive structure of the pseudocode.
↭ Memoize (store) the result of every recursive call.
↭ At each recursive call, try to avoid work using memoized results.

Pseudocode

Lecture 9, 18.03.2025



What did we gain?

Memoization helps us avoid recalculations.

↔

Subproblem Graph

One can think of all the recursive calls using a memoized value as
additional parents of the call generating this value.

Lecture 9, 18.03.2025



Time Complexity

↭ The initialization takes O(n) time.
↭ Processing each sub-problem takes linear time in the number of

sub-problems it evokes.

↭ The time complexity is proportional to the number of nodes and
edges in the subproblem graph.

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Time Complexity

↭ The initialization takes O(n) time.
↭ Processing each sub-problem takes linear time in the number of

sub-problems it evokes.
↭ The time complexity is proportional to the number of nodes and

edges in the subproblem graph.

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Bottom-Up Dynamic Programming

General Approach
↭ Sort the sub-problems by size.
↭ Solve the smaller ones first.
↭ When reaching a sub-problem, the smaller ones are already solved.

Pseudocode

Time Complexity
O(n2)

Lecture 9, 18.03.2025



Reconstructing an Optimal Solution

↭ The above algorithms only return the optimal profit.
↭ Sometimes one needs also to find an optimal solution.

Approach
↭ Each cell of the memoization table corresponds to a decision: the

location of the left most cut.
↭ Store the decision corresponding to every cell in a separate table.

Lecture 9, 18.03.2025



Reconstructing an Optimal Solution (cont.)

Output

i 0 1 2 3 4 5 6 7 8
r[i] 0 1 5 8 10 13 17 18 22
s[i] 0 1 2 3 2 2 6 1 2

Lecture 9, 18.03.2025



Summary

↭ We had a recursive formulation for the optimal value for our
problem

r(n) =
{

0 if n = 0 ,

max1↑i↑n {pi + r(n ↑ i)} otherwise if n → 1 .

↭ Speed up the calculations by filling in a table either “top-down with
memoization” or with “bottom-up”.

↭ Recovered an optimal solution using an additional table.

Lecture 9, 18.03.2025



Problem Solving: the Change-Making Problem

↭ How can a given amount of money be made with the least number
of coins of given denominations?

Formally:

Input: n distinct coin denominators (integers)
0 < w1 < w2 < . . . < wn and an amount W (the change)
which is also a positive integer.

Output: The minimum number of coins needed in order to make
the change:

min
{ n∑

j=1
xj :

n∑

j=1
wjxj = W and xj ’s are integers

}
.

Example: On input w1 = 1, w2 = 2, w3 = 5 and W = 8, the output
should be 3 since the best way of giving 8 is x1 = x2 = x3 = 1.

Lecture 9, 18.03.2025



Summary

↭ Identify choices and optimal substructure

↭ Write optimal solution recursively as a function of smaller
subproblems

↭ Use top-down with memoization or bottom-up to solve the
recursion e!ciently (without repeatedly solving the same subproblems)

Lecture 9, 18.03.2025


