
Algorithms: Elementary Data Structures

Ola Svensson

School of Computer and Communication Sciences

Lecture 7, 11.03.2025

Heaps

Heapsort

Priority Queues

RECALL LAST LECTURE

Lecture 7, 11.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i ’s children is smaller or equal to i ’s key

9

8 5

6 7 1 0

4 1 3

Lecture 7, 11.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i ’s children is greater or equal to i ’s key

0

1 3

4 2 4 8

6 7 5

Lecture 7, 11.03.2025

Max-Heap → maximum element is the root

key

ω r

→ ↑

→ ω → r

Min-Heap → minimum element is the root

key

ω r

↑ →

↑ ω ↑ r

Lecture 7, 11.03.2025

Height of a heap

Height of node = # of edges on a longest simple path from the node

down to a leaf

Height of heap = height of root = !(log n)

16

14 10

8 7 9 3

2 4 1

Height = 3

Lecture 7, 11.03.2025

How to store a heap/tree?

pointer to left and right children

Use that tree is almost complete to store it in array

16

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

A = 16 14 10 8 7 9 3 2 4 1

In this representation:

Root is A[1]

Left(i) = 2i
Right(i) = 2i + 1

Parent(i) = ↓i/2↔

Lecture 7, 11.03.2025

BUILDING AND MANIPULATING HEAPS

Lecture 7, 11.03.2025

Maintaining the heap property

Max-Heapify is important for manipulating heaps:

Given an i such that the subtrees of i are heaps, it ensures that the

subtree rooted at i is a heap satisfy the heap property

→

Lecture 7, 11.03.2025

Pseudo-code and analysis

Running time?

!(height of i) = O(log n)

Space?

!(n)

14

8 10

5 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 7, 11.03.2025

Pseudo-code and analysis

Running time?

!(height of i) = O(log n)

Space? !(n)

14

8 10

5 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 7, 11.03.2025

Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

4

1 3

2 16 9 10

14 8 7

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

4 1 3 2 16 9 10 14 8 7

Lecture 7, 11.03.2025

Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

16

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

16 14 10 8 7 9 3 2 4 1

Lecture 7, 11.03.2025

Analysis

What is the worst-case running time of Build-Max-Heap?

Simple bound: O(n) calls to Max-Heapify, each of which takes

O(lg n) time → O(n lg n) in total

Tighter analysis: Time to run Max-Heapify is linear in the height of

the node it’s run on. Hence, the time is bounded by

lg n∑

h=0

{# nodes of height h}O(h) = O

(
n

lg n∑

h=0

h

2h

)
,

which is O(n) since
∑→

h=0

h
2h =

1/2

(1↑1/2)2 = 2.

Lecture 7, 11.03.2025

Correctness

Loop invariant: At start of every iteration of for loop, each node

i + 1, i + 2, . . . , n is root of a max-heap

Initialization:

↭ Each node ↑n/2↓ + 1, ↑n/2↓ + 2, . . . , n is a leaf which is the root of

a trivial max-heap

↭ Since i = ↑n/2↓ before the first iteration of the for loop, the

invariant is initially true

Lecture 7, 11.03.2025

Correctness

Loop invariant: At start of every iteration of for loop, each node

i + 1, i + 2, . . . , n is root of a max-heap

Maintenance:

↭ Children of node i are indexed higher than i , so by the loop

invariant, they are both roots of max-heaps

↭ Therefore, Max-Heapify makes node i a max-heap root (so

i , i + 1, . . . n are all roots of max-heaps)

↭ Hence, the invariant stays true when decrementing i at the

beginning of the next iteration

Lecture 7, 11.03.2025

Correctness

Loop invariant: At start of every iteration of for loop, each node

i + 1, i + 2, . . . , n is root of a max-heap

Termination:

↭ When i = 0, the loop terminates

↭ By the loop invariant , each node, notably node 1, is the root of a

max-heap

Lecture 7, 11.03.2025

HEAPSORT

Lecture 7, 11.03.2025

The heapsort algorithm

↭ Builds a max-heap from the array

↭ Starting with the root (the maximum element), the algorithm

places the maximum element into the correct place in the array by

swapping it with the element in the last position in the array

↭ “Discard” this last node (knowing that it is in its correct place) by

decreasing the heap size, and calling Max-Heapify on the new

(possibly incorrectly-placed) root

↭ Repeat this “discarding” process until only one node (the smallest

element) remains, and therefore is in the correct place in the array

Lecture 7, 11.03.2025

Example

1

2 3

4 7 8 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

1 2 3 4 7 8 9 10 14 16

Lecture 7, 11.03.2025

Analysis of Heapsort

↭ Build-Max-Heap: O(n)

↭ for loop: n ↔ 1 times

↭ exchange elements: O(1)

↭ Max-Heapify: O(lg n)

Total time: O(n lg n)

Lecture 7, 11.03.2025

HEAP IMPLEMENTATION
OF PRIORITY QUEUE

Lecture 7, 11.03.2025

Priority Queue

↭ Maintains a dynamic set S of elements

↭ Each set element has a key — an associated value that regulates its

importance

What kind of operations do we want to do?

Insert(S,x): inserts element x into S

Maximum(S): returns element of S with largest key

Extract-Max(S): removes and returns element of S with largest key

Increase-Key(S,x,k): increases value of element x ’s key to k;

Increase-Key(S,x,k): assume k ↗ x ’s current key value

Example max-priority queue application: schedule jobs on shared

computer

Heaps e!ciently implement priority queues

Lecture 7, 11.03.2025

Finding maximum element

Simply return the root in time !(1)

9

8 5

6 7 1 0

4 1 3

Lecture 7, 11.03.2025

Heap-Maximum(A)

return A[1]

Extracting maximum element

1. Make sure heap is not empty

2. Make a copy of the maximum element (the root)

3. Make the last node in the tree the new root

4. Re-heapify the heap, with one fewer node

5. Return the copy of the maximum element

9 max = 9

8 5

6 7 1 0

4 1 3

Lecture 7, 11.03.2025

Extracting maximum element

1. Make sure heap is not empty

2. Make a copy of the maximum element (the root)

3. Make the last node in the tree the new root

4. Re-heapify the heap, with one fewer node

5. Return the copy of the maximum element

9 max = 9

new root

8 5

6 7 1 0

4 1 3

Lecture 7, 11.03.2025

Extracting maximum element

1. Make sure heap is not empty

2. Make a copy of the maximum element (the root)

3. Make the last node in the tree the new root

4. Re-heapify the heap, with one fewer node

5. Return the copy of the maximum element

3 max = 9

new root

8 5

6 7 1 0

4 1 3

Lecture 7, 11.03.2025

Extracting maximum element

1. Make sure heap is not empty

2. Make a copy of the maximum element (the root)

3. Make the last node in the tree the new root

4. Re-heapify the heap, with one fewer node

5. Return the copy of the maximum element

3 max = 9

8 5

6 7 1 0

4 1

Lecture 7, 11.03.2025

Extracting maximum element

1. Make sure heap is not empty

2. Make a copy of the maximum element (the root)

3. Make the last node in the tree the new root

4. Re-heapify the heap, with one fewer node

5. Return the copy of the maximum element

8 max = 9

7 5

6 3 1 0

4 1

Lecture 7, 11.03.2025

Extracting maximum element

Analysis: Constant-time assignments plus

time for Max-Heapify

Hence, it runs in time O(lg n)

8 max = 9

7 5

6 3 1 0

4 1

Lecture 7, 11.03.2025

Increasing key value

Given a heap A, index i , and new value key
1. Make sure key ↑ A[i]
2. Update A[i]’s value to key
3. Traverse the tree upward comparing new

key to the parent and swapping keys if

necessary, until the new key is smaller than the parent’s key

12 key = 10

8 5

10 7 1 0

6 1 3

Lecture 7, 11.03.2025

Increasing key value

Given a heap A, index i , and new value key
1. Make sure key ↑ A[i]
2. Update A[i]’s value to key
3. Traverse the tree upward comparing new

key to the parent and swapping keys if

necessary, until the new key is smaller than the parent’s key

12 key = 10

10 5

8 7 1 0

6 1 3

Lecture 7, 11.03.2025

Increasing key value

Analysis:

Upward path from node i has

length O(lg n) in an n-element heap

Hence, it runs in time O(lg n)

12 key = 10

10 5

8 7 1 0

6 1 3

Lecture 7, 11.03.2025

Inserting into the heap

Given a new key to insert into heap

1. Increment the heap size

2. Insert a new node in the last position

in the heap, with key ↗↘
3. Increase the ↗↘ value to key using Heap-Increase-Key

12 key = 10

8 5

6 7 1 0

4 1 3 10

Lecture 7, 11.03.2025

Inserting into the heap

Given a new key to insert into heap

1. Increment the heap size

2. Insert a new node in the last position

in the heap, with key ↗↘
3. Increase the ↗↘ value to key using Heap-Increase-Key

12 key = 10

10 5

6 8 1 0

4 1 3 7

Lecture 7, 11.03.2025

Inserting into the heap

Analysis: Constant time assignments

+

Time for Heap-Increase-Key

Hence, it runs in time O(lg n)

12 key = 10

10 5

6 8 1 0

4 1 3 7

Lecture 7, 11.03.2025

Summary

↭ Heapsort runs in time O(n log n) and is in-place

↭ Great algorithm but a well-implemented quicksort usually beats it in

practice

↭ Heaps e!ciently implement priority queues

Insert(S,x): O(lg n)

Maximum(S): O(1)

Extract-Max(S): O(lg n)

Increase-Key(S,x,k): O(lg n)

↭ Min-priority queues are implemented with min-heaps similarly

Lecture 7, 11.03.2025

Algorithm

Algorithm

Elementary Data Structures

Lecture 7, 11.03.2025

Data structures = dynamic sets of items

What kind of operations do we want to do?
↭ Modifying operations: insertion, deletion, . . .

↭ Query operations: search, maximum, minimum, . . .

Data structure containing numbers

Lecture 7, 11.03.2025

Stacks (last-in, first-out)

↭ Insert operation called push(S,x)

↭ Delete operation called pop(S)

Lecture 7, 11.03.2025

Stacks (last-in, first-out)

↭ Insert operation called push(S,x)

↭ Delete operation called pop(S)

Example:

push(S,2), push(S,1), pop(S), push(S,3), pop(S), pop(S)

S
2

Lecture 7, 11.03.2025

Stacks Implementation

Implementation using arrays: S consists of elements S[1, . . . , S.top]

↭ S[1] element at the bottom

↭ S[S.top] element at the top

Lecture 7, 11.03.2025

Stacks Implementation

What is the running time of these operations? O(1)

Stack-Empty(S)

1. if S.top = 0

2. return TRUE

3. else return FALSE

Push(S,x)

1. S.top ≃ S.top + 1

2. S[S.top] ≃ x

Pop(S)

1. if Stack-Empty(S)

2. error “underflow”

3. else
4. S.top ≃ S.top ↗ 1

5. return S[S.top + 1]

Lecture 7, 11.03.2025

Stacks are everywhere in every software

The contents of a stack during the scan of an expression that
contains the balanced delimiters { [()] }

a{b[c(d + e)/2 ↔ f] + 1}

Lecture 7, 11.03.2025

Queues (first-in, first-out)

↭ Insert operation called Enqueue(Q,x)

↭ Delete operation called Dequeue(Q)

Lecture 7, 11.03.2025

Queues (first-in, first-out)

↭ Insert operation called Enqueue(Q,x)

↭ Delete operation called Dequeue(Q)

Example:

Enqueue(Q,), Enqueue(Q,), Dequeue(Q), Enqueue(Q,)

TailHead
Lecture 7, 11.03.2025

Queue Implementation

Implementation using arrays: Q consists of elements

S[Q.head , . . . , Q.tail ↔ 1]

↭ Q.head points at the first element

↭ Q.tail points at the next location where a newly arrived element

will be placed

Lecture 7, 11.03.2025

Queue Implementation

What is the running time of these operations? O(1)

Enqueue(Q,x)

1. Q[Q.tail] = x
2. if Q.tail = Q.length
3. Q.tail ≃ 1

4. else Q.tail ≃ Q.tail + 1

Dequeue(Q)

1. x = Q[Q.head]

2. if Q.head = Q.length
3. Q.head ≃ 1

4. else Q.head ≃ Q.head + 1

5. return x

Lecture 7, 11.03.2025

Applications of Queues

One example: Web server

Lecture 7, 11.03.2025

Stacks and Queues

Positives

↭ Very e!cient

↭ Natural operations

Negatives

↭ Limited support: for example, no search

↭ Implementations using arrays have a fixed

capacity

Lecture 7, 11.03.2025

Linked List

Objects are arranged in a linear order

Not indexes in array But pointers in each object

Lecture 7, 11.03.2025

Linked List

A list can be

↭ Single linked or double linked

↭ Sorted or unsorted

↭ etc.

Lecture 7, 11.03.2025

Searching a Linked List

Task: Given k return pointer to first element with key k

List-Search(L,k)

1. x ↘ L.head

2. while x ! nil and x .key ! k

3. x ↘ x .next

4. return x

Running time? O(n)

What if no element with key k

exists? returns nil

Lecture 7, 11.03.2025

Inserting into a Linked List

Task: Insert a new element x

List-Insert(L,x)

1. x .next ↘ L.head

2. if L.head ! nil

3. L.head .prev ↘ x

4. L.head ↘ x

5. x .prev = NIL

Running time? O(1)

Lecture 7, 11.03.2025

Deleting From a Linked List

Task: Given a pointer to an element x remove it from L

List-Delete(L,x)

1. if x .prev ! nil

2. x .prev .next ↘ x .next

3. else L.head ↘ x .next

4. if x .next ! nil

5. x .next.prev ↘ x .prev

Running time? O(1)

Lecture 7, 11.03.2025

Sentinels

Note: If x is in the middle of the list then

List-Delete(L,x)

1. if x .prev ! nil

2. x .prev .next ↘ x .next

3. else L.head ↘ x .next

4. if x .next ! nil

5. x .next.prev ↘ x .prev

List-Delete’(L,x)

1. x .prev .next ↘ x .next

2. x .next.prev ↘ x .prev

simplified

Lecture 7, 11.03.2025

Sentinels

Note:If x is in the middle of the list then

List-Delete(L,x)

1. if x .prev ! nil

2. x .prev .next ↘ x .next

3. else L.head ↘ x .next

4. if x .next ! nil

5. x .next.prev ↘ x .prev

List-Delete’(L,x)

1. x .prev .next ↘ x .next

2. x .next.prev ↘ x .prev

simplified

Lecture 7, 11.03.2025

Sentinels

Note: If x is in the middle of the list then

List-Insert(L,x)

1. x .next ↘ L.head

2. if L.head ! nil

3. L.head .prev ↘ x

4. L.head ↘ x

5. x .prev = NIL

List-Insert’(L,x)

1. x .next ↘ L.nil .next

2. L.nil .next.prev ↘ x

3. L.nil .next ↘ x

4. x .prev ↘ L.nil

simplified

Lecture 7, 11.03.2025

Summary Linked List

↭ Dynamic data structure without predefined capacity

↭ Insertion: O(1)

↭ Deletion: O(1) (if double linked)

↭ Question in book: can you do it for single linked?

↭ Search: O(n)

Lecture 7, 11.03.2025

Summary Linked List

↭ Dynamic data structure without predefined capacity

↭ Insertion: O(1)

↭ Deletion: O(1) (if double linked)

↭ Question in book: can you do it for single linked?

↭ Search: O(n)

Lecture 7, 11.03.2025

Summary

↭ Heaps e!ciently implement priority queues

Insert(S,x): O(lg n)

Maximum(S): O(1)

Extract-Max(S): O(lg n)

Increase-Key(S,x,k): O(lg n)

↭ Min-priority queues are implemented with min-heaps similarly

↭ Stacks, Queues and Linked lists

↭ Good at specific operations for specific uses

↭ Bad at search

Lecture 7, 11.03.2025

