Algorithms: Elementary Data Structures

and Binary Search Trees

Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 8, 12.03.2025

Elementary Data Structures

Algorithm

Algorithm

Lecture 8, 12.03.2025

Data structure containing numbers

What kind of operations do we want to do?

Data structure containing numbers

What kind of operations do we want to do?

» Modifying operations: insertion, deletion, ...

» Query operations: search, maximum, minimum, ...

Data structure containing numbers

Stacks (last-in, first-out)

> Insert operation called PUSH(S,X)

> Delete operation called POP(S)

Lecture 8, 12.03.2025

Stacks Implementation

1 2 3 4 5 6 7
s[5]6]2]o]17]3 [}

!

S.top =6

Implementation using arrays: S consists of elements S[1,...,S.top]

> S[1] element at the bottom

> S[S.top] element at the top

Lecture 8, 12.03.2025

Stacks Implementation

1 2 3 4 5 6 7
s[5]6]2]o]17]3 [}

!

S.top =6

What is the running time of these operations? O(1)

STACK-EMPTY(S) PUSH(S,x) Pop(S)
1. if S.top=0 1. Sitop + S.top+1 1. if STACK-EMPTY(S)
2. return TRUE 2. §[S.top] + x 2. error “underflow”
3. else return FALSE 3. else

4. S.top<+ S.top—1
5. return S[S.top + 1]

Lecture 8, 12.03.2025

Queues (first-in, first-out)

> Insert operation called ENQUEUE(Q,X)

> Delete operation called DEQUEUE(Q)

Lecture 8, 12.03.2025

Queue Implementation

1 2 3 4 5 6 7 8 10 11 12

0 ﬂﬂﬂ. T

Q.head =17 Q.tail = 12

Implementation using arrays: @ consists of elements
S[Q.head, ..., Q.tail — 1]

> Q.head points at the first element

> Q.tail points at the next location where a newly arrived element
will be placed

Lecture 8, 12.03.2025

Queue Implementation

1 2 3 4 5 6 7 8 10 11 12

0 ﬂﬂﬂ. T

Q.head =17 Q.tail = 12

What is the running time of these operations? O(1)

ENQUEUE(Q,X) DEQUEUE(Q)

1. Q[Q.taill = x 1. x = Q[Q.head]

2. if Q.tail = Q.length 2. if Q.head = Q.length

3. Q.tail <1 3 Q.head <1

4. else Q.tail < Q.tail +1 4. else Q.head +— Q.head + 1
5. return x

Lecture 8, 12.03.2025

Stacks and Queues

Positives Negatives
> Very efficient > Limited support: for example, no search
> Natural operations > Implementations using arrays have a fixed
capacity

Lecture 8, 12.03.2025

Linked List

Objects are arranged in a linear order

Not indexes in array But pointers in each object

2 3

AT ik

Lecture 8, 12.03.2025

Linked List

prev key next

N/

A list can be
» Single linked or double linked
» Sorted or unsorted
> etc.

Lecture 8, 12.03.2025

Searching a Linked List

N/

L.head

Task: Given k return pointer to first element with key k

L1sT-SEARCH(L,K)

1. x + L.head

2. while x # nil and x.key # k What if no element with key k
exists? returns nil

Running time? O(n)

3. X< x.next
4. return x

Lecture 8, 12.03.2025

Inserting into a Linked List

prev key next
\ | /

Task: Insert a new element x

LisT-INSERT(L,X)

1. x.next < L.head
2. if L.head # nil Running time?
3. L.head.prev < x

4. L.head + x

5. x.prev = NIL

Lecture 8, 12.03.2025

Inserting into a Linked List

prev key next
\ | /

Task: Insert a new element x

LisT-INSERT(L,X)

1. x.next < L.head
2. if L.head # nil Running time? O(1)
3. L.head.prev < x

4. L.head + x

5. x.prev = NIL

Lecture 8, 12.03.2025

Deleting From a Linked List

prev key next

\ 4

Task: Given a pointer to an element x remove it from L

LisT-DELETE(L,X)

1. if x.prev # nil
2. x.prev.next < x.next Running time? O(1)
3. else L.head < x.next
4. if x.next # nil
5

X.next.prev <— x.prev

Lecture 8, 12.03.2025

prev key next

\ A
Lohead ——>/|0 | T [u6] T |4] L [1]/]

Note: If x is in the middle of the list then

simplified
L1ST-DELETE(L,X) / \

1. if x.prev # nil LisT-DELETE’ (L,X)

X.prev.next <— x.next
1. x.prev.next < x.next

2. x.next.prev < x.prev
. if x.next # nil P P

2
3. else L.head < x.next
4
5

X.next.prev < x.prev

Lecture 8, 12.03.2025

Lo — R
I
Lo — I E T o 2 E A i -

simplified
L1ST-DELETE(L,X) / \

1. if x.prev # nil LisT-DELETE’ (L,X)
2. X.prev.next < x.next

3. else L.head < x.next
4. if x.next # nil
5. x.next.prev < x.prev

1. x.prev.next < x.next

2. x.next.prev < x.prev

Lecture 8, 12.03.2025

Lo — R
I
Lo — I E T o 2 E A i -

simplified
LisT-INSERT(L,X) /

1. x.next < L.head
2. if L.head # nil

3. L.head.prev < x
4. L.head + x

5. x.prev = NIL

LisT-INSERT’(L,X)

1. x.next < L.nil.next
2. L.nil.next.prev < x
3. L.nil.next < x

4. x.prev < L.nil

Lecture 8, 12.03.2025

Summary Linked List

» Dynamic data structure without predefined capacity
> Insertion: O(1)

> Deletion: O(1) (if double linked)

> Question in book: can you do it for single linked?

» Search: O(n)

Lecture 8, 12.03.2025

Summary Linked List

» Dynamic data structure without predefined capacity
> Insertion: O(1)

> Deletion: O(1) (if double linked)

> Question in book: can you do it for single linked?

» Search: O(n)

Lecture 8, 12.03.2025

amazoncom
N

Google

facebook

We will have fun: Binary Search Trees

BINARY SEARCH TREES

Lecture 8, 12.03.2025

Guessing Game:

> Ola thinks of an integer between 1 and 15

> When you guess a number, answer either correct, smaller, or larger

> For example: is it 5? Ola: larger

> What is your best strategy to minimize number of guesses?

01016101001 CJOJOITIICICATIT)

Lecture 8, 12.03.2025

Guessing Game:

> Ola thinks of an integer between 1 and 15

> When you guess a number, answer either correct, smaller, or larger

> For example: is it 5? Ola: larger

> What is your best strategy to minimize number of guesses?

QPOOEEOEOOVOOOB®E

Lecture 8, 12.03.2025

Guessing Game:

> Ola thinks of an integer between 1 and 15

> When you guess a number, answer either correct, smaller, or larger

> For example: is it 5? Ola: larger

> What is your best strategy to minimize number of guesses?

ACACASACASATACHO)
QOWOOOBE

Lecture 8, 12.03.2025

Guessing Game:

> Ola thinks of an integer between 1 and 15

> When you guess a number, answer either correct, smaller, or larger

> For example: is it 5? Ola: larger

> What is your best strategy to minimize number of guesses?

ACACASACASATACHO)
QOOeBLE

Lecture 8, 12.03.2025

Guessing Game:

> Ola thinks of an integer between 1 and 15

> When you guess a number, answer either correct, smaller, or larger

> For example: is it 5? Ola: larger

> What is your best strategy to minimize number of guesses?

ACACASACASATACHO)
CASATAS
QOO

Lecture 8, 12.03.2025

Guessing Game:

> Ola thinks of an integer between 1 and 15

> When you guess a number, answer either correct, smaller, or larger

> For example: is it 5? Ola: larger

> What is your best strategy to minimize number of guesses?

ACACASACASATACHO)
CASATAS
®
®

Lecture 8, 12.03.2025

Guessing Game:

> Ola thinks of an integer between 1 and 15

> When you guess a number, answer either correct, smaller, or larger

> For example: is it 5? Ola: larger

> What is your best strategy to minimize number of guesses?

ACACASACASATACHO)
CASATAS
®
®

@ 3 guesses

Lecture 8, 12.03.2025

Binary Search Trees

Encodes a strategy whatever number we look for

Lecture 8, 12.03.2025

Binary Search Trees

Encodes a strategy whatever number we look for
Key property:
> If y is in the left subtree of x then y.key < x.key

> If y is in the right subtree of x then y.key > x.key

Lecture 8, 12.03.2025

Binary Search Trees

Encodes a strategy whatever number we look for
Key property:
> If y is in the left subtree of x then y.key < x.key

> If y is in the right subtree of x then y.key > x.key

Tree T has a root: T.root

Lecture 8, 12.03.2025

Binary Search Trees

Encodes a strategy whatever number we look for
Key property:
> If y is in the left subtree of x then y.key < x.key

> If y is in the right subtree of x then y.key > x.key

Tree T has a root: T.root

height h =3

(number of edges in
longest path from root to
leaf)

Lecture 8, 12.03.2025

Binary Search Trees

Encodes a strategy whatever number we look for
Key property:
> If y is in the left subtree of x then y.key < x.key

> If y is in the right subtree of x then y.key > x.key

Lecture 8, 12.03.2025

Binary Search Trees

Encodes a strategy whatever number we look for
Key property:
> If y is in the left subtree of x then y.key < x.key

> If y is in the right subtree of x then y.key > x.key

height h = 14

(number of edges in
longest path from root to
leaf)

Lecture 8, 12.03.2025

Binary Search Trees

Encodes a strategy whatever number we look for
Key property:
> If y is in the left subtree of x then y.key < x.key

> If y is in the right subtree of x then y.key > x.key

height h = 14

(number of edges in
longest path from root to
leaf)

Basic operations take time proportional to height: O(h)

Lecture 8, 12.03.2025

QUERYING A BINARY SEARCH TREE

(Searching, Minimum, Maximum, Successor, Predecessor)

Lecture 8, 12.03.2025

Lecture 8, 12.03.2025

TREE-SEARCH(x, k)
if x == NIL or k == key[x]
return x
if k < x.key
return TREE-SEARCH (x.left, k)
else return TREE-SEARCH (x.right, k)

Lecture 8, 12.03.2025

What is the running time?

TREE-SEARCH(x, k)
if x == NIL or k == key[x]
return x
if k < x.key
return TREE-SEARCH (x.left, k)
else return TREE-SEARCH (x.right, k)

Lecture 8, 12.03.2025

What is the running time? O(h)

TREE-SEARCH(x, k)
if x == NIL or k == key[x]
return x
if k < x.key
return TREE-SEARCH (x.left, k)
else return TREE-SEARCH (x.right, k)

Lecture 8, 12.03.2025

Minimum and Maximum

Lecture 8, 12.03.2025

Minimum and Maximum

Minimum Maximum

By key property:
» Minimum is located in leftmost node

» Maximum is located in rightmost node

Lecture 8, 12.03.2025

Minimum and Maximum

Minimum Maximum

Lecture 8, 12.03.2025

Minimum and Maximum

Minimum Maximum

TREE-MINIMUM (x)
while x.left # NIL
x = x.left
return x

Lecture 8, 12.03.2025

Minimum and Maximum

Minimum Maximum
TREE-MINIMUM (x) TREE-MAXIMUM (x)
while x.left # NIL while x.right # NIL
x = x.left X = x.right

return x return x

Lecture 8, 12.03.2025

Minimum and Maximum

Minimum Maximum

What is the running time?

TREE-MINIMUM (x) TREE-MAXIMUM (x)
while x.left # NIL while x.right # NIL
x = x.left X = x.right

return x return x

Lecture 8, 12.03.2025

Minimum and Maximum

Minimum Maximum

What is the running time? O(h)

TREE-MINIMUM (x) TREE-MAXIMUM (x)
while x.left # NIL while x.right # NIL
x = x.left X = x.right

return x return x

Lecture 8, 12.03.2025

Lecture 8, 12.03.2025

Successor of a noce x is the node y such that y.key is the

“smallest key” > x.key

Lecture 8, 12.03.2025

Successor of a noce x is the node y such that y.key is the

“smallest key” > x.key

» What is the successor of 67

Lecture 8, 12.03.2025

Successor of a noce x is the node y such that y.key is the

“smallest key” > x.key

» What is the successor of 67

» What is the successor of 57

Lecture 8, 12.03.2025

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

As long as we to the left up the
tree we're visiting smaller keys

x's successor is y is the node
that x is the predecessor of
(x is the maximum in y's left N

subtree) @

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

As long as we to the left up the
tree we're visiting smaller keys

x's successor is y is the node
that x is the predecessor of

(x is the maximum in y's left
subtree)

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

As long as we to the left up the
tree we're visiting smaller keys Q

x's successor is y is the node 0
that x is the predecessor of

(x is the maximum in y's left

subtree)

Two cases when finding successor of x:

Case 1: x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

As long as we to the left up the

tree we're visiting smaller keys

x's successor is y is the node 0
that x is the predecessor of

(x is the maximum in y's left
subtree)

-

Two cases when finding successor of x:

Case 1. x has a non-empty right subtree

x's successor is the minimum in
the right subtree

successor

Case 2: x has an empty right subtree

As long as we to the left up the
tree we're visiting smaller keys

x's successor is y is the node 0
that x is the predecessor of

(x is the maximum in y's left

subtree)

Successor (Predecessor is symmetric)

Lecture 8, 12.03.2025

Successor (Predecessor is symmetric)

TREE-SUCCESSOR (x)
if x.right # NIL
return TREE-MINIMUM (x. right)
y =x.p
while y # NIL and x == y.right
X =Y
y=ypr
return y

Lecture 8, 12.03.2025

Successor (Predecessor is symmetric)

What is the running time?

TREE-SUCCESSOR (x)
if x.right # NIL
return TREE-MINIMUM (x. right)
y =x.p
while y # NIL and x == y.right
X =Y
y=ypr
return y

Lecture 8, 12.03.2025

Successor (Predecessor is symmetric)

What is the running time? O(h)

TREE-SUCCESSOR (x)
if x.right # NIL
return TREE-MINIMUM (x. right)
y =x.p
while y # NIL and x == y.right
X =Y
y=ypr
return y

Lecture 8, 12.03.2025

PRINTING A BINARY SEARCH TREE

(Inorder, Preorder, Postorder)

Lecture 8, 12.03.2025

Printing Inorder (ldea)

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,10,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,10,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,10,11,

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025

Printing Inorder (ldea)

> Print left subtree recursively
> Print root

> Print right subtree recursively

Output: 1,2,3,4,5,6,8,9,10,11,12

Lecture 8, 12.03.2025

Inorder tree walk

INORDER-TREE-WALK (x)
if x # NIL
INORDER-TREE-WALK (x. left)
print key[x]
INORDER-TREE-WALK (x.right)

Lecture 8, 12.03.2025

Inorder tree walk

What is the running time?

INORDER-TREE-WALK (x)
if x # NIL
INORDER-TREE-WALK (x. left)
print key[x]
INORDER-TREE-WALK (x.right)

Lecture 8, 12.03.2025

Inorder tree walk

What is the running time? ©(n)

INORDER-TREE-WALK (x)
if x # NIL
INORDER-TREE-WALK (x. left)
print key[x]
INORDER-TREE-WALK (x.right)

Lecture 8, 12.03.2025

Printing Preorder and Postorder

Lecture 8, 12.03.2025

Printing Preorder and Postorder

PREORDER-TREE- WALK(x)

1. if x # NIL

2. print key[x]

3. PREORDER-TREE-WALK(x./eft)
4. PREORDER-TREE-WALK(x.right)

Lecture 8, 12.03.2025

Printing Preorder and Postorder

PREORDER-TREE- WALK(x) POSTORDER-TREE- WALK(x)

1. if x # NIL 1. if x # NIL

2. print key[x] 2. POSTORDER-TREE-WALK(x./eft)
3. PREORDER-TREE-WALK(x.left) 3. POSTORDER-TREE-WALK(x.right)
4. PREORDER-TREE-WALK(x.right) 4. print key[x]

Lecture 8, 12.03.2025

MODIFYING A BINARY SEARCH TREE

(Insertion and Deletion)

Lecture 8, 12.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 7

Lecture 8, 12.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 7

Lecture 8, 12.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 13

Lecture 8, 12.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 13

Lecture 8, 12.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 9.5

Lecture 8, 12.03.2025

|dea of inserting z

> Search for z.key

> When arrived at nil insert z at that position

Ex: insert z with key 9.5

Lecture 8, 12.03.2025

Insertion

TREE-INSERT(T, 2)
y = NIL
x = T.root
while x # NIL
“search” phase y=x
if 7. key < x.key
x = x.left
else x = x.right
Z.p=Yy
if y == NIL
T.root = 7 // tree T was empty
“insert” phase elseif z.key < y.key
y.left =z
else y.right = 7

Lecture 8, 12.03.2025

Insertion

TREE-INSERT(T, 2)
y = NIL
x = T.root
while x # NIL
“search” phase y=x
if 7. key < x.key
x = x.left
else x = x.right
Z.p=Yy
if y == NIL
T.root = 7 // tree T was empty
“insert” phase elseif z.key < y.key
y.left =z
else y.right = 7

What is the running time?

Lecture 8, 12.03.2025

Insertion

TREE-INSERT(T, 2)
y = NIL
x = T.root
while x # NIL
“search” phase y=x
if 7. key < x.key
x = x.left
else x = x.right
Z.p=Yy
if y == NIL
T.root = 7 // tree T was empty
“insert” phase elseif z.key < y.key
y.left =z
else y.right = 7

What is the running time? O(h)

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:

» If z has no children, remove it

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:

» If z has no children, remove it

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it

> If z has one child, then make that child take z'z position in the tree

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it

> If z has one child, then make that child take z'z position in the tree

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it

> If z has one child, then make that child take z'z position in the tree

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z'z position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z'z position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z'z position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 8, 12.03.2025

Idea of deletion

Conceptually 3 cases:
» If z has no children, remove it
> If z has one child, then make that child take z'z position in the tree

> If z has two children, then find its successor y and replace z by y

Ex: Delete z

Lecture 8, 12.03.2025

: ! TRANSPLANT(T, u, v)
Deletion Implementation: Transplant RS

T.root = v
elseif u == u.p.left

u.p.left = v
else u.p.right = v
if v # NIL

V.p = u.p

TRANSPLANT(T, u, v) replaces subtree rooted at u with that rooted at v

AAL

Lecture 8, 12.03.2025

TREE-DELETE(T, z)

Deletion Procedure ISt

TRANSPLANT(T, z, z.right) // z has no left child
elseif z.right == NIL

TRANSPLANT(T, z, Z.left) // z has just a left child
else // z has two children.

y = TREE-MINIMUM (z.right) // y is z’s successor

ify.p#z

// y lies within z’s right subtree but is not the root of thi
TRANSPLANT(T, y, y.right)
y.right = z.right
y.right.p =y
// Replace z by y.
TRANSPLANT(T, z, y)
y.left = z.left
y.leftp =y

Lecture 8, 12.03.2025

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time l

Modifying operations: Insertion, Deletion: O(h) time

Lecture 8, 12.03.2025

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time ‘

Modifying operations: Insertion, Deletion: O(h) time

D
O 2

Lecture 8, 12.03.2025

Query operations: Search, Max, Min, Predecessor, Successor: O(h) time ‘

Modifying operations: Insertion, Deletion: O(h) time

Exist efficient procedures to keep tree balanced (AVL trees, red-black trees,
etc.)

D
O 2

Lecture 8, 12.03.2025

