
Algorithms: Elementary Data Structures
and Binary Search Trees

Ola Svensson

School of Computer and Communication Sciences

Lecture 8, 12.03.2025



Algorithm

Algorithm

Elementary Data Structures

Lecture 8, 12.03.2025



Data structures = dynamic sets of items

What kind of operations do we want to do?
↭ Modifying operations: insertion, deletion, . . .

↭ Query operations: search, maximum, minimum, . . .

Data structure containing numbers

Lecture 8, 12.03.2025



Data structures = dynamic sets of items
What kind of operations do we want to do?

↭ Modifying operations: insertion, deletion, . . .

↭ Query operations: search, maximum, minimum, . . .

Data structure containing numbers

Lecture 8, 12.03.2025



Data structures = dynamic sets of items
What kind of operations do we want to do?
↭ Modifying operations: insertion, deletion, . . .

↭ Query operations: search, maximum, minimum, . . .

Data structure containing numbers

Lecture 8, 12.03.2025



Stacks (last-in, first-out)
↭ Insert operation called push(S,x)

↭ Delete operation called pop(S)

Lecture 8, 12.03.2025



Stacks Implementation

Implementation using arrays: S consists of elements S[1, . . . , S.top]

↭ S[1] element at the bottom

↭ S[S.top] element at the top

Lecture 8, 12.03.2025



Stacks Implementation

What is the running time of these operations? O(1)

Stack-Empty(S)

1. if S.top = 0

2. return TRUE

3. else return FALSE

Push(S,x)

1. S.top → S.top + 1

2. S[S.top] → x

Pop(S)

1. if Stack-Empty(S)
2. error “underflow”

3. else
4. S.top → S.top ↑ 1

5. return S[S.top + 1]

Lecture 8, 12.03.2025



Queues (first-in, first-out)

↭ Insert operation called Enqueue(Q,x)

↭ Delete operation called Dequeue(Q)

Lecture 8, 12.03.2025



Queue Implementation

Implementation using arrays: Q consists of elements

S[Q.head , . . . , Q.tail → 1]

↭ Q.head points at the first element

↭ Q.tail points at the next location where a newly arrived element

will be placed

Lecture 8, 12.03.2025



Queue Implementation

What is the running time of these operations? O(1)

Enqueue(Q,x)

1. Q[Q.tail] = x
2. if Q.tail = Q.length
3. Q.tail → 1

4. else Q.tail → Q.tail + 1

Dequeue(Q)

1. x = Q[Q.head]

2. if Q.head = Q.length
3. Q.head → 1

4. else Q.head → Q.head + 1

5. return x

Lecture 8, 12.03.2025



Stacks and Queues

Positives

↭ Very e!cient

↭ Natural operations

Negatives

↭ Limited support: for example, no search

↭ Implementations using arrays have a fixed

capacity

Lecture 8, 12.03.2025



Linked List

Objects are arranged in a linear order

Not indexes in array But pointers in each object

Lecture 8, 12.03.2025



Linked List

A list can be

↭ Single linked or double linked

↭ Sorted or unsorted

↭ etc.

Lecture 8, 12.03.2025



Searching a Linked List

Task: Given k return pointer to first element with key k

List-Search(L,k)
1. x ↑ L.head

2. while x ! nil and x .key ! k

3. x ↑ x .next

4. return x

Running time? O(n)

What if no element with key k

exists? returns nil

Lecture 8, 12.03.2025



Inserting into a Linked List

Task: Insert a new element x

List-Insert(L,x)
1. x .next ↑ L.head

2. if L.head ! nil

3. L.head .prev ↑ x

4. L.head ↑ x

5. x .prev = NIL

Running time?

O(1)

Lecture 8, 12.03.2025



Inserting into a Linked List

Task: Insert a new element x

List-Insert(L,x)
1. x .next ↑ L.head

2. if L.head ! nil

3. L.head .prev ↑ x

4. L.head ↑ x

5. x .prev = NIL

Running time? O(1)

Lecture 8, 12.03.2025



Deleting From a Linked List

Task: Given a pointer to an element x remove it from L

List-Delete(L,x)
1. if x .prev ! nil

2. x .prev .next ↑ x .next

3. else L.head ↑ x .next

4. if x .next ! nil

5. x .next.prev ↑ x .prev

Running time? O(1)

Lecture 8, 12.03.2025



Sentinels

Note: If x is in the middle of the list then

List-Delete(L,x)
1. if x .prev ! nil

2. x .prev .next ↑ x .next

3. else L.head ↑ x .next

4. if x .next ! nil

5. x .next.prev ↑ x .prev

List-Delete’(L,x)
1. x .prev .next ↑ x .next

2. x .next.prev ↑ x .prev

simplified

Lecture 8, 12.03.2025



Sentinels

Note:If x is in the middle of the list then

List-Delete(L,x)
1. if x .prev ! nil

2. x .prev .next ↑ x .next

3. else L.head ↑ x .next

4. if x .next ! nil

5. x .next.prev ↑ x .prev

List-Delete’(L,x)
1. x .prev .next ↑ x .next

2. x .next.prev ↑ x .prev

simplified

Lecture 8, 12.03.2025



Sentinels

Note: If x is in the middle of the list then

List-Insert(L,x)
1. x .next ↑ L.head

2. if L.head ! nil

3. L.head .prev ↑ x

4. L.head ↑ x

5. x .prev = NIL

List-Insert’(L,x)
1. x .next ↑ L.nil .next

2. L.nil .next.prev ↑ x

3. L.nil .next ↑ x

4. x .prev ↑ L.nil

simplified

Lecture 8, 12.03.2025



Summary Linked List

↭ Dynamic data structure without predefined capacity

↭ Insertion: O(1)

↭ Deletion: O(1) (if double linked)

↭ Question in book: can you do it for single linked?

↭ Search: O(n)

Lecture 8, 12.03.2025



Summary Linked List

↭ Dynamic data structure without predefined capacity

↭ Insertion: O(1)

↭ Deletion: O(1) (if double linked)

↭ Question in book: can you do it for single linked?

↭ Search: O(n)

Lecture 8, 12.03.2025



Search O(n) = no fun!

We will have fun: Binary Search Trees

Lecture 8, 12.03.2025



Search O(n) = no fun!

We will have fun: Binary Search Trees

Lecture 8, 12.03.2025



Search O(n) = no fun!

We will have fun: Binary Search Trees
Lecture 8, 12.03.2025



BINARY SEARCH TREES

Lecture 8, 12.03.2025



Idea
Guessing Game:
↭ Ola thinks of an integer between 1 and 15

↭ When you guess a number, answer either correct, smaller, or larger

↭ For example: is it 5? Ola: larger

↭ What is your best strategy to minimize number of guesses?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lecture 8, 12.03.2025



Idea
Guessing Game:
↭ Ola thinks of an integer between 1 and 15

↭ When you guess a number, answer either correct, smaller, or larger

↭ For example: is it 5? Ola: larger

↭ What is your best strategy to minimize number of guesses?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lecture 8, 12.03.2025



Idea
Guessing Game:
↭ Ola thinks of an integer between 1 and 15

↭ When you guess a number, answer either correct, smaller, or larger

↭ For example: is it 5? Ola: larger

↭ What is your best strategy to minimize number of guesses?

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

Lecture 8, 12.03.2025



Idea
Guessing Game:
↭ Ola thinks of an integer between 1 and 15

↭ When you guess a number, answer either correct, smaller, or larger

↭ For example: is it 5? Ola: larger

↭ What is your best strategy to minimize number of guesses?

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

Lecture 8, 12.03.2025



Idea
Guessing Game:
↭ Ola thinks of an integer between 1 and 15

↭ When you guess a number, answer either correct, smaller, or larger

↭ For example: is it 5? Ola: larger

↭ What is your best strategy to minimize number of guesses?

1 2 3 4 5 6 7 8

12 13 14 15

9 10 11

Lecture 8, 12.03.2025



Idea
Guessing Game:
↭ Ola thinks of an integer between 1 and 15

↭ When you guess a number, answer either correct, smaller, or larger

↭ For example: is it 5? Ola: larger

↭ What is your best strategy to minimize number of guesses?

1 2 3 4 5 6 7 8

12 13 14 15

9

10 11

Lecture 8, 12.03.2025



Idea
Guessing Game:
↭ Ola thinks of an integer between 1 and 15

↭ When you guess a number, answer either correct, smaller, or larger

↭ For example: is it 5? Ola: larger

↭ What is your best strategy to minimize number of guesses?

1 2 3 4 5 6 7 8

12 13 14 15

9

10 11

3 guesses

Lecture 8, 12.03.2025



Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8
8 <

< 12

< 10

Lecture 8, 12.03.2025



Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8
8 <

< 12

< 10

Lecture 8, 12.03.2025



Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8
8 <

< 12

< 10

Tree T has a root: T.root

Lecture 8, 12.03.2025



Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1 3 5 7 9 11 13 15

2 6 10 14

4 12

8
8 <

< 12

< 10

Tree T has a root: T.root

height h = 3

(number of edges in

longest path from root to

leaf)

Lecture 8, 12.03.2025



Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Lecture 8, 12.03.2025



Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

height h = 14

(number of edges in

longest path from root to

leaf)

Lecture 8, 12.03.2025



Binary Search Trees
Encodes a strategy whatever number we look for

Key property:
↭ If y is in the left subtree of x then y .key < x .key

↭ If y is in the right subtree of x then y .key ↓ x .key

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

height h = 14

(number of edges in

longest path from root to

leaf)

Basic operations take time proportional to height: O(h)

Lecture 8, 12.03.2025



QUERYING A BINARY SEARCH TREE
(Searching, Minimum, Maximum, Successor, Predecessor)

Lecture 8, 12.03.2025



Searching

What is the running time? O(h)

Lecture 8, 12.03.2025



Searching

What is the running time? O(h)

Lecture 8, 12.03.2025



Searching

What is the running time?

O(h)

Lecture 8, 12.03.2025



Searching

What is the running time? O(h)

Lecture 8, 12.03.2025



Minimum and Maximum

By key property:

↭ Minimum is located in leftmost node

↭ Maximum is located in rightmost node

Minimum Maximum

Lecture 8, 12.03.2025



Minimum and Maximum

By key property:

↭ Minimum is located in leftmost node

↭ Maximum is located in rightmost node

Minimum Maximum

Lecture 8, 12.03.2025



Minimum and Maximum

What is the running time? O(h)

Minimum Maximum

Lecture 8, 12.03.2025



Minimum and Maximum

What is the running time? O(h)

Minimum Maximum

Lecture 8, 12.03.2025



Minimum and Maximum

What is the running time? O(h)

Minimum Maximum

Lecture 8, 12.03.2025



Minimum and Maximum

What is the running time?

O(h)

Minimum Maximum

Lecture 8, 12.03.2025



Minimum and Maximum

What is the running time? O(h)

Minimum Maximum

Lecture 8, 12.03.2025



Successor

Successor of a noce x is the node y such that y .key is the

“smallest key” > x .key

↭ What is the successor of 6?

↭ What is the successor of 5?

Lecture 8, 12.03.2025



Successor

Successor of a noce x is the node y such that y .key is the

“smallest key” > x .key

↭ What is the successor of 6?

↭ What is the successor of 5?

Lecture 8, 12.03.2025



Successor

Successor of a noce x is the node y such that y .key is the

“smallest key” > x .key

↭ What is the successor of 6?

↭ What is the successor of 5?

Lecture 8, 12.03.2025



Successor

Successor of a noce x is the node y such that y .key is the

“smallest key” > x .key

↭ What is the successor of 6?

↭ What is the successor of 5?

Lecture 8, 12.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x

Case 2: x has an empty right subtree

x

Lecture 8, 12.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in

the right subtree
x

Case 2: x has an empty right subtree

x

Lecture 8, 12.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in

the right subtree
x

successor

Case 2: x has an empty right subtree

x

Lecture 8, 12.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in

the right subtree
x

successor

Case 2: x has an empty right subtree

x

Lecture 8, 12.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in

the right subtree
x

successor

Case 2: x has an empty right subtree

As long as we to the left up the

tree we’re visiting smaller keys

x ’s successor is y is the node

that x is the predecessor of

(x is the maximum in y ’s left

subtree) x

Lecture 8, 12.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in

the right subtree
x

successor

Case 2: x has an empty right subtree

As long as we to the left up the

tree we’re visiting smaller keys

x ’s successor is y is the node

that x is the predecessor of

(x is the maximum in y ’s left

subtree) x

Lecture 8, 12.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in

the right subtree
x

successor

Case 2: x has an empty right subtree

As long as we to the left up the

tree we’re visiting smaller keys

x ’s successor is y is the node

that x is the predecessor of

(x is the maximum in y ’s left

subtree) x

Lecture 8, 12.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in

the right subtree
x

successor

Case 2: x has an empty right subtree

As long as we to the left up the

tree we’re visiting smaller keys

x ’s successor is y is the node

that x is the predecessor of

(x is the maximum in y ’s left

subtree) x

Lecture 8, 12.03.2025



Two cases when finding successor of x :

Case 1: x has a non-empty right subtree

x ’s successor is the minimum in

the right subtree
x

successor

Case 2: x has an empty right subtree

As long as we to the left up the

tree we’re visiting smaller keys

x ’s successor is y is the node

that x is the predecessor of

(x is the maximum in y ’s left

subtree) x

y

Lecture 8, 12.03.2025



Successor (Predecessor is symmetric)

What is the running time? O(h)

Lecture 8, 12.03.2025



Successor (Predecessor is symmetric)

What is the running time? O(h)

Lecture 8, 12.03.2025



Successor (Predecessor is symmetric)

What is the running time?

O(h)

Lecture 8, 12.03.2025



Successor (Predecessor is symmetric)

What is the running time? O(h)

Lecture 8, 12.03.2025



PRINTING A BINARY SEARCH TREE
(Inorder, Preorder, Postorder)

Lecture 8, 12.03.2025



Printing Inorder (Idea)

↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output:

1,2,3,4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output:

1,2,3,4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output:

1,2,3,4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output:

1,2,3,4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,

2,3,4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,

3,4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,

3,4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,

4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,

5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,

5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,

5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,

6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,

8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,

9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,

9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,

9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,

9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,

10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,

11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,

11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,11,

12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Printing Inorder (Idea)
↭ Print left subtree recursively

↭ Print root

↭ Print right subtree recursively

1 3 5 9 11

2 6 10

4 12

8

Output: 1,2,3,4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025



Inorder tree walk

What is the running time? !(n)

Lecture 8, 12.03.2025



Inorder tree walk

What is the running time?

!(n)

Lecture 8, 12.03.2025



Inorder tree walk

What is the running time? !(n)

Lecture 8, 12.03.2025



Printing Preorder and Postorder

Preorder-Tree-Walk(x)

1. if x ! NIL
2. print key [x ]

3. Preorder-Tree-Walk(x .left)

4. Preorder-Tree-Walk(x .right)

Postorder-Tree-Walk(x)

1. if x ! NIL
2. Postorder-Tree-Walk(x .left)

3. Postorder-Tree-Walk(x .right)

4. print key [x ]

Lecture 8, 12.03.2025



Printing Preorder and Postorder

Preorder-Tree-Walk(x)

1. if x ! NIL
2. print key [x ]

3. Preorder-Tree-Walk(x .left)

4. Preorder-Tree-Walk(x .right)

Postorder-Tree-Walk(x)

1. if x ! NIL
2. Postorder-Tree-Walk(x .left)

3. Postorder-Tree-Walk(x .right)

4. print key [x ]

Lecture 8, 12.03.2025



Printing Preorder and Postorder

Preorder-Tree-Walk(x)

1. if x ! NIL
2. print key [x ]

3. Preorder-Tree-Walk(x .left)

4. Preorder-Tree-Walk(x .right)

Postorder-Tree-Walk(x)

1. if x ! NIL
2. Postorder-Tree-Walk(x .left)

3. Postorder-Tree-Walk(x .right)

4. print key [x ]

Lecture 8, 12.03.2025



MODIFYING A BINARY SEARCH TREE
(Insertion and Deletion)

Lecture 8, 12.03.2025



Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 7

1 3 5 9 11

2 6 10

4 12

8

Lecture 8, 12.03.2025



Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 7

7

z
1 3 5 9 11

2 6 10

4 12

8

Lecture 8, 12.03.2025



Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 13

1 3 5 9 11

2 6 10

4 12

8

Lecture 8, 12.03.2025



Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 13

13

z

1 3 5 9 11

2 6 10

4 12

8

Lecture 8, 12.03.2025



Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 9.5

1 3 5 9 11

2 6 10

4 12

8

Lecture 8, 12.03.2025



Idea of inserting z

↭ Search for z .key

↭ When arrived at nil insert z at that position

Ex: insert z with key 9.5

9.5
z

1 3 5 9 11

2 6 10

4 12

8

Lecture 8, 12.03.2025



Insertion

“search” phase

“insert” phase

What is the running time? O(h)

Lecture 8, 12.03.2025



Insertion

“search” phase

“insert” phase

What is the running time?

O(h)

Lecture 8, 12.03.2025



Insertion

“search” phase

“insert” phase

What is the running time? O(h)

Lecture 8, 12.03.2025



Idea of deletion
Conceptually 3 cases:

↭ If z has no children, remove it

↭ If z has one child, then make that child take z’z position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

z

2

1 3 11

10 14

4 12

8

Lecture 8, 12.03.2025



Idea of deletion
Conceptually 3 cases:

↭ If z has no children, remove it

↭ If z has one child, then make that child take z’z position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 11

10 14

4 12

8

Lecture 8, 12.03.2025



Idea of deletion
Conceptually 3 cases:

↭ If z has no children, remove it

↭ If z has one child, then make that child take z’z position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

z

2

1 3 11

10 14

4 12

8

Lecture 8, 12.03.2025



Idea of deletion
Conceptually 3 cases:

↭ If z has no children, remove it

↭ If z has one child, then make that child take z’z position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3 11

10 14

12

8

Lecture 8, 12.03.2025



Idea of deletion
Conceptually 3 cases:

↭ If z has no children, remove it

↭ If z has one child, then make that child take z’z position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3

11

10 14

12

8

Lecture 8, 12.03.2025



Idea of deletion
Conceptually 3 cases:

↭ If z has no children, remove it

↭ If z has one child, then make that child take z’z position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3

z

11

10 14

4 12

8

Lecture 8, 12.03.2025



Idea of deletion
Conceptually 3 cases:

↭ If z has no children, remove it

↭ If z has one child, then make that child take z’z position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3

z

y

11

10 14

4 12

8

Lecture 8, 12.03.2025



Idea of deletion
Conceptually 3 cases:

↭ If z has no children, remove it

↭ If z has one child, then make that child take z’z position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3

z

y

11

10 14

4 12

8

Lecture 8, 12.03.2025



Idea of deletion
Conceptually 3 cases:

↭ If z has no children, remove it

↭ If z has one child, then make that child take z’z position in the tree

↭ If z has two children, then find its successor y and replace z by y

Ex: Delete z

2

1 3 11

14

4 12

10

Lecture 8, 12.03.2025



Deletion Implementation: Transplant

Transplant(T , u, v) replaces subtree rooted at u with that rooted at v

u

v+ =
v

Lecture 8, 12.03.2025



Deletion Procedure

Lecture 8, 12.03.2025



Summary

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time

Modifying operations: Insertion, Deletion: O(h) time

Exist e!cient procedures to keep tree balanced (AVL trees, red-black trees,

etc.)

Lecture 8, 12.03.2025



Summary

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time

Modifying operations: Insertion, Deletion: O(h) time

Exist e!cient procedures to keep tree balanced (AVL trees, red-black trees,

etc.)

Lecture 8, 12.03.2025



Summary

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time

Modifying operations: Insertion, Deletion: O(h) time

Exist e!cient procedures to keep tree balanced (AVL trees, red-black trees,

etc.)

Lecture 8, 12.03.2025


