Algorithms: Elementary Data Structures

Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 7, 11.03.2025

HEAPS
HEAPSORT

PRIORITY QUEUES

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key

Lecture 7, 11.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i's children is greater or equal to i's key

Lecture 7, 11.03.2025

Max-Heap = maximum element is the root

E A

Min-Heap = minimum element is the root

E A

Lecture 7, 11.03.2025

Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root = ©(log n)

@ @ Height = 3

Lecture 7, 11.03.2025

How to store a heap/tree?

, o bt chitd

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) = 2i
RIGHT(/) = 2i + 1
PARENT(i) = [i/2]

Al8] A[9] A[L0]

Lecture 7, 11.03.2025

BUILDING AND MANIPULATING HEAPS

Lecture 7, 11.03.2025

Maintaining the heap property

MAX-HEAPIFY is important for manipulating heaps:

Given an j such that the subtrees of i are heaps, it ensures that the
subtree rooted at 7 is a heap satisfy the heap property

Lecture 7, 11.03.2025

: MAX-HEAPIFY (A4,i,n)
Pseudo-code and analysis I = Lerr(i)
r = RIGHT(i)

if /| <nand A[l] > Ali]
largest =1

else largest = i

if r < n and A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

A8l A[9] A[10] N

Lecture 7, 11.03.2025

MAX-HEAPIFY (A4, i,n)
| = LEFT(Q)

r = RIGHT(i)
if /| <nand A[l] > Ali]
largest = [
O(height of /) = O(log n) ‘else largest = i
if r < nand A[r] > Allargest]
largest = r
if largest # i
Space? ©O(n) exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Running time?

AlB] Al9] Al10]

— BUILD-MAX-HEAP(A, n)
Building a heap fori = |n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9] A[10]

Lecture 7, 11.03.2025

— BUILD-MAX-HEAP(A, n)
Building a heap fori = |n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9] A[10]

Lecture 7, 11.03.2025

BUILD-MAX-HEAP (A, n)
fori = |n/2] downto 1

MAX-HEAPIFY (A,i,n)

What is the worst-case running time of BUILD-MAX-HEAP?
Simple bound: O(n) calls to MAX-HEAPIFY, each of which takes
O(lg n) time = O(nlg n) in total

Tighter analysis: Time to run MAX-HEAPIFY is linear in the height of
the node it's run on. Hence, the time is bounded by

lg n Ign h
Z{# nodes of height h}-O(h) =0 <n Z 2h> ,
h=0 h=0

which is O(n) since 332 £ = % =2.

BUILD-MAX-HEAP(A,n)
fori = |n/2] downto 1

MAX-HEAPIFY (A,i,n)

Loop invariant: At start of every iteration of for loop, each node
i+1,i+2,...,nis root of a max-heap

Initialization:

» Each node |n/2] 4+ 1,|n/2] +2,...,nis a leaf which is the root of
a trivial max-heap

» Since i = |n/2] before the first iteration of the for loop, the
invariant is initially true

BUILD-MAX-HEAP(A,n)

fori = |n/2] downto 1
MAX-HEAPIFY (A,i,n)

Loop invariant: At start of every iteration of for loop, each node
i+1,i+2,...,nis root of a max-heap

Maintenance:

» Children of node i are indexed higher than i, so by the loop
invariant, they are both roots of max-heaps

> Therefore, MAX-HEAPIFY makes node i a max-heap root (so
i,i+1,...n are all roots of max-heaps)

> Hence, the invariant stays true when decrementing i at the
beginning of the next iteration

BUILD-MAX-HEAP(A,n)
fori = |n/2] downto 1

MAX-HEAPIFY (A,i,n)

Loop invariant: At start of every iteration of for loop, each node
i+1,i+2,...,nis root of a max-heap
Termination:
» When i = 0, the loop terminates

» By the loop invariant , each node, notably node 1, is the root of a
max-heap

HEAPSORT

Lecture 7, 11.03.2025

Builds a max-heap from the array

Starting with the root (the maximum element), the algorithm
places the maximum element into the correct place in the array by
swapping it with the element in the last position in the array

“Discard” this last node (knowing that it is in its correct place) by
decreasing the heap size, and calling MAX-HEAPIFY on the new
(possibly incorrectly-placed) root

Repeat this “discarding” process until only one node (the smallest
element) remains, and therefore is in the correct place in the array

HEAPSORT(A,n)
SEMPE BUILD-MAX-HEAP (4,)
for i = n downto 2

exchange A[1] with A[i]
MAX-HEAPIFY (A, 1,i — 1)

Al8] Al9] A[10] @

Lecture 7, 11.03.2025

: HEAPSORT(A,n)
Analysis of Heapsort BUILD-MAX-HEAP (4, 1)

for i = n downto 2
exchange A[1] with A[i]
MAX-HEAPIFY (A, 1,i — 1)

v

BuiLp-Max-HEeap: O(n)

\4

for loop: n—1 times
> exchange elements: O(1)

> Max-HEeaPIFY: O(lgn)

Total time: O(nlgn)

Lecture 7, 11.03.2025

HEAP IMPLEMENTATION
OF PRIORITY QUEUE

Lecture 7, 11.03.2025

> Maintains a dynamic set S of elements

> Each set element has a key — an associated value that regulates its
importance

What kind of operations do we want to do?
INSERT(S,X): inserts element x into S
MAXIMUM(S): returns element of S with largest key
EXTRACT-MAX(S): removes and returns element of S with largest key
INCREASE-KEY(S,X,K): increases value of element x's key to k;

assume k > x's current key value

Example max-priority queue application: schedule jobs on shared
computer

Heaps efficiently implement priority queues

o : HEAP-MAXIMUM(A)
Finding maximum element return A[1]

Simply return the root in time ©(1)

Lecture 7, 11.03.2025

c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element n <1

. error “heap underflow”
1. Make sure heap is not empty

= A[l
2. Make a copy of the maximum element (the root) :Z‘[ll)a _ A[[n]]

n=n-—1
MAX-HEAPIFY (4, 1, n)
return max

Lecture 7, 11.03.2025

c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element n <1

. error “heap underflow”
1. Make sure heap is not empty

max = A[l
2. Make a copy of the maximum element (the root) A[l] = A[[n]]
3. Make the last node in the tree the new root N o= n_— 1
MAX-HEAPIFY (4, 1, n)
return max

new root

Lecture 7, 11.03.2025

c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element n <1

. error “heap underflow”
1. Make sure heap is not empty

max = A[l
2. Make a copy of the maximum element (the root) A[l] = A[[n]]
3. Make the last node in the tree the new root N o= n_— 1
MAX-HEAPIFY (4, 1, n)
return max

new root

Lecture 7, 11.03.2025

c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element n <1

error “heap underflow”

1. Make sure heap is not empty max = A[l]

2. Make a copy of the maximum element (the root) A[] = Aln]

3. Make the last node in the tree the new root — __ 1

4. Re-heapify the heap, with one fewer node rli/lz:XnHEAPIFY(A 1)
return max

Lecture 7, 11.03.2025

c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element dn <1

error “heap underflow”

1. Make sure heap is not empty max = A[l]

2. Make a copy of the maximum element (the root) A[] = Aln]

3. Make the last node in the tree the new root N o= n_ 1

4. Re-heapify the heap, with one fewer node -t

5. Return the copy of the maximum element MAX-HEAPIFY (4,1, 1)
return max

Lecture 7, 11.03.2025

c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element n <1

error “heap underflow”

Analysis: Constant-time assignments plus 'Z“lx - ‘;11[1]
time for MAX-HEAPIFY Y I "o l[n]

) o MAX-HEAPIFY (4, 1,n)
Hence, it runs in time O(lg n) return max

Lecture 7, 11.03.2025

) HEAP-INCREASE-KEY (A4, i, key)
Increasing key value it key < A1)

error “new key is smaller than current key”

Given a heap A, index i, and new value key Ali] = key

1. Make sure key > A[i] while i > 1 and A[PARENT(i)] < A[i]
2. Update A[i]'s value to key exchange A[i] with A[PARENT(7)]
3. Traverse the tree upward comparing new i = PARENT(i)

key to the parent and swapping keys if |
necessary, until the new key is smaller than the parent’s key

Lecture 7, 11.03.2025

) HEAP-INCREASE-KEY (A4, i, key)
Increasing key value it key < A1)

error “new key is smaller than current key”

Given a heap A, index i, and new value key Ali] = key

1. Make sure key > A[i] while ; > 1 and A[PARENT(i)] < A[i]
2. Update A[i]'s value to key exchange A[i] with A[PARENT(/)]
3. Traverse the tree upward comparing new i = PARENT(i)

key to the parent and swapping keys if |
necessary, until the new key is smaller than the parent’s key

Lecture 7, 11.03.2025

) HEAP-INCREASE-KEY (A4, i, key)
Increasing key value i key < Ali]

error “new key is smaller than current key”
. Ali] = key
Analysis: _ while i > 1 and A[PARENT(i)] < A[i]
Upward path from node i has exchange A[i] with A[PARENT(i)]
length O(lg n) in an n-element heap i = PARENT(i)

Hence, it runs in time O(lg n)

Lecture 7, 11.03.2025

: : MAX-HEAP-INSERT (A, key, n)
Inserting into the heap N

Given a new key to insert into heap Aln] = —o0

1. Increment the heap size HEAP-INCREASE-KEY (A, n, key)

2. Insert a new node in the last position
in the heap, with key —oco
3. Increase the —oo value to key using HEAP-INCREASE-KEY

Lecture 7, 11.03.2025

: : MAX-HEAP-INSERT (A, key, n)
Inserting into the heap N

Given a new key to insert into heap Aln] = —o0

1. Increment the heap size HEAP-INCREASE-KEY (4, n, key)

2. Insert a new node in the last position
in the heap, with key —oco
3. Increase the —oo value to key using HEAP-INCREASE-KEY

Lecture 7, 11.03.2025

: : MAX-HEAP-INSERT (A, key, n)
Inserting into the heap N

Aln] = —o0
Analysis: Constant time assignments HEAP-INCREASE-KEY (A’ n, key)
+
Time for HEAP-INCREASE-KEY

Hence, it runs in time O(lg n)

Lecture 7, 11.03.2025

Heapsort runs in time O(nlog n) and is in-place

v

v

Great algorithm but a well-implemented quicksort usually beats it in
practice

v

Heaps efficiently implement priority queues
INSERT(S,X): O(lgn)
MaximMuM(S): O(1)
EXTRACT-MAX(S): O(lg n)
INCREASE-KEY(S,X,K): O(lgn)

> Min-priority queues are implemented with min-heaps similarly

Lecture 7, 11.03.2025

Elementary Data Structures

Algorithm

Algorithm

Lecture 7, 11.03.2025

What kind of operations do we want to do?

» Modifying operations: insertion, deletion, ...

» Query operations: search, maximum, minimum, ...

Data structure containing numbers

Stacks (last-in, first-out)

> Insert operation called PUSH(S,X)

> Delete operation called POP(S)

Lecture 7, 11.03.2025

Stacks (last-in, first-out)

> Insert operation called PUSH(S,X)

> Delete operation called POP(S)

Example:
PUSH(S,2), PUSH(S,1), POP(S), vicii(5.5), por(s), ror(s)

Lecture 7, 11.03.2025

Stacks Implementation

1 2 3 4 5 6 7
s[5]6]2]o]17]3 [}

!

S.top =6

Implementation using arrays: S consists of elements S[1,...,S.top]

> S[1] element at the bottom

> S[S.top] element at the top

Lecture 7, 11.03.2025

Stacks Implementation

1 2 3 4 5 6 7
s[5]6]2]o]17]3 [}

!

S.top =6

What is the running time of these operations? O(1)

STACK-EMPTY(S) PUSH(S,x) Pop(S)
1. if S.top=0 1. Sitop + S.top+1 1. if STACK-EMPTY(S)
2. return TRUE 2. §[S.top] + x 2. error “underflow”
3. else return FALSE 3. else

4. S.top<+ S.top—1
5. return S[S.top + 1]

Lecture 7, 11.03.2025

Stacks are everywhere in every software

{ [(z] g Delimiters in expression
Delimiters popped from stack
RN
\.i.J \...I \...]
[[[
{ { { {

After After After After After After
push('{') push('[') push('(') popO popQ) pop()

The contents of a stack during the scan of an expression that
contains the balanced delimiters { [()] }

a{blc(d +e)/2 - f]+1}

Lecture 7, 11.03.2025

Queues (first-in, first-out)

> Insert operation called ENQUEUE(Q,X)

> Delete operation called DEQUEUE(Q)

Lecture 7, 11.03.2025

> Insert operation called ENQUEUE(Q,X)

» Delete operation called DEQUEUE(Q)

Example:
ENQUEUE(Q% ENQUEUE(Q,), DEQUEUE(Q), ENQUEUE(Q,)

e

Head Tail

Queue Implementation

1 2 3 4 5 6 7 8 10 11 12

0 ﬂﬂﬂ. T

Q.head =17 Q.tail = 12

Implementation using arrays: @ consists of elements
S[Q.head, ..., Q.tail — 1]

> Q.head points at the first element

> Q.tail points at the next location where a newly arrived element
will be placed

Lecture 7, 11.03.2025

Queue Implementation

1 2 3 4 5 6 7 8 10 11 12

0 ﬂﬂﬂ. T

Q.head =17 Q.tail = 12

What is the running time of these operations? O(1)

ENQUEUE(Q,X) DEQUEUE(Q)

1. Q[Q.taill = x 1. x = Q[Q.head]

2. if Q.tail = Q.length 2. if Q.head = Q.length

3. Q.tail <1 3 Q.head <1

4. else Q.tail < Q.tail +1 4. else Q.head +— Q.head + 1
5. return x

Lecture 7, 11.03.2025

Applications of Queues

One example: Web server

Lecture 7, 11.03.2025

Stacks and Queues

Positives Negatives
> Very efficient > Limited support: for example, no search
> Natural operations > Implementations using arrays have a fixed
capacity

Lecture 7, 11.03.2025

Linked List

Objects are arranged in a linear order

Not indexes in array But pointers in each object

2 3

AT ik

Lecture 7, 11.03.2025

Linked List

prev key next

N/

A list can be
» Single linked or double linked
» Sorted or unsorted
> etc.

Lecture 7, 11.03.2025

Searching a Linked List

N/

L.head

Task: Given k return pointer to first element with key k

L1sT-SEARCH(L,K)

1. x + L.head

2. while x # nil and x.key # k What if no element with key k
exists? returns nil

Running time? O(n)

3. X< x.next
4. return x

Lecture 7, 11.03.2025

Inserting into a Linked List

prev key next
\ | /

Task: Insert a new element x

LisT-INSERT(L,X)

1. x.next < L.head
2. if L.head # nil Running time? O(1)
3. L.head.prev < x

4. L.head + x

5. x.prev = NIL

Lecture 7, 11.03.2025

Deleting From a Linked List

prev key next

\ 4

Task: Given a pointer to an element x remove it from L

LisT-DELETE(L,X)

1. if x.prev # nil
2. x.prev.next < x.next Running time? O(1)
3. else L.head < x.next
4. if x.next # nil
5

X.next.prev <— x.prev

Lecture 7, 11.03.2025

prev key next

\ A
Lohead ——>/|0 | T [u6] T |4] L [1]/]

Note: If x is in the middle of the list then

simplified
L1ST-DELETE(L,X) / \

1. if x.prev # nil LisT-DELETE’ (L,X)

X.prev.next <— x.next
1. x.prev.next < x.next

2. x.next.prev < x.prev
. if x.next # nil P P

2
3. else L.head < x.next
4
5

X.next.prev < x.prev

Lecture 7, 11.03.2025

Lo — R
I
Lo — I E T o 2 E A i -

simplified
L1ST-DELETE(L,X) / \

1. if x.prev # nil LisT-DELETE’ (L,X)
2. X.prev.next < x.next

3. else L.head < x.next
4. if x.next # nil
5. x.next.prev < x.prev

1. x.prev.next < x.next

2. x.next.prev < x.prev

Lecture 7, 11.03.2025

Lo — R
I
Lo — I E T o 2 E A i -

simplified
LisT-INSERT(L,X) /

1. x.next < L.head
2. if L.head # nil

3. L.head.prev < x
4. L.head + x

5. x.prev = NIL

LisT-INSERT’(L,X)

1. x.next < L.nil.next
2. L.nil.next.prev < x
3. L.nil.next < x

4. x.prev < L.nil

Lecture 7, 11.03.2025

Summary Linked List

» Dynamic data structure without predefined capacity
> Insertion: O(1)

> Deletion: O(1) (if double linked)

> Question in book: can you do it for single linked?

» Search: O(n)

Lecture 7, 11.03.2025

Summary Linked List

» Dynamic data structure without predefined capacity
> Insertion: O(1)

> Deletion: O(1) (if double linked)

> Question in book: can you do it for single linked?

» Search: O(n)

Lecture 7, 11.03.2025

> Heaps efficiently implement priority queues
INSERT(S,X): O(lgn)
MaximMuM(S): O(1)
EXTRACT-MAX(S): O(lg n)
INCREASE-KEY(S,X,K): O(lgn)

> Min-priority queues are implemented with min-heaps similarly

> Stacks, Queues and Linked lists

> Good at specific operations for specific uses
> Bad at search

Lecture 7, 11.03.2025

