

Algorithms: Elementary Data Structures and Binary Search Trees

Ola Svensson

EPFL School of Computer and Communication Sciences

Lecture 8, 12.03.2025

Elementary Data Structures

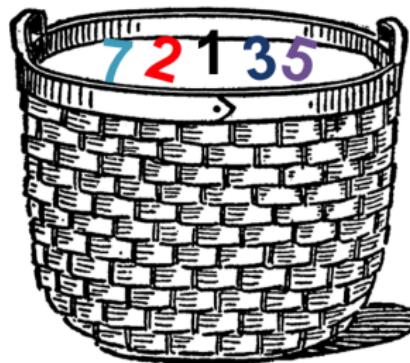
Algorithm

Algorithm

Data structures = dynamic sets of items

What kind of operations do we want to do?

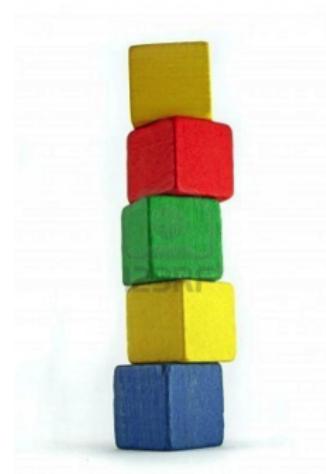
- ▶ Modifying operations: insertion, deletion, ...
- ▶ Query operations: search, maximum, minimum, ...



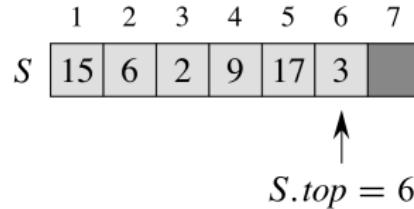
Data structure containing numbers

Stacks (last-in, first-out)

- ▶ Insert operation called $\text{PUSH}(S, x)$
- ▶ Delete operation called $\text{POP}(S)$



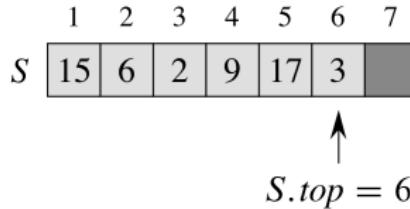
Stacks Implementation



Implementation using arrays: S consists of elements $S[1, \dots, S.top]$

- ▶ $S[1]$ element at the bottom
- ▶ $S[S.top]$ element at the top

Stacks Implementation



What is the running time of these operations? $O(1)$

STACK-EMPTY(S)

1. **if** $S.top = 0$
2. **return** TRUE
3. **else return** FALSE

PUSH(S, x)

1. $S.top \leftarrow S.top + 1$
2. $S[S.top] \leftarrow x$

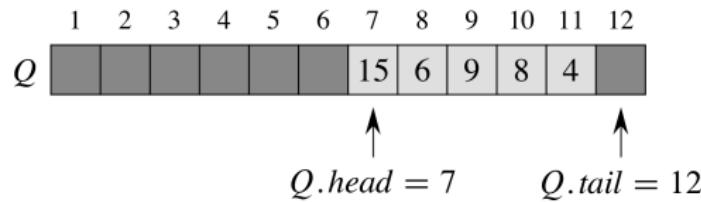
POP(S)

1. **if** STACK-EMPTY(S)
2. **error** "underflow"
3. **else**
4. $S.top \leftarrow S.top - 1$
5. **return** $S[S.top + 1]$

Queues (first-in, first-out)

- ▶ Insert operation called $\text{ENQUEUE}(Q, x)$
- ▶ Delete operation called $\text{DEQUEUE}(Q)$

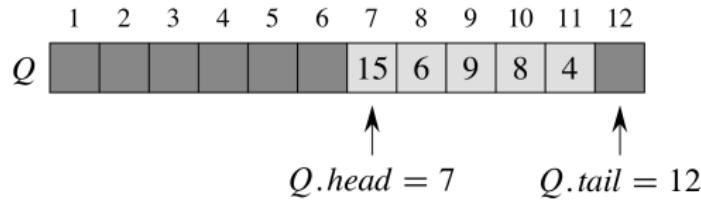
Queue Implementation



Implementation using arrays: Q consists of elements $S[Q.head, \dots, Q.tail - 1]$

- ▶ $Q.head$ points at the first element
- ▶ $Q.tail$ points at the next location where a newly arrived element will be placed

Queue Implementation



What is the running time of these operations? $O(1)$

ENQUEUE(Q, x)

1. $Q[Q.tail] = x$
2. **if** $Q.tail = Q.length$
3. $Q.tail \leftarrow 1$
4. **else** $Q.tail \leftarrow Q.tail + 1$

DEQUEUE(Q)

1. $x = Q[Q.head]$
2. **if** $Q.head = Q.length$
3. $Q.head \leftarrow 1$
4. **else** $Q.head \leftarrow Q.head + 1$
5. **return** x

Stacks and Queues

Positives

- ▶ Very efficient
- ▶ Natural operations

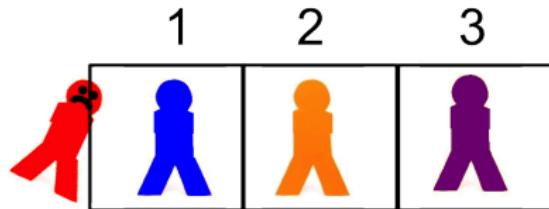
Negatives

- ▶ Limited support: for example, no search
- ▶ Implementations using arrays have a *fixed* capacity

Linked List

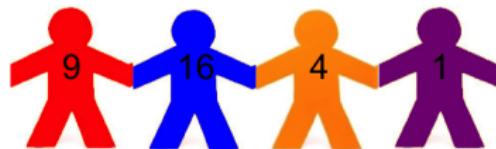
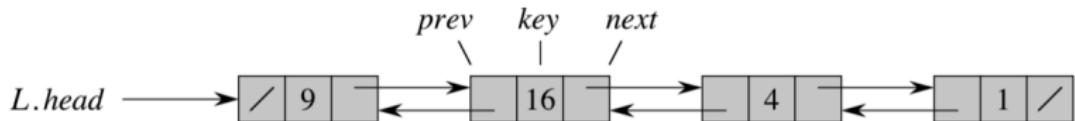
Objects are arranged in a linear order

Not indexes in array



But pointers in each object

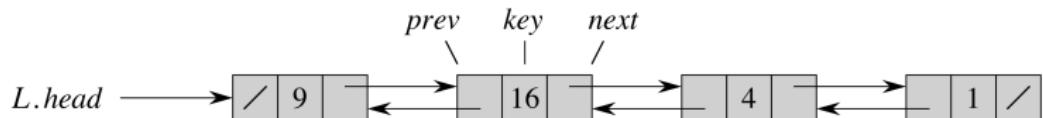
Linked List



A list can be

- ▶ Single linked or double linked
- ▶ Sorted or unsorted
- ▶ etc.

Searching a Linked List



Task: Given k return pointer to first element with key k

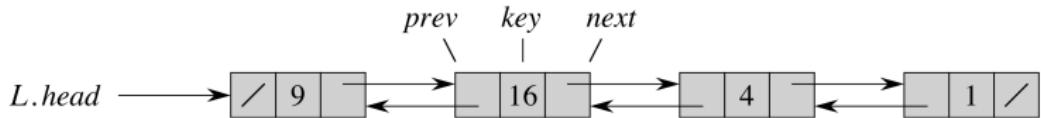
LIST-SEARCH(L, k)

1. $x \leftarrow L.\text{head}$
2. **while** $x \neq \text{nil}$ and $x.\text{key} \neq k$
3. $x \leftarrow x.\text{next}$
4. **return** x

Running time? $O(n)$

What if no element with key k exists? **returns nil**

Inserting into a Linked List



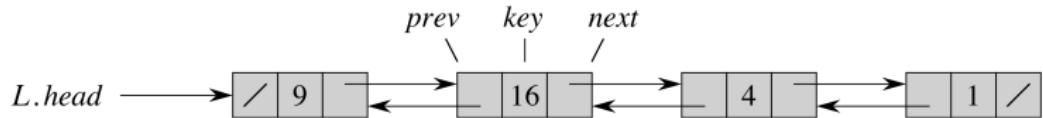
Task: Insert a new element x

LIST-INSERT(L, x)

1. $x.next \leftarrow L.head$
2. **if** $L.head \neq nil$
3. $L.head.prev \leftarrow x$
4. $L.head \leftarrow x$
5. $x.prev = NIL$

Running time?

Inserting into a Linked List



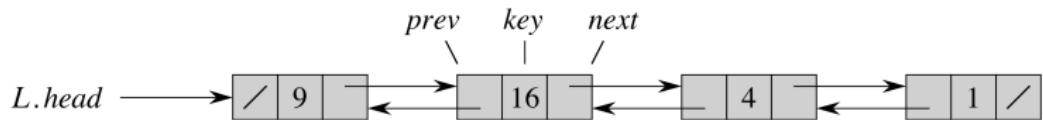
Task: Insert a new element x

LIST-INSERT(L, x)

1. $x.next \leftarrow L.head$
2. **if** $L.head \neq nil$
3. $L.head.prev \leftarrow x$
4. $L.head \leftarrow x$
5. $x.prev = NIL$

Running time? $O(1)$

Deleting From a Linked List



Task: Given a pointer to an element x remove it from L

LIST-DELETE(L, x)

1. **if** $x.prev \neq nil$
2. $x.prev.next \leftarrow x.next$
3. **else** $L.head \leftarrow x.next$
4. **if** $x.next \neq nil$
5. $x.next.prev \leftarrow x.prev$

Running time? $O(1)$

Sentinels



Note: If x is in the middle of the list then

LIST-DELETE(L, x)

1. **if** $x.\text{prev} \neq \text{nil}$
2. $x.\text{prev}.\text{next} \leftarrow x.\text{next}$
3. **else** $L.\text{head} \leftarrow x.\text{next}$
4. **if** $x.\text{next} \neq \text{nil}$
5. $x.\text{next}.\text{prev} \leftarrow x.\text{prev}$

simplified

LIST-DELETE'(L, x)

1. $x.\text{prev}.\text{next} \leftarrow x.\text{next}$
2. $x.\text{next}.\text{prev} \leftarrow x.\text{prev}$

Sentinels



LIST-DELETE(L, x)

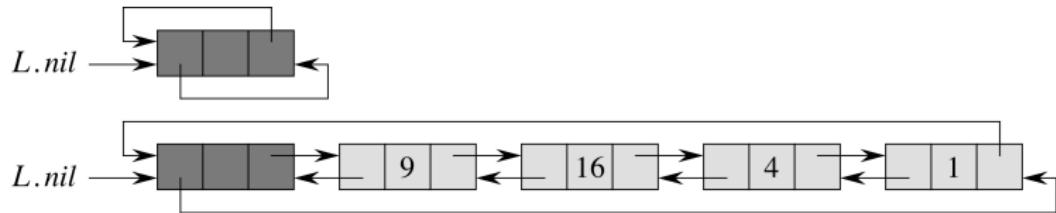
1. **if** $x.\text{prev} \neq \text{nil}$
2. $x.\text{prev}.\text{next} \leftarrow x.\text{next}$
3. **else** $L.\text{head} \leftarrow x.\text{next}$
4. **if** $x.\text{next} \neq \text{nil}$
5. $x.\text{next}.\text{prev} \leftarrow x.\text{prev}$

simplified

LIST-DELETE'(L, x)

1. $x.\text{prev}.\text{next} \leftarrow x.\text{next}$
2. $x.\text{next}.\text{prev} \leftarrow x.\text{prev}$

Sentinels



LIST-INSERT(L, x)

1. $x.next \leftarrow L.head$
2. **if** $L.head \neq nil$
3. $L.head.prev \leftarrow x$
4. $L.head \leftarrow x$
5. $x.prev = NIL$

simplified

LIST-INSERT'(L, x)

1. $x.next \leftarrow L.nil.next$
2. $L.nil.next.prev \leftarrow x$
3. $L.nil.next \leftarrow x$
4. $x.prev \leftarrow L.nil$

Summary Linked List

- ▶ Dynamic data structure without predefined capacity
- ▶ Insertion: $O(1)$
- ▶ Deletion: $O(1)$ (if double linked)
 - ▶ Question in book: can you do it for single linked?
- ▶ Search: $O(n)$

Summary Linked List

- ▶ Dynamic data structure without predefined capacity
- ▶ Insertion: $O(1)$
- ▶ Deletion: $O(1)$ (if double linked)
 - ▶ Question in book: can you do it for single linked?
- ▶ Search: $O(n)$

Search $O(n)$ = no fun!



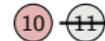
We will have fun: **Binary Search Trees**

BINARY SEARCH TREES

Idea

Guessing Game:

- ▶ Ola thinks of an integer between 1 and 15
- ▶ When you guess a number, answer either *correct*, *smaller*, or *larger*
 - ▶ For example: is it 5? Ola: *larger*
- ▶ What is your best strategy to **minimize number of guesses**?



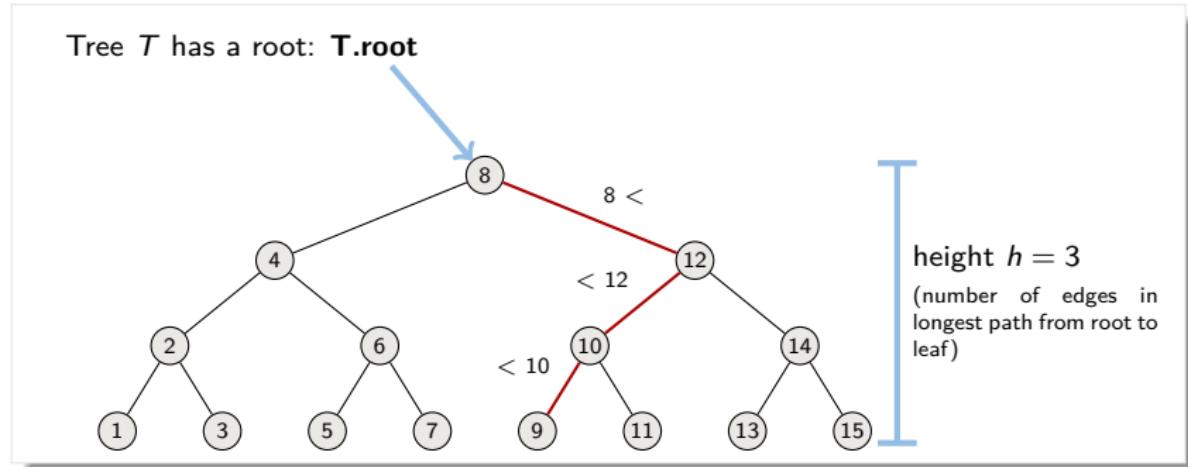
3 guesses

Binary Search Trees

Encodes a strategy whatever number we look for

Key property:

- If y is in the left subtree of x then $y.key < x.key$
- If y is in the right subtree of x then $y.key \geq x.key$

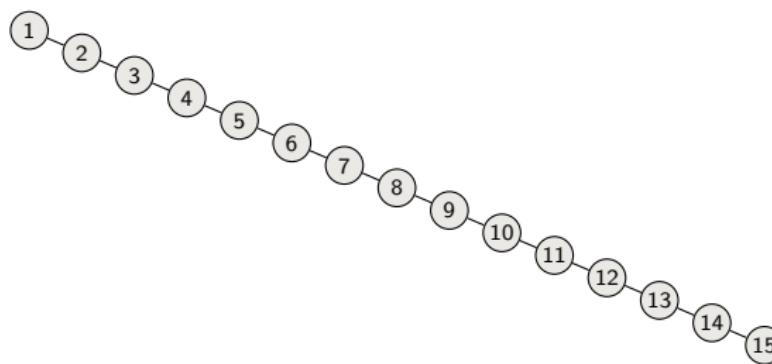


Binary Search Trees

Encodes a strategy whatever number we look for

Key property:

- If y is in the left subtree of x then $y.key < x.key$
- If y is in the right subtree of x then $y.key \geq x.key$



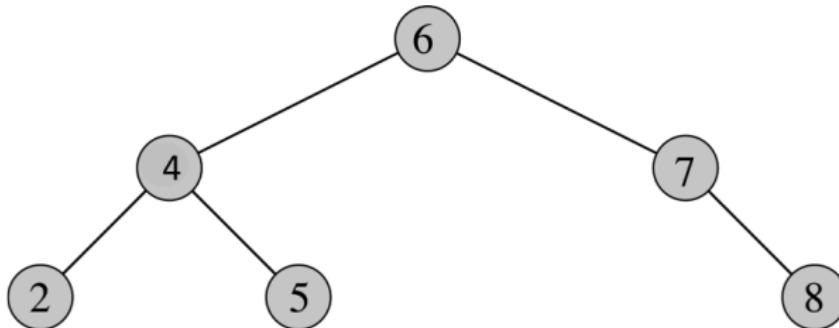
height $h = 14$
(number of edges in
longest path from root to
leaf)

Basic operations take time proportional to height: $O(h)$

QUERYING A BINARY SEARCH TREE

(Searching, Minimum, Maximum, Successor, Predecessor)

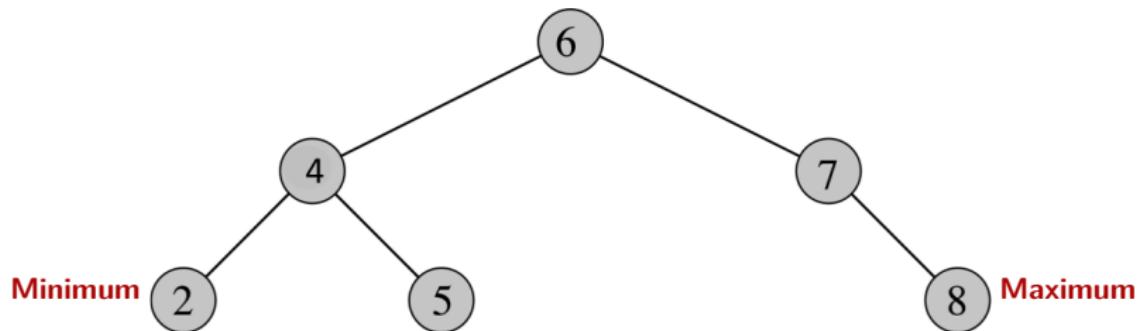
Searching



What is the running time? $O(h)$

```
TREE-SEARCH( $x, k$ )
  if  $x == \text{NIL}$  or  $k == \text{key}[x]$ 
    return  $x$ 
  if  $k < x.\text{key}$ 
    return TREE-SEARCH( $x.\text{left}, k$ )
  else return TREE-SEARCH( $x.\text{right}, k$ )
```

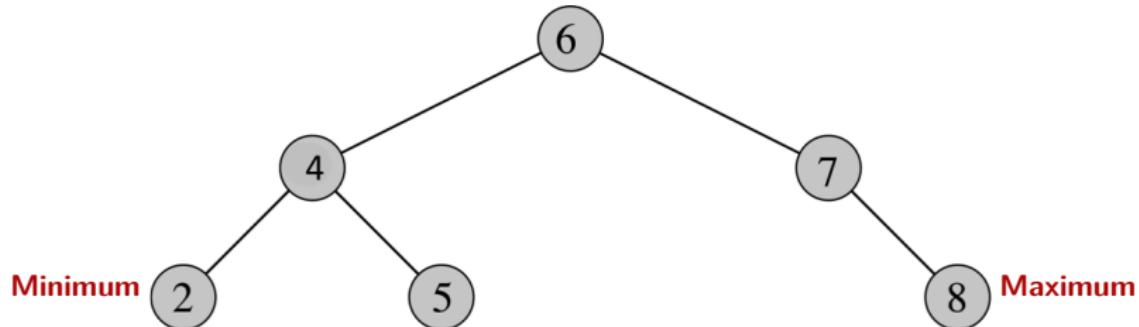
Minimum and Maximum



By key property:

- ▶ Minimum is located in leftmost node
- ▶ Maximum is located in rightmost node

Minimum and Maximum

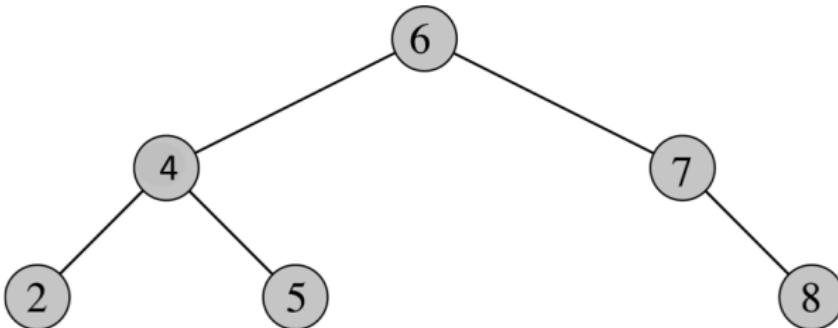


What is the running time? $O(h)$

```
TREE-MINIMUM( $x$ )
  while  $x.left \neq \text{NIL}$ 
     $x = x.left$ 
  return  $x$ 
```

```
TREE-MAXIMUM( $x$ )
  while  $x.right \neq \text{NIL}$ 
     $x = x.right$ 
  return  $x$ 
```

Successor



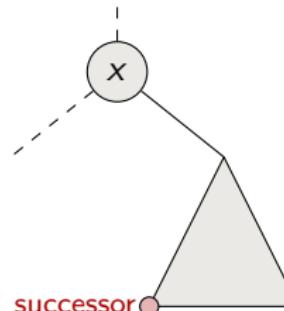
Successor of a node x is the node y such that $y.key$ is the
“smallest key” $> x.key$

- ▶ What is the successor of 6?
- ▶ What is the successor of 5?

Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

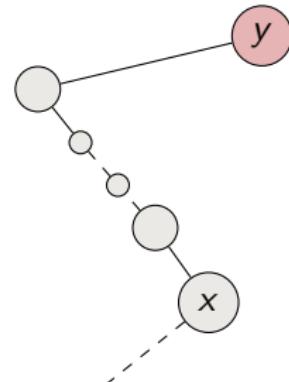
x 's successor is the minimum in the right subtree



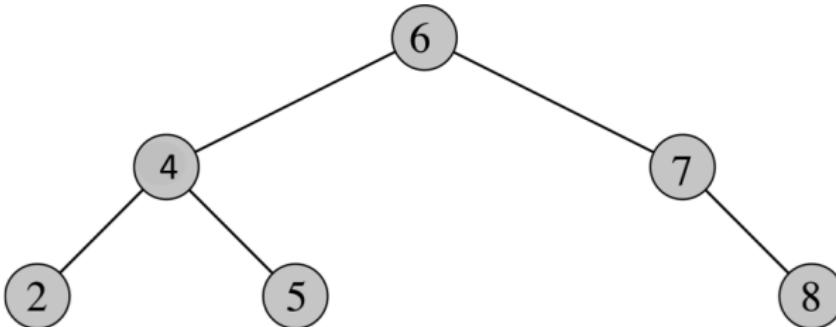
Case 2: x has an empty right subtree

As long as we go to the left up the tree we're visiting smaller keys

x 's successor is y is the node that x is the predecessor of (x is the maximum in y 's left subtree)



Successor (Predecessor is symmetric)



What is the running time? $O(h)$

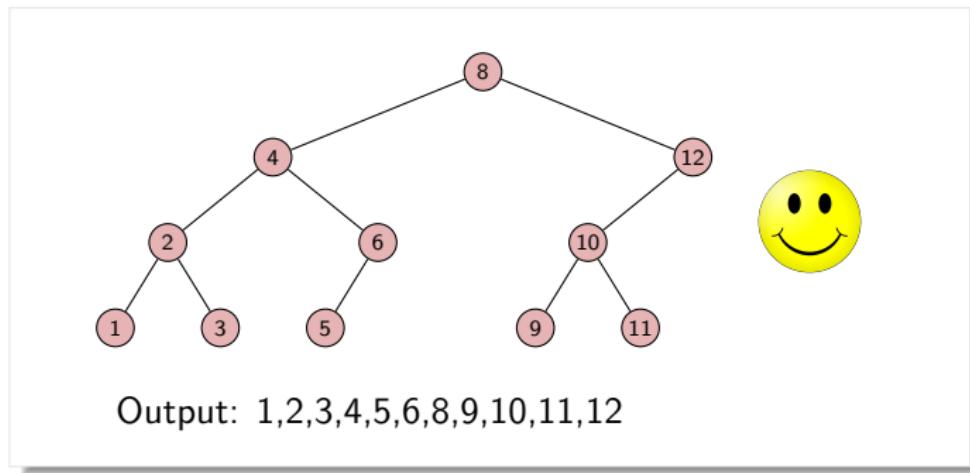
```
TREE-SUCCESSOR( $x$ )
  if  $x.right \neq \text{NIL}$ 
    return TREE-MINIMUM( $x.right$ )
   $y = x.p$ 
  while  $y \neq \text{NIL}$  and  $x == y.right$ 
     $x = y$ 
     $y = y.p$ 
  return  $y$ 
```

PRINTING A BINARY SEARCH TREE

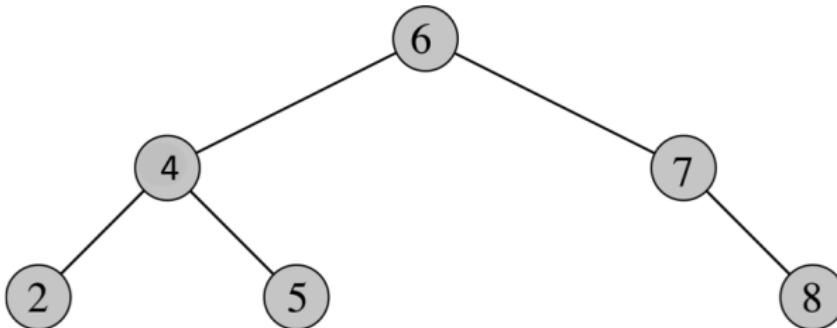
(Inorder, Preorder, Postorder)

Printing Inorder (Idea)

- ▶ Print left subtree recursively
- ▶ Print root
- ▶ Print right subtree recursively



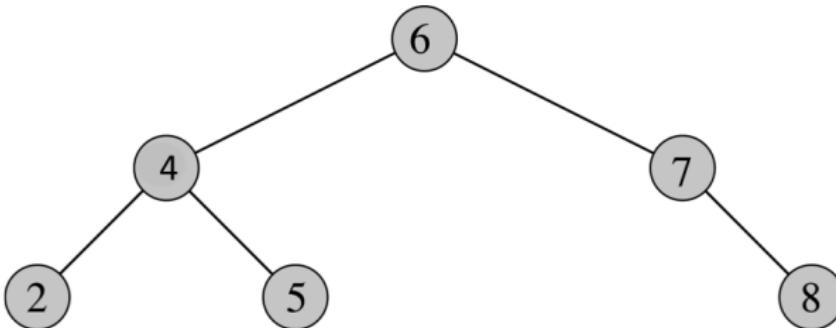
Inorder tree walk



What is the running time? $\Theta(n)$

```
INORDER-TREE-WALK( $x$ )
  if  $x \neq \text{NIL}$ 
    INORDER-TREE-WALK( $x.\text{left}$ )
    print  $\text{key}[x]$ 
    INORDER-TREE-WALK( $x.\text{right}$ )
```

Printing Preorder and Postorder



PREORDER-TREE-WALK(x)

1. **if** $x \neq \text{NIL}$
2. **print** $\text{key}[x]$
3. PREORDER-TREE-WALK($x.\text{left}$)
4. PREORDER-TREE-WALK($x.\text{right}$)

POSTORDER-TREE-WALK(x)

1. **if** $x \neq \text{NIL}$
2. POSTORDER-TREE-WALK($x.\text{left}$)
3. POSTORDER-TREE-WALK($x.\text{right}$)
4. **print** $\text{key}[x]$

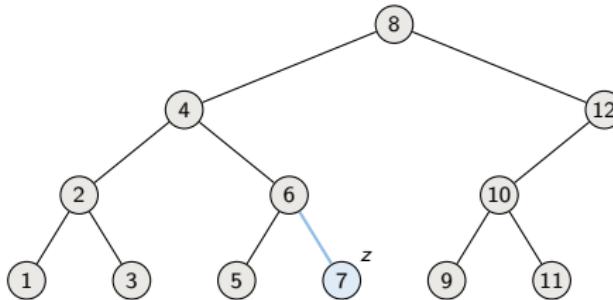
MODIFYING A BINARY SEARCH TREE

(**Insertion and Deletion**)

Idea of inserting z

- ▶ Search for $z.key$
- ▶ When arrived at nil insert z at that position

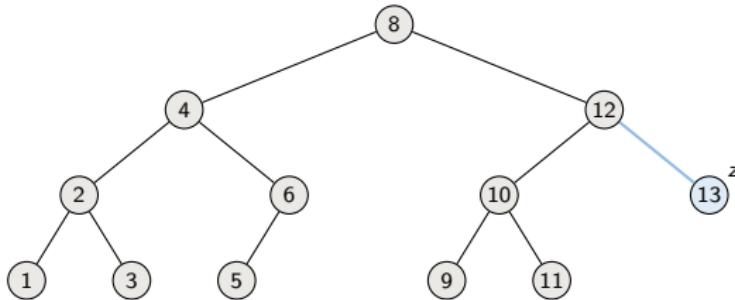
Ex: insert z with key 7



Idea of inserting z

- ▶ Search for $z.key$
- ▶ When arrived at nil insert z at that position

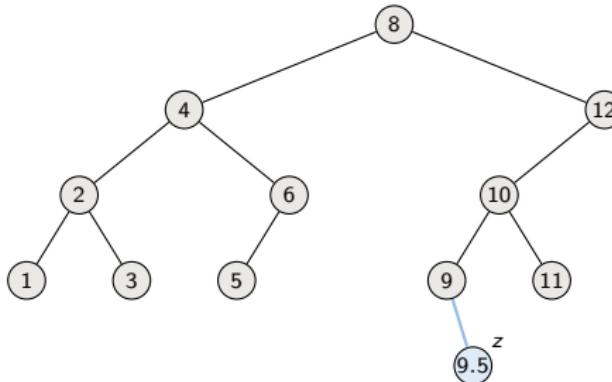
Ex: insert z with key 13



Idea of inserting z

- ▶ Search for $z.key$
- ▶ When arrived at nil insert z at that position

Ex: insert z with key 9.5



Insertion

The diagram illustrates the execution flow of the `TREE-INSERT` algorithm. It is divided into two main phases: the "search" phase and the "insert" phase. The "search" phase is enclosed in a curly brace on the left, and the "insert" phase is enclosed in a curly brace below it. The algorithm itself is enclosed in a rectangular box.

```
TREE-INSERT( $T, z$ )
   $y = \text{NIL}$ 
   $x = T.\text{root}$ 
  while  $x \neq \text{NIL}$ 
     $y = x$ 
    if  $z.\text{key} < x.\text{key}$ 
       $x = x.\text{left}$ 
    else  $x = x.\text{right}$ 
   $z.p = y$ 
  if  $y == \text{NIL}$ 
     $T.\text{root} = z$       // tree  $T$  was empty
  elseif  $z.\text{key} < y.\text{key}$ 
     $y.\text{left} = z$ 
  else  $y.\text{right} = z$ 
```

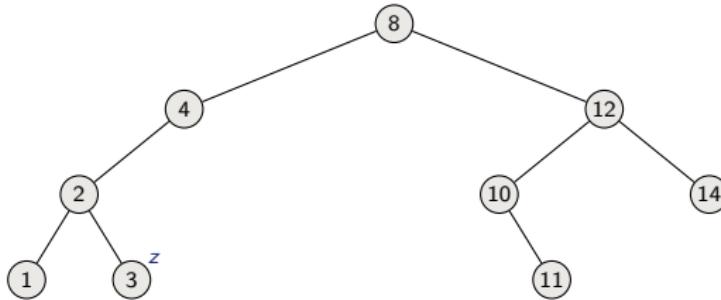
What is the running time? $O(h)$

Idea of deletion

Conceptually 3 cases:

- If z has no children, remove it

Ex: Delete z

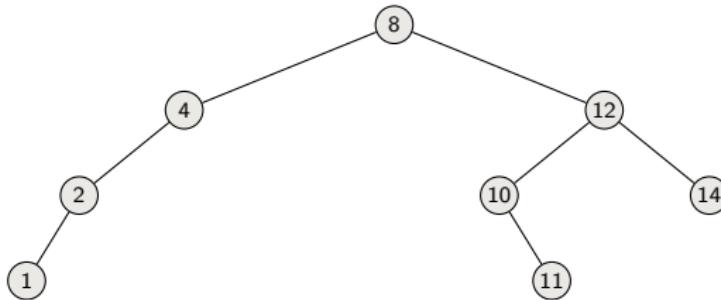


Idea of deletion

Conceptually 3 cases:

- If z has no children, remove it

Ex: Delete z

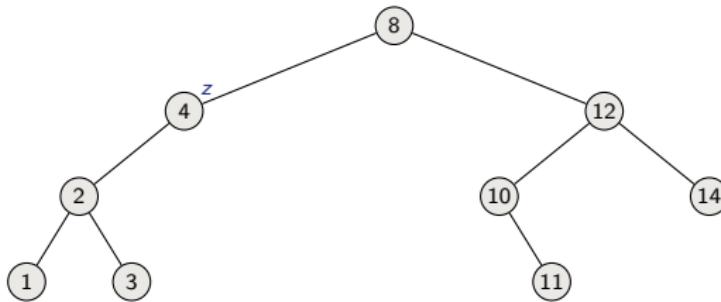


Idea of deletion

Conceptually 3 cases:

- ▶ If z has no children, remove it
- ▶ If z has one child, then make that child take z 's position in the tree

Ex: Delete z

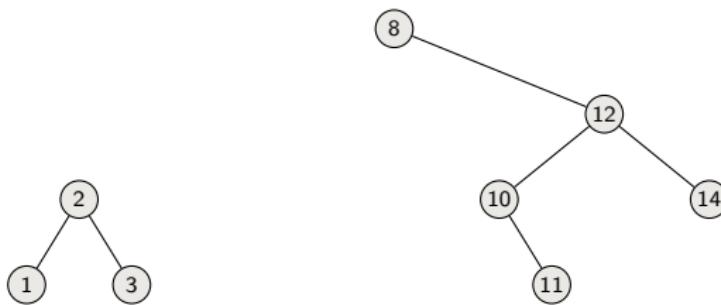


Idea of deletion

Conceptually 3 cases:

- ▶ If z has no children, remove it
- ▶ If z has one child, then make that child take z 's position in the tree

Ex: Delete z

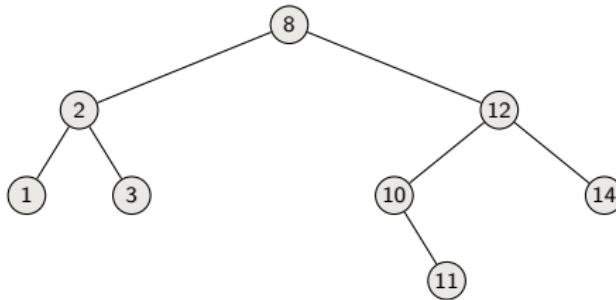


Idea of deletion

Conceptually 3 cases:

- ▶ If z has no children, remove it
- ▶ If z has one child, then make that child take z 's position in the tree

Ex: Delete z

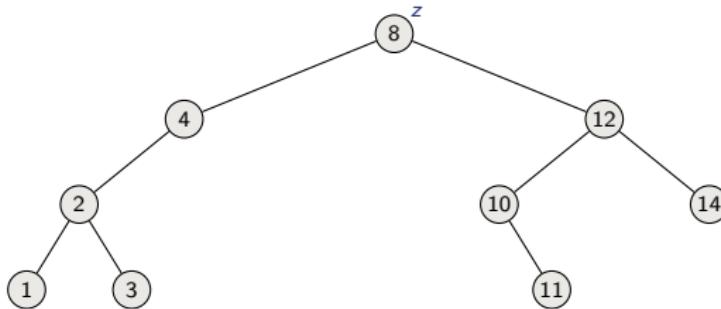


Idea of deletion

Conceptually 3 cases:

- ▶ If z has no children, remove it
- ▶ If z has one child, then make that child take z 's position in the tree
- ▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

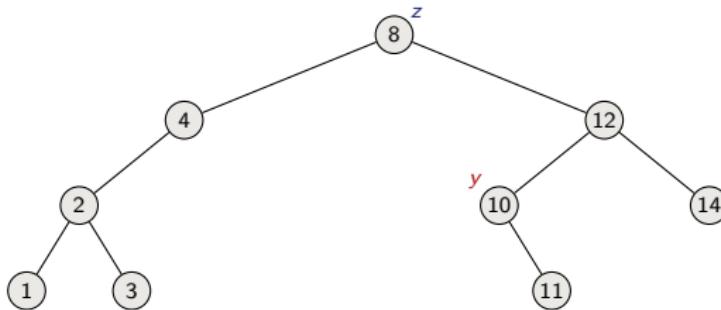


Idea of deletion

Conceptually 3 cases:

- ▶ If z has no children, remove it
- ▶ If z has one child, then make that child take z 's position in the tree
- ▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

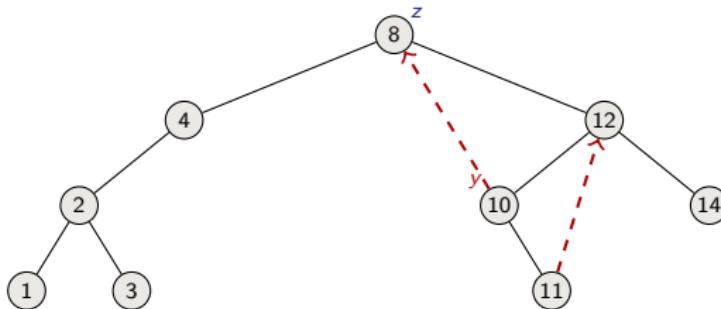


Idea of deletion

Conceptually 3 cases:

- ▶ If z has no children, remove it
- ▶ If z has one child, then make that child take z 's position in the tree
- ▶ If z has two children, then find its successor y and replace z by y

Ex: Delete z

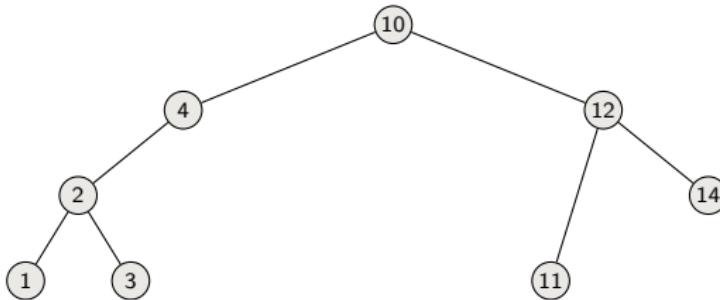


Idea of deletion

Conceptually 3 cases:

- ▶ If z has no children, remove it
- ▶ If z has one child, then make that child take z 's position in the tree
- ▶ If z has two children, then find its successor y and replace z by y

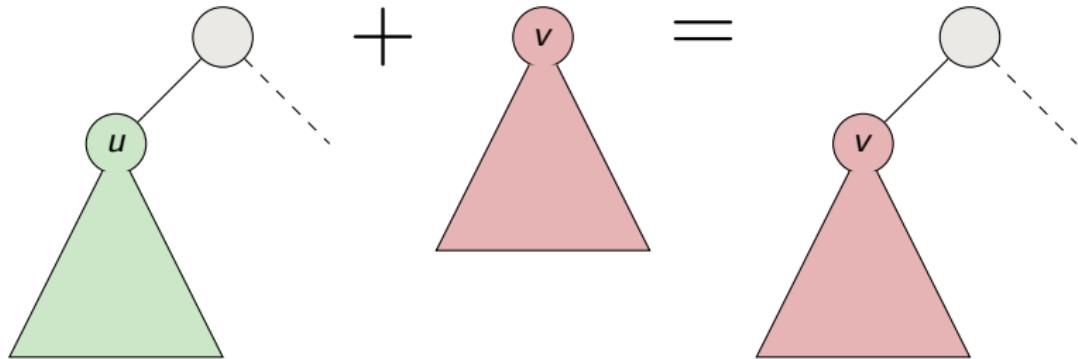
Ex: Delete z



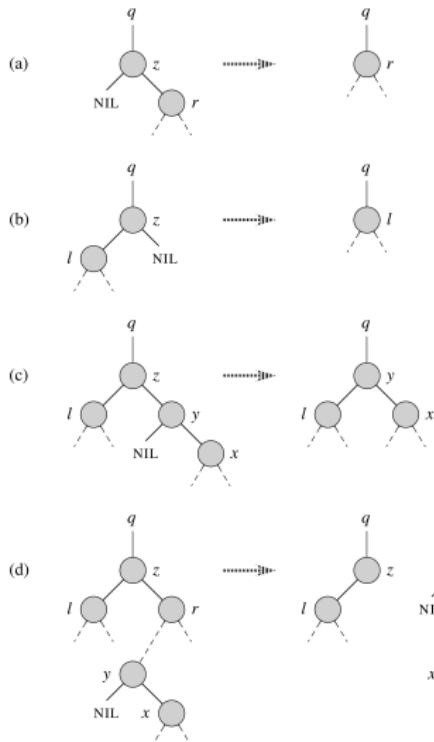
Deletion Implementation: Transplant

```
TRANSPLANT( $T, u, v$ )
  if  $u.p == \text{NIL}$ 
     $T.root = v$ 
  elseif  $u == u.p.left$ 
     $u.p.left = v$ 
  else  $u.p.right = v$ 
  if  $v \neq \text{NIL}$ 
     $v.p = u.p$ 
```

$\text{TRANSPLANT}(T, u, v)$ replaces subtree rooted at u with that rooted at v



Deletion Procedure



TREE-DELETE(T, z)

if $z.left == \text{NIL}$

TRANSPLANT($T, z, z.right$)

// z has no left child

elseif $z.right == \text{NIL}$

TRANSPLANT($T, z, z.left$)

// z has just a left child

else *// z has two children.*

$y = \text{TREE-MINIMUM}(z.right)$

// y is z's successor

if $y.p \neq z$

// y lies within z's right subtree but is not the root of this

TRANSPLANT($T, y, y.right$)

$y.right = z.right$

$y.right.p = y$

// Replace z by y.

TRANSPLANT(T, z, y)

$y.left = z.left$

$y.left.p = y$

Summary

Query operations: Search, Max, Min, Predecessor, Successor: **$O(h)$** time

Modifying operations: Insertion, Deletion: **$O(h)$** time

Exist efficient procedures to keep tree balanced (AVL trees, red-black trees, etc.)

