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Data structures = dynamic sets of items

What kind of operations do we want to do?
↭ Modifying operations: insertion, deletion, . . .

↭ Query operations: search, maximum, minimum, . . .

Data structure containing numbers
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Data structures = dynamic sets of items
What kind of operations do we want to do?
↭ Modifying operations: insertion, deletion, . . .

↭ Query operations: search, maximum, minimum, . . .

Data structure containing numbers
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Stacks (last-in, first-out)
↭ Insert operation called push(S,x)

↭ Delete operation called pop(S)
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Stacks Implementation

Implementation using arrays: S consists of elements S[1, . . . , S.top]

↭ S[1] element at the bottom

↭ S[S.top] element at the top
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Stacks Implementation

What is the running time of these operations? O(1)

Stack-Empty(S)

1. if S.top = 0

2. return TRUE

3. else return FALSE

Push(S,x)

1. S.top → S.top + 1

2. S[S.top] → x

Pop(S)

1. if Stack-Empty(S)
2. error “underflow”

3. else
4. S.top → S.top ↑ 1

5. return S[S.top + 1]
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Queues (first-in, first-out)

↭ Insert operation called Enqueue(Q,x)

↭ Delete operation called Dequeue(Q)
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Queue Implementation

Implementation using arrays: Q consists of elements

S[Q.head , . . . , Q.tail → 1]

↭ Q.head points at the first element

↭ Q.tail points at the next location where a newly arrived element

will be placed
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Queue Implementation

What is the running time of these operations? O(1)

Enqueue(Q,x)

1. Q[Q.tail] = x
2. if Q.tail = Q.length
3. Q.tail → 1

4. else Q.tail → Q.tail + 1

Dequeue(Q)

1. x = Q[Q.head]

2. if Q.head = Q.length
3. Q.head → 1

4. else Q.head → Q.head + 1

5. return x
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Stacks and Queues

Positives

↭ Very e!cient

↭ Natural operations

Negatives

↭ Limited support: for example, no search

↭ Implementations using arrays have a fixed

capacity

Lecture 8, 12.03.2025



Linked List

Objects are arranged in a linear order

Not indexes in array But pointers in each object
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Linked List

A list can be

↭ Single linked or double linked

↭ Sorted or unsorted

↭ etc.
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Searching a Linked List

Task: Given k return pointer to first element with key k

List-Search(L,k)
1. x ↑ L.head

2. while x ! nil and x .key ! k

3. x ↑ x .next

4. return x

Running time? O(n)

What if no element with key k

exists? returns nil
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Inserting into a Linked List

Task: Insert a new element x

List-Insert(L,x)
1. x .next ↑ L.head

2. if L.head ! nil

3. L.head .prev ↑ x

4. L.head ↑ x

5. x .prev = NIL

Running time?

O(1)

Lecture 8, 12.03.2025



Inserting into a Linked List

Task: Insert a new element x

List-Insert(L,x)
1. x .next ↑ L.head

2. if L.head ! nil

3. L.head .prev ↑ x

4. L.head ↑ x

5. x .prev = NIL

Running time? O(1)
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Deleting From a Linked List

Task: Given a pointer to an element x remove it from L

List-Delete(L,x)
1. if x .prev ! nil

2. x .prev .next ↑ x .next

3. else L.head ↑ x .next

4. if x .next ! nil

5. x .next.prev ↑ x .prev

Running time? O(1)
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Sentinels

Note: If x is in the middle of the list then

List-Delete(L,x)
1. if x .prev ! nil

2. x .prev .next ↑ x .next

3. else L.head ↑ x .next

4. if x .next ! nil

5. x .next.prev ↑ x .prev

List-Delete’(L,x)
1. x .prev .next ↑ x .next

2. x .next.prev ↑ x .prev

simplified
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Sentinels

Note: If x is in the middle of the list then

List-Insert(L,x)
1. x .next ↑ L.head

2. if L.head ! nil

3. L.head .prev ↑ x

4. L.head ↑ x

5. x .prev = NIL

List-Insert’(L,x)
1. x .next ↑ L.nil .next

2. L.nil .next.prev ↑ x

3. L.nil .next ↑ x

4. x .prev ↑ L.nil

simplified
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Summary Linked List

↭ Dynamic data structure without predefined capacity

↭ Insertion: O(1)

↭ Deletion: O(1) (if double linked)

↭ Question in book: can you do it for single linked?

↭ Search: O(n)
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Summary Linked List

↭ Dynamic data structure without predefined capacity

↭ Insertion: O(1)

↭ Deletion: O(1) (if double linked)

↭ Question in book: can you do it for single linked?

↭ Search: O(n)
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Search O(n) = no fun!

We will have fun: Binary Search Trees
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Search O(n) = no fun!

We will have fun: Binary Search Trees
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BINARY SEARCH TREES
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Idea
Guessing Game:
↭ Ola thinks of an integer between 1 and 15

↭ When you guess a number, answer either correct, smaller, or larger

↭ For example: is it 5? Ola: larger

↭ What is your best strategy to minimize number of guesses?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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↭ Ola thinks of an integer between 1 and 15

↭ When you guess a number, answer either correct, smaller, or larger

↭ For example: is it 5? Ola: larger

↭ What is your best strategy to minimize number of guesses?
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Idea
Guessing Game:
↭ Ola thinks of an integer between 1 and 15

↭ When you guess a number, answer either correct, smaller, or larger

↭ For example: is it 5? Ola: larger

↭ What is your best strategy to minimize number of guesses?
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12 13 14 15
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Idea
Guessing Game:
↭ Ola thinks of an integer between 1 and 15
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Idea
Guessing Game:
↭ Ola thinks of an integer between 1 and 15

↭ When you guess a number, answer either correct, smaller, or larger

↭ For example: is it 5? Ola: larger

↭ What is your best strategy to minimize number of guesses?

1 2 3 4 5 6 7 8

12 13 14 15

9

10 11

3 guesses
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Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8
8 <

< 12

< 10
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Binary Search Trees
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Key property:
↭ If y is in the left subtree of x then y .key < x .key
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Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8
8 <

< 12

< 10

Tree T has a root: T.root
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Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8
8 <

< 12

< 10

Tree T has a root: T.root

height h = 3

(number of edges in

longest path from root to

leaf)
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Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

height h = 14

(number of edges in

longest path from root to

leaf)
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Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

height h = 14

(number of edges in

longest path from root to

leaf)

Basic operations take time proportional to height: O(h)
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QUERYING A BINARY SEARCH TREE
(Searching, Minimum, Maximum, Successor, Predecessor)
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Searching

What is the running time? O(h)
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Searching

What is the running time?

O(h)
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Searching

What is the running time? O(h)
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Minimum and Maximum

By key property:

↭ Minimum is located in leftmost node

↭ Maximum is located in rightmost node

Minimum Maximum

Lecture 8, 12.03.2025



Minimum and Maximum

By key property:

↭ Minimum is located in leftmost node

↭ Maximum is located in rightmost node

Minimum Maximum
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Minimum and Maximum

What is the running time? O(h)

Minimum Maximum
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Minimum and Maximum

What is the running time? O(h)
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Minimum and Maximum

What is the running time? O(h)
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Minimum and Maximum

What is the running time?

O(h)

Minimum Maximum
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Minimum and Maximum

What is the running time? O(h)

Minimum Maximum
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Successor

Successor of a noce x is the node y such that y .key is the

“smallest key” > x .key

↭ What is the successor of 6?

↭ What is the successor of 5?
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Successor

Successor of a noce x is the node y such that y .key is the

“smallest key” > x .key

↭ What is the successor of 6?

↭ What is the successor of 5?
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Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x

Case 2: x has an empty right subtree

x
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Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in

the right subtree
x

Case 2: x has an empty right subtree

x
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Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in

the right subtree
x

successor

Case 2: x has an empty right subtree

As long as we to the left up the

tree we’re visiting smaller keys

x ’s successor is y is the node

that x is the predecessor of

(x is the maximum in y ’s left

subtree) x
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Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in

the right subtree
x

successor

Case 2: x has an empty right subtree

As long as we to the left up the

tree we’re visiting smaller keys

x ’s successor is y is the node

that x is the predecessor of

(x is the maximum in y ’s left

subtree) x

y
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Successor (Predecessor is symmetric)

What is the running time? O(h)
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Successor (Predecessor is symmetric)

What is the running time? O(h)
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PRINTING A BINARY SEARCH TREE
(Inorder, Preorder, Postorder)
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Printing Inorder (Idea)

↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8
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Printing Inorder (Idea)
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Printing Inorder (Idea)
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Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,

6,8,9,10,11,12
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Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,

8,9,10,11,12
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Printing Inorder (Idea)
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Printing Inorder (Idea)
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Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,11,12
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Inorder tree walk

What is the running time? !(n)
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Inorder tree walk

What is the running time?

!(n)
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Inorder tree walk

What is the running time? !(n)
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Printing Preorder and Postorder

Preorder-Tree-Walk(x)

1. if x ! NIL
2. print key [x ]

3. Preorder-Tree-Walk(x .left)

4. Preorder-Tree-Walk(x .right)

Postorder-Tree-Walk(x)

1. if x ! NIL
2. Postorder-Tree-Walk(x .left)

3. Postorder-Tree-Walk(x .right)

4. print key [x ]
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Printing Preorder and Postorder

Preorder-Tree-Walk(x)

1. if x ! NIL
2. print key [x ]

3. Preorder-Tree-Walk(x .left)

4. Preorder-Tree-Walk(x .right)

Postorder-Tree-Walk(x)

1. if x ! NIL
2. Postorder-Tree-Walk(x .left)

3. Postorder-Tree-Walk(x .right)
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MODIFYING A BINARY SEARCH TREE
(Insertion and Deletion)
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Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 7

1 3 5 9 11

2 6 10

4 12

8
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Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 13
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Ex: insert z with key 13
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Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 9.5
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Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 9.5

9.5
z

1 3 5 9 11

2 6 10

4 12

8
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Insertion

“search” phase

“insert” phase

What is the running time? O(h)
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Insertion

“search” phase

“insert” phase

What is the running time?
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Insertion

“search” phase

“insert” phase

What is the running time? O(h)
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Idea of deletion
Conceptually 3 cases:

↭ If z has no children, remove it

↭ If z has one child, then make that child take z’z position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

z

2

1 3 11

10 14

4 12

8
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Idea of deletion
Conceptually 3 cases:
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Idea of deletion
Conceptually 3 cases:

↭ If z has no children, remove it

↭ If z has one child, then make that child take z’z position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z
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Deletion Implementation: Transplant

Transplant(T , u, v) replaces subtree rooted at u with that rooted at v

u

v+ =
v

Lecture 8, 12.03.2025



Deletion Procedure
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Summary

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time

Modifying operations: Insertion, Deletion: O(h) time

Exist e!cient procedures to keep tree balanced (AVL trees, red-black trees,

etc.)
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