Algorithms: Elementary Data Structures

and Binary Search Trees

Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 8, 12.03.2025

Elementary Data Structures

Algorithm

Algorithm

Lecture 8, 12.03.2025

What kind of operations do we want to do?

» Modifying operations: insertion, deletion, ...

» Query operations: search, maximum, minimum, ...

Data structure containing numbers

Stacks (last-in, first-out)

> Insert operation called PUSH(S,X)

> Delete operation called POP(S)

Lecture 8, 12.03.2025

Stacks Implementation

1 2 3 4 5 6 7
s[5]6]2]o]17]3 [}

!

S.top =6

Implementation using arrays: S consists of elements S[1,...,S.top]

> S[1] element at the bottom

> S[S.top] element at the top

Lecture 8, 12.03.2025

Stacks Implementation

1 2 3 4 5 6 7
s[5]6]2]o]17]3 [}

!

S.top =6

What is the running time of these operations? O(1)

STACK-EMPTY(S) PUSH(S,x) Pop(S)
1. if S.top=0 1. Sitop + S.top+1 1. if STACK-EMPTY(S)
2. return TRUE 2. §[S.top] + x 2. error “underflow”
3. else return FALSE 3. else

4. S.top<+ S.top—1
5. return S[S.top + 1]

Lecture 8, 12.03.2025

Queues (first-in, first-out)

> Insert operation called ENQUEUE(Q,X)

> Delete operation called DEQUEUE(Q)

Lecture 8, 12.03.2025

Queue Implementation

1 2 3 4 5 6 7 8 10 11 12

0 ﬂﬂﬂ. T

Q.head =17 Q.tail = 12

Implementation using arrays: @ consists of elements
S[Q.head, ..., Q.tail — 1]

> Q.head points at the first element

> Q.tail points at the next location where a newly arrived element
will be placed

Lecture 8, 12.03.2025

Queue Implementation

1 2 3 4 5 6 7 8 10 11 12

0 ﬂﬂﬂ. T

Q.head =17 Q.tail = 12

What is the running time of these operations? O(1)

ENQUEUE(Q,X) DEQUEUE(Q)

1. Q[Q.taill = x 1. x = Q[Q.head]

2. if Q.tail = Q.length 2. if Q.head = Q.length

3. Q.tail <1 3 Q.head <1

4. else Q.tail < Q.tail +1 4. else Q.head +— Q.head + 1
5. return x

Lecture 8, 12.03.2025

Stacks and Queues

Positives Negatives
> Very efficient > Limited support: for example, no search
> Natural operations > Implementations using arrays have a fixed
capacity

Lecture 8, 12.03.2025

Linked List

Objects are arranged in a linear order

Not indexes in array But pointers in each object

2 3

AT ik

Lecture 8, 12.03.2025

Linked List

prev key next

N/

A list can be
» Single linked or double linked
» Sorted or unsorted
> etc.

Lecture 8, 12.03.2025

Searching a Linked List

N/

L.head

Task: Given k return pointer to first element with key k

L1sT-SEARCH(L,K)

1. x + L.head

2. while x # nil and x.key # k What if no element with key k
exists? returns nil

Running time? O(n)

3. X< x.next
4. return x

Lecture 8, 12.03.2025

Inserting into a Linked List

prev key next
\ | /

Task: Insert a new element x

LisT-INSERT(L,X)

1. x.next < L.head
2. if L.head # nil Running time?
3. L.head.prev < x

4. L.head + x

5. x.prev = NIL

Lecture 8, 12.03.2025

Inserting into a Linked List

prev key next
\ | /

Task: Insert a new element x

LisT-INSERT(L,X)

1. x.next < L.head
2. if L.head # nil Running time? O(1)
3. L.head.prev < x

4. L.head + x

5. x.prev = NIL

Lecture 8, 12.03.2025

Deleting From a Linked List

prev key next

\ 4

Task: Given a pointer to an element x remove it from L

LisT-DELETE(L,X)

1. if x.prev # nil
2. x.prev.next < x.next Running time? O(1)
3. else L.head < x.next
4. if x.next # nil
5

X.next.prev <— x.prev

Lecture 8, 12.03.2025

prev key next

\ A
Lohead ——>/|0 | T [u6] T |4] L [1]/]

Note: If x is in the middle of the list then

simplified
L1ST-DELETE(L,X) / \

1. if x.prev # nil LisT-DELETE’ (L,X)

X.prev.next <— x.next
1. x.prev.next < x.next

2. x.next.prev < x.prev
. if x.next # nil P P

2
3. else L.head < x.next
4
5

X.next.prev < x.prev

Lecture 8, 12.03.2025

Lo — R
I
Lo — I E T o 2 E A i -

simplified
L1ST-DELETE(L,X) / \

1. if x.prev # nil LisT-DELETE’ (L,X)
2. X.prev.next < x.next

3. else L.head < x.next
4. if x.next # nil
5. x.next.prev < x.prev

1. x.prev.next < x.next

2. x.next.prev < x.prev

Lecture 8, 12.03.2025

Lo — R
I
Lo — I E T o 2 E A i -

simplified
LisT-INSERT(L,X) /

1. x.next < L.head
2. if L.head # nil

3. L.head.prev < x
4. L.head + x

5. x.prev = NIL

LisT-INSERT’(L,X)

1. x.next < L.nil.next
2. L.nil.next.prev < x
3. L.nil.next < x

4. x.prev < L.nil

Lecture 8, 12.03.2025

Summary Linked List

» Dynamic data structure without predefined capacity
> Insertion: O(1)

> Deletion: O(1) (if double linked)

> Question in book: can you do it for single linked?

» Search: O(n)

Lecture 8, 12.03.2025

Summary Linked List

» Dynamic data structure without predefined capacity
> Insertion: O(1)

> Deletion: O(1) (if double linked)

> Question in book: can you do it for single linked?

» Search: O(n)

Lecture 8, 12.03.2025

We will have fun: Binary Search Trees

BINARY SEARCH TREES

Lecture 8, 12.03.2025

Guessing Game:

> Ola thinks of an integer between 1 and 15

> When you guess a number, answer either correct, smaller, or larger

> For example: is it 5? Ola: larger

> What is your best strategy to minimize number of guesses?

ACACASACASATACHO)
CASATAS
®
®

@ 3 guesses

Lecture 8, 12.03.2025

Binary Search Trees

Encodes a strategy whatever number we look for
Key property:
> If y is in the left subtree of x then y.key < x.key

> If y is in the right subtree of x then y.key > x.key

Tree T has a root: T.root

height h =3

(number of edges in
longest path from root to
leaf)

Lecture 8, 12.03.2025

Binary Search Trees

Encodes a strategy whatever number we look for
Key property:
> If y is in the left subtree of x then y.key < x.key

> If y is in the right subtree of x then y.key > x.key

height h = 14

(number of edges in
longest path from root to
leaf)

Basic operations take time proportional to height: O(h)

Lecture 8, 12.03.2025

QUERYING A BINARY SEARCH TREE

(Searching, Minimum, Maximum, Successor, Predecessor)

Lecture 8, 12.03.2025

What is the running time? O(h)

TREE-SEARCH(x, k)
if x == NIL or k == key[x]
return x
if k < x.key
return TREE-SEARCH (x.left, k)
else return TREE-SEARCH (x.right, k)

Lecture 8, 12.03.2025

Minimum and Maximum

Minimum Maximum

By key property:
» Minimum is located in leftmost node

» Maximum is located in rightmost node

Lecture 8, 12.03.2025

Minimum and Maximum

Minimum Maximum

What is the running time? O(h)

TREE-MINIMUM (x) TREE-MAXIMUM (x)
while x.left # NIL while x.right # NIL
x = x.left X = x.right

return x return x

Lecture 8, 12.03.2025

Successor of a noce x is the node y such that y.key is the

“smallest key” > x.key

» What is the successor of 67

» What is the successor of 57

Lecture 8, 12.03.2025

Two cases when finding successor of x:

Case 1. x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

As long as we to the left up the
tree we're visiting smaller keys

x's successor is y is the node 0
that x is the predecessor of

(x is the maximum in y's left

subtree)

Successor (Predecessor is symmetric)

What is the running time? O(h)

TREE-SUCCESSOR (x)
if x.right # NIL
return TREE-MINIMUM (x. right)
y =x.p
while y # NIL and x == y.right
X =Y
y=ypr
return y

Lecture 8, 12.03.2025

PRINTING A BINARY SEARCH TREE

(Inorder, Preorder, Postorder)

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025

Inorder tree walk

What is the running time? ©(n)

INORDER-TREE-WALK (x)
if x # NIL
INORDER-TREE-WALK (x. left)
print key[x]
INORDER-TREE-WALK (x.right)

Lecture 8, 12.03.2025

Printing Preorder and Postorder

PREORDER-TREE- WALK(x) POSTORDER-TREE- WALK(x)

1. if x # NIL 1. if x # NIL

2. print key[x] 2. POSTORDER-TREE-WALK(x./eft)
3. PREORDER-TREE-WALK(x.left) 3. POSTORDER-TREE-WALK(x.right)
4. PREORDER-TREE-WALK(x.right) 4. print key[x]

Lecture 8, 12.03.2025

MODIFYING A BINARY SEARCH TREE

(Insertion and Deletion)

Lecture 8, 12.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 7

Lecture 8, 12.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 13

Lecture 8, 12.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 9.5

Lecture 8, 12.03.2025

Insertion

TREE-INSERT(T, 2)
y = NIL
x = T.root
while x # NIL
“search” phase y=x
if 7. key < x.key
x = x.left
else x = x.right
Z.p=Yy
if y == NIL
T.root = 7 // tree T was empty
“insert” phase elseif z.key < y.key
y.left =z
else y.right = 7

What is the running time? O(h)

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:

» If z has no children, remove it

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:

» If z has no children, remove it

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it

> If z has one child, then make that child take z'z position in the tree

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it

> If z has one child, then make that child take z'z position in the tree

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it

> If z has one child, then make that child take z'z position in the tree

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z'z position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z'z position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z'z position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z'z position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 8, 12.03.2025

: ! TRANSPLANT(T, u, v)
Deletion Implementation: Transplant RS

T.root = v
elseif u == u.p.left

u.p.left = v
else u.p.right = v
if v # NIL

V.p = u.p

TRANSPLANT(T, u, v) replaces subtree rooted at u with that rooted at v

AAL

Lecture 8, 12.03.2025

TREE-DELETE(T, z)

Deletion Procedure ISt

TRANSPLANT(T, z, z.right) // z has no left child
elseif z.right == NIL

TRANSPLANT(T, z, Z.left) // z has just a left child
else // z has two children.

y = TREE-MINIMUM (z.right) // y is z’s successor

ify.p#z

// y lies within z’s right subtree but is not the root of thi
TRANSPLANT(T, y, y.right)
y.right = z.right
y.right.p =y
// Replace z by y.
TRANSPLANT(T, z, y)
y.left = z.left
y.leftp =y

Lecture 8, 12.03.2025

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time ‘

Modifying operations: Insertion, Deletion: O(h) time

Exist efficient procedures to keep tree balanced (AVL trees, red-black trees,
etc.)

D
O 2

Lecture 8, 12.03.2025

