
Algorithms: Strassen’s Algorithm for Matrix
Multiplication + Heaps and Heapsort

Alessandro Chiesa, Ola Svensson

School of Computer and Communication Sciences

Lecture 6, 05.03.2025



Merge Sort

Maximum-Subarray Problem

Matrix Multiplication

DIVIDE-AND-CONQUER

Lecture 6, 05.03.2025



Recall Maximum-Subarray Problem

-2 -4 3 -1 5 7 -7 -1

Lecture 6, 05.03.2025



Recall Maximum-Subarray Problem

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1divide

Lecture 6, 05.03.2025



Recall Maximum-Subarray Problem

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1divide

-2 -4 3 -1

solve recursively solve recursively

5 7 -7 -1

Lecture 6, 05.03.2025



Recall Maximum-Subarray Problem

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1divide

-2 -4 3 -1

solve recursively solve recursively

5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

combine?

Lecture 6, 05.03.2025



Recall Maximum-Subarray Problem

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1divide

-2 -4 3 -1

solve recursively solve recursively

5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

combine?

Lecture 6, 05.03.2025



Solution
Also find the maximum subarray that crosses the midpoint!

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1divide

-2 -4 3 -1

solve recursively solve recursively

5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

combine?

Lecture 6, 05.03.2025



Solution
Also find the maximum subarray that crosses the midpoint!

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1divide

-2 -4 3 -1

solve recursively solve recursively

5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

combine?

Lecture 6, 05.03.2025



Finding maximum subarray crossing midpoint

▶ Any subarray crossing the midpoint A[mid ] is made of two
subarrays A[i . . . mid ] and A[mid + 1, . . . , j] where low ≤ i ≤ mid
and mid < j ≤ high

▶ Find maximum subarrays of the form A[i . . . mid ] and
A[mid + 1 . . . j] and then combine them.

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

Lecture 6, 05.03.2025



Finding maximum subarray crossing midpoint

▶ Any subarray crossing the midpoint A[mid ] is made of two
subarrays A[i . . . mid ] and A[mid + 1, . . . , j] where low ≤ i ≤ mid
and mid < j ≤ high

▶ Find maximum subarrays of the form A[i . . . mid ] and
A[mid + 1 . . . j] and then combine them.

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time? Θ(n)

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Crossing subarray

Running time? Θ(n)

Space? Θ(n)

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 6, 05.03.2025



Analysis

Divide takes constant time,i.e., Θ(1)

Conquer recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2)

Merge time dominated by find-max-crossing-subarray
⇒ Θ(n)

Recursion for the running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise
Hence, T (n) = Θ(n log n)

Lecture 6, 05.03.2025



Analysis

Divide takes constant time,i.e., Θ(1)

Conquer recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2)

Merge time dominated by find-max-crossing-subarray
⇒ Θ(n)

Recursion for the running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise
Hence, T (n) = Θ(n log n)

Lecture 6, 05.03.2025



Analysis

Divide takes constant time,i.e., Θ(1)

Conquer recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2)

Merge time dominated by find-max-crossing-subarray
⇒ Θ(n)

Recursion for the running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise
Hence, T (n) = Θ(n log n)

Lecture 6, 05.03.2025



Analysis

Divide takes constant time,i.e., Θ(1)

Conquer recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2)

Merge time dominated by find-max-crossing-subarray
⇒ Θ(n)

Recursion for the running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise
Hence, T (n) = Θ(n log n)

Lecture 6, 05.03.2025



Analysis

Divide takes constant time,i.e., Θ(1)

Conquer recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2)

Merge time dominated by find-max-crossing-subarray
⇒ Θ(n)

Recursion for the running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise
Hence, T (n) = Θ(n log n)

Lecture 6, 05.03.2025



Analysis

Divide takes constant time,i.e., Θ(1)

Conquer recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2)

Merge time dominated by find-max-crossing-subarray
⇒ Θ(n)

Recursion for the running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise
Hence, T (n) = Θ(n log n)

Lecture 6, 05.03.2025



MATRIX MULTIPLICATION

Lecture 6, 05.03.2025



Matrix Multiplication

Definition
Input: Two n × n (square) matrices, A = (aij) and B = (bij)

Output: n × n matrix C = (cij), where C = A · B

Example (n = 2):

Lecture 6, 05.03.2025



Matrix Multiplication

Definition
Input: Two n × n (square) matrices, A = (aij) and B = (bij)

Output: n × n matrix C = (cij), where C = A · B

Example (n = 2):(
c11 c12

c21 c22

)
=
(

a11 a12

a21 a22

)
·

(
b11 b12

b21 b22

)

where c11 = a11b11 + a12b21,
c12 = a11b12 + a12b22,
c21 = a21b11 + a22b21,
c22 = a21b12 + a22b22.

Lecture 6, 05.03.2025



Matrix Multiplication

Definition
Input: Two n × n (square) matrices, A = (aij) and B = (bij)

Output: n × n matrix C = (cij), where C = A · B

Example (n = 2): (
? ?
? ?

)
=
(

1 2
−1 3

)
·

(
3 −1
1 2

)

Lecture 6, 05.03.2025



Matrix Multiplication

Definition
Input: Two n × n (square) matrices, A = (aij) and B = (bij)

Output: n × n matrix C = (cij), where C = A · B

Example (n = 2): (
5 3
0 7

)
=
(

1 2
−1 3

)
·

(
3 −1
1 2

)

Lecture 6, 05.03.2025



How to multiply two matrices?


c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n
...

...
. . .

...

cn,1 cn,2 · · · cn,n

 =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

·


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n



Lecture 6, 05.03.2025



How to multiply two matrices?


c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n
...

...
. . .

...

cn,1 cn,2 · · · cn,n

 =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

·


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n



c1,1 = a1,1b1,1 + a1,2b2,1 + a1,3b3,1 + . . . , a1,nbn,1 =
n∑

k=1

a1kbk1

Lecture 6, 05.03.2025



How to multiply two matrices?


c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n
...

...
. . .

...

cn,1 cn,2 · · · cn,n

 =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

·


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n



c2,1 = a2,1b1,1 + a2,2b2,1 + a2,3b3,1 + . . . , a2,nbn,1 =
n∑

k=1

a2kbk1

Lecture 6, 05.03.2025



How to multiply two matrices?


c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n
...

...
. . .

...

cn,1 cn,2 · · · cn,n

 =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

·


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n



c2,2 = a2,1b1,2 + a2,2b2,2 + a2,3b3,2 + . . . , a2,nbn,2 =
n∑

k=1

a2kbk2

Lecture 6, 05.03.2025



How to multiply two matrices?


c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n
...

...
. . .

...

cn,1 cn,2 · · · cn,n

 =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

·


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n



cij =
n∑

k=1
aikbkj

Lecture 6, 05.03.2025



Naive Algorithm
Well simply multiply the matrices...

Example: ? −?
? ?

 =
 1 2

−1 3

 ·

3 −1
1 2



Lecture 6, 05.03.2025



Naive Algorithm
Well simply multiply the matrices...

Example: ? −?
? ?

 =
 1 2

−1 3

 ·

3 −1
1 2



Lecture 6, 05.03.2025



Naive Algorithm
Well simply multiply the matrices...

Example: 3 −?
? ?

 =
 1 2

−1 3

 ·

3 −1
1 2



Lecture 6, 05.03.2025



Naive Algorithm
Well simply multiply the matrices...

Example: 5 −?
? ?

 =
 1 2

−1 3

 ·

3 −1
1 2



Lecture 6, 05.03.2025



Naive Algorithm
Well simply multiply the matrices...

Example: 5 −?
? ?

 =
 1 2

−1 3

 ·

3 −1
1 2



Lecture 6, 05.03.2025



Naive Algorithm
Well simply multiply the matrices...

Example: 5 −1
? ?

 =
 1 2

−1 3

 ·

3 −1
1 2



Lecture 6, 05.03.2025



Naive Algorithm
Well simply multiply the matrices...

Example: 5 −3
? ?

 =
 1 2

−1 3

 ·

3 −1
1 2



Lecture 6, 05.03.2025



Naive Algorithm
Well simply multiply the matrices...

Example: 5 −3
0 7

 =
 1 2

−1 3

 ·

3 −1
1 2



Lecture 6, 05.03.2025



Naive Algorithm
Well simply multiply the matrices...

Running time?

Θ(n3)

Space? Θ(n2)

Lecture 6, 05.03.2025



Naive Algorithm
Well simply multiply the matrices...

Running time? Θ(n3)

Space? Θ(n2)

Lecture 6, 05.03.2025



Naive Algorithm
Well simply multiply the matrices...

Running time? Θ(n3)

Space?

Θ(n2)

Lecture 6, 05.03.2025



Naive Algorithm
Well simply multiply the matrices...

Running time? Θ(n3)

Space? Θ(n2)

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

= ×

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer
◦ ◦◦

◦
◦

◦

◦

◦

∗

∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer
◦ ◦◦

◦
◦

◦

◦

◦

∗

∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer
◦ ◦◦

◦
◦

◦

◦

◦

∗

∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer
◦ ◦◦

◦
◦

◦

◦

◦

∗

∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

◦
◦

◦ ◦◦
◦

◦

◦

∗

∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

◦
◦

◦ ◦◦
◦

◦

◦

∗

∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

◦
◦

◦ ◦◦
◦

◦

◦

∗

∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

◦
◦

◦ ◦◦
◦

◦

◦

∗

∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

◦

◦

◦
◦

◦ ◦◦
◦

∗

∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

◦

◦

◦
◦

◦ ◦◦
◦

∗

∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

◦

◦

◦
◦

◦ ◦◦
◦

∗

∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

◦

◦

◦
◦

◦ ◦◦
◦

∗

∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

◦

◦

◦

◦

◦
◦

◦ ◦∗
∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

◦

◦

◦

◦

◦
◦

◦ ◦∗
∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

◦

◦

◦

◦

◦
◦

◦ ◦∗
∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

◦

◦

◦

◦

◦
◦

◦ ◦∗
∗

∗

∗

∗

∗

∗

∗

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer

= ×
C11

C21

C12

C22

A11

A21

A12

A22

B11

B21

B12

B22

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22

Lecture 6, 05.03.2025



Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 × n/2 matrices: so that(
C11 C12

C21 C22

)
=
(

A11 A12

A21 A22

)
·

(
B11 B12

B21 B22

)

Conquer: Since
C11 = A11 · B11 + A12 · B21
C12 = A11 · B12 + A12 · B22
C21 = A21 · B11 + A22 · B21
C22 = A21 · B12 + A22 · B22
we recursively solve 8 matrix multiplications that each
multiply two n/2 × n/2 matrices.

Combine: Make the additions to get C

Lecture 6, 05.03.2025



Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 × n/2 matrices: so that(
C11 C12

C21 C22

)
=
(

A11 A12

A21 A22

)
·

(
B11 B12

B21 B22

)

Conquer: Since
C11 = A11 · B11 + A12 · B21
C12 = A11 · B12 + A12 · B22
C21 = A21 · B11 + A22 · B21
C22 = A21 · B12 + A22 · B22
we recursively solve 8 matrix multiplications that each
multiply two n/2 × n/2 matrices.

Combine: Make the additions to get C

Lecture 6, 05.03.2025



Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 × n/2 matrices: so that(
C11 C12

C21 C22

)
=
(

A11 A12

A21 A22

)
·

(
B11 B12

B21 B22

)

Conquer: Since
C11 = A11 · B11 + A12 · B21
C12 = A11 · B12 + A12 · B22
C21 = A21 · B11 + A22 · B21
C22 = A21 · B12 + A22 · B22
we recursively solve 8 matrix multiplications that each
multiply two n/2 × n/2 matrices.

Combine: Make the additions to get C

Lecture 6, 05.03.2025



Pseudocode and Analysis
Let T (n) be the time to multiply
two n × n matrices.

Base case: n = 1. Perform one scalar multiplication: Θ(1)

Recursive case: n > 1.
▶ Dividing takes Θ(1) time if careful and Θ(n2) if simply copying
▶ Conquering makes 8 recursive calls, each multiplying n/2 × n/2

matrices ⇒ 8T (n/2)
▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
8T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(n3)

Lecture 6, 05.03.2025



Pseudocode and Analysis
Let T (n) be the time to multiply
two n × n matrices.

Base case: n = 1. Perform one scalar multiplication: Θ(1)

Recursive case: n > 1.
▶ Dividing takes Θ(1) time if careful and Θ(n2) if simply copying
▶ Conquering makes 8 recursive calls, each multiplying n/2 × n/2

matrices ⇒ 8T (n/2)
▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
8T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(n3)

Lecture 6, 05.03.2025



Pseudocode and Analysis
Let T (n) be the time to multiply
two n × n matrices.

Base case: n = 1. Perform one scalar multiplication: Θ(1)

Recursive case: n > 1.
▶ Dividing takes Θ(1) time if careful and Θ(n2) if simply copying

▶ Conquering makes 8 recursive calls, each multiplying n/2 × n/2
matrices ⇒ 8T (n/2)

▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
8T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(n3)

Lecture 6, 05.03.2025



Pseudocode and Analysis
Let T (n) be the time to multiply
two n × n matrices.

Base case: n = 1. Perform one scalar multiplication: Θ(1)

Recursive case: n > 1.
▶ Dividing takes Θ(1) time if careful and Θ(n2) if simply copying
▶ Conquering makes 8 recursive calls, each multiplying n/2 × n/2

matrices ⇒ 8T (n/2)

▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
8T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(n3)

Lecture 6, 05.03.2025



Pseudocode and Analysis
Let T (n) be the time to multiply
two n × n matrices.

Base case: n = 1. Perform one scalar multiplication: Θ(1)

Recursive case: n > 1.
▶ Dividing takes Θ(1) time if careful and Θ(n2) if simply copying
▶ Conquering makes 8 recursive calls, each multiplying n/2 × n/2

matrices ⇒ 8T (n/2)
▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
8T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(n3)

Lecture 6, 05.03.2025



Pseudocode and Analysis
Let T (n) be the time to multiply
two n × n matrices.

Base case: n = 1. Perform one scalar multiplication: Θ(1)

Recursive case: n > 1.
▶ Dividing takes Θ(1) time if careful and Θ(n2) if simply copying
▶ Conquering makes 8 recursive calls, each multiplying n/2 × n/2

matrices ⇒ 8T (n/2)
▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
8T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(n3)

Lecture 6, 05.03.2025



Pseudocode and Analysis
Let T (n) be the time to multiply
two n × n matrices.

Base case: n = 1. Perform one scalar multiplication: Θ(1)

Recursive case: n > 1.
▶ Dividing takes Θ(1) time if careful and Θ(n2) if simply copying
▶ Conquering makes 8 recursive calls, each multiplying n/2 × n/2

matrices ⇒ 8T (n/2)
▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
8T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(n3)
Lecture 6, 05.03.2025



Volker Strassen

STRASSEN’S ALGORITHM FOR
MATRIX MULTIPLICATION

Lecture 6, 05.03.2025



The Idea
Make less recursive calls

▶ Perform only 7 recursive multiplications of n/2 × n/2 matrices,
rather than 8

▶ Will cost several additions of n/2 × n/2 matrices, but just a
constant more

⇒ can still absorb the constant factor for matrix additions into the
Θ(n2) term

To obtain the recurrence

T (n) =
{

Θ(1) if n = 1
7T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(nlog2 7)

Lecture 6, 05.03.2025



The Idea
Make less recursive calls

▶ Perform only 7 recursive multiplications of n/2 × n/2 matrices,
rather than 8

▶ Will cost several additions of n/2 × n/2 matrices, but just a
constant more

⇒ can still absorb the constant factor for matrix additions into the
Θ(n2) term

To obtain the recurrence

T (n) =
{

Θ(1) if n = 1
7T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(nlog2 7)

Lecture 6, 05.03.2025



The Idea
Make less recursive calls

▶ Perform only 7 recursive multiplications of n/2 × n/2 matrices,
rather than 8

▶ Will cost several additions of n/2 × n/2 matrices, but just a
constant more

⇒ can still absorb the constant factor for matrix additions into the
Θ(n2) term

To obtain the recurrence

T (n) =
{

Θ(1) if n = 1
7T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(nlog2 7)

Lecture 6, 05.03.2025



The Idea
Make less recursive calls

▶ Perform only 7 recursive multiplications of n/2 × n/2 matrices,
rather than 8

▶ Will cost several additions of n/2 × n/2 matrices, but just a
constant more

⇒ can still absorb the constant factor for matrix additions into the
Θ(n2) term

To obtain the recurrence

T (n) =
{

Θ(1) if n = 1
7T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(nlog2 7)
Lecture 6, 05.03.2025



Strassen’s method

Divide each of A, B, C into four n/2 × n/2 matrices: so that(
C11 C12

C21 C22

)
=
(

A11 A12

A21 A22

)
·

(
B11 B12

B21 B22

)

Conquer: Calculate recursively 7 matrix multiplications, each of two
n/2 × n/2 matrices:

M1 := (A11 + A22)(B11 + B22) M5 := (A11 + A12)B22

M2 := (A21 + A22)B11 M6 := (A21 − A11)(B11 + B12)
M3 := A11(B12 − B22) M7 := (A12 − A22)(B21 + B22)
M4 := A22(B21 − B11)

Combine: Let
C11 = M1 + M4 − M5 + M7 C12 = M3 + M5

C21 = M2 + M4 C22 = M1 − M2 + M3 + M6

Lecture 6, 05.03.2025



Strassen’s method

Divide each of A, B, C into four n/2 × n/2 matrices: so that(
C11 C12

C21 C22

)
=
(

A11 A12

A21 A22

)
·

(
B11 B12

B21 B22

)

Conquer: Calculate recursively 7 matrix multiplications, each of two
n/2 × n/2 matrices:

M1 := (A11 + A22)(B11 + B22) M5 := (A11 + A12)B22

M2 := (A21 + A22)B11 M6 := (A21 − A11)(B11 + B12)
M3 := A11(B12 − B22) M7 := (A12 − A22)(B21 + B22)
M4 := A22(B21 − B11)

Combine: Let
C11 = M1 + M4 − M5 + M7 C12 = M3 + M5

C21 = M2 + M4 C22 = M1 − M2 + M3 + M6

Lecture 6, 05.03.2025



Strassen’s method

Divide each of A, B, C into four n/2 × n/2 matrices: so that(
C11 C12

C21 C22

)
=
(

A11 A12

A21 A22

)
·

(
B11 B12

B21 B22

)

Conquer: Calculate recursively 7 matrix multiplications, each of two
n/2 × n/2 matrices:

M1 := (A11 + A22)(B11 + B22) M5 := (A11 + A12)B22

M2 := (A21 + A22)B11 M6 := (A21 − A11)(B11 + B12)
M3 := A11(B12 − B22) M7 := (A12 − A22)(B21 + B22)
M4 := A22(B21 − B11)

Combine: Let
C11 = M1 + M4 − M5 + M7 C12 = M3 + M5

C21 = M2 + M4 C22 = M1 − M2 + M3 + M6

Lecture 6, 05.03.2025



Analysis of Strassen’s Method

Base case: n = 1 ⇒ it takes time Θ(1)

Recursive case: n > 1
▶ Dividing takes time Θ(n2)

▶ Conquering makes 7 recursive calls, each multiplying n/2 × n/2
matrices ⇒ 7T (n/2)

▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
7T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(nlog2 7)

Lecture 6, 05.03.2025



Analysis of Strassen’s Method

Base case: n = 1 ⇒ it takes time Θ(1)

Recursive case: n > 1
▶ Dividing takes time Θ(n2)
▶ Conquering makes 7 recursive calls, each multiplying n/2 × n/2

matrices ⇒ 7T (n/2)

▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
7T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(nlog2 7)

Lecture 6, 05.03.2025



Analysis of Strassen’s Method

Base case: n = 1 ⇒ it takes time Θ(1)

Recursive case: n > 1
▶ Dividing takes time Θ(n2)
▶ Conquering makes 7 recursive calls, each multiplying n/2 × n/2

matrices ⇒ 7T (n/2)
▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
7T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(nlog2 7)

Lecture 6, 05.03.2025



Analysis of Strassen’s Method

Base case: n = 1 ⇒ it takes time Θ(1)

Recursive case: n > 1
▶ Dividing takes time Θ(n2)
▶ Conquering makes 7 recursive calls, each multiplying n/2 × n/2

matrices ⇒ 7T (n/2)
▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
7T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(nlog2 7)

Lecture 6, 05.03.2025



Analysis of Strassen’s Method

Base case: n = 1 ⇒ it takes time Θ(1)

Recursive case: n > 1
▶ Dividing takes time Θ(n2)
▶ Conquering makes 7 recursive calls, each multiplying n/2 × n/2

matrices ⇒ 7T (n/2)
▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
7T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(nlog2 7)

Lecture 6, 05.03.2025



Notes about Strassen’s method

▶ First to beat Θ(n3) time

▶ Faster known today, method by Coppersmith and Winograd runs in
time O(n2.376) recently improved by Vassilevska Williams to
O(n2.3727).

▶ Big open problem how to multiply matrices in best way

▶ Naive method better for small instances because of hidden
constants

Lecture 6, 05.03.2025



Karatsuba’s algorithm

Problem: given two n-digit long integers x and y base b, find x · y

Grade school algorithm: runtime

O(n2)

Can we do better than that?

Lecture 6, 05.03.2025



Karatsuba’s algorithm

Problem: given two n-digit long integers x and y base b, find x · y

Grade school algorithm: runtime O(n2)

Can we do better than that?

Lecture 6, 05.03.2025



Multiplying integers via divide and conquer
Divide: each number into two halves:

Divide:

x = xH · bn/2 + xL

Divide:

y = yH · bn/2 + yL

Then we have

Divide:

x · y = (xH · bn/2 + xL) · (yH · bn/2 + yL)

Divide: x · y

= xH · yH · bn + (xHyL + xLyH) · bn/2 + xLyL

Runtime?

Naive approach: compute xH · yH , xH · yL, xL · yH , xL · yL

Need to compute 4T (n/2)

All additions take Θ(n)

T (n) = 4T (n/2) + Θ(n)
T (n) = Θ(n2)

Lecture 6, 05.03.2025



Multiplying integers via divide and conquer
Divide: each number into two halves:

Divide:

x = xH · bn/2 + xL

Divide:

y = yH · bn/2 + yL

Then we have

Divide:

x · y = (xH · bn/2 + xL) · (yH · bn/2 + yL)

Divide: x · y

= xH · yH · bn + (xHyL + xLyH) · bn/2 + xLyL

Runtime?

Naive approach: compute xH · yH , xH · yL, xL · yH , xL · yL
Suffices to compute xHyH , xLyL, (xH + xL)(yH + yL)

All additions take Θ(n)

T (n) = 3T (n/2) + Θ(n)
T (n) = Θ(nlog2 3)

Lecture 6, 05.03.2025



Summary of divide-and-conquer

▶ Divide-and-conquer simple but powerful algorithmic paradigm

▶ Merge-sort and maximum subarray both run in time Θ(n log n)

▶ Strassen’s algorithm for matrix multiplication in time Θ(nlog2 7)
where log2 7 ≈ 2.8.

Lecture 6, 05.03.2025



Summary of divide-and-conquer

▶ Divide-and-conquer simple but powerful algorithmic paradigm

▶ Merge-sort and maximum subarray both run in time Θ(n log n)

▶ Strassen’s algorithm for matrix multiplication in time Θ(nlog2 7)
where log2 7 ≈ 2.8.

Lecture 6, 05.03.2025



Summary of divide-and-conquer

▶ Divide-and-conquer simple but powerful algorithmic paradigm

▶ Merge-sort and maximum subarray both run in time Θ(n log n)

▶ Strassen’s algorithm for matrix multiplication in time Θ(nlog2 7)
where log2 7 ≈ 2.8.

Lecture 6, 05.03.2025



HEAPS AND HEAPSORT

Lecture 6, 05.03.2025



Heapsort

Algorithm worst-case running time in-place
Insertion Sort Θ(n2) YES

Merge Sort Θ(n log n) NO

Heapsort:

▶ O(n lg n) worst case – like merge sort
▶ Sorts in place – like insertion sort
▶ Combines the best of both algorithms

Uses a cool datastructure: heaps

Lecture 6, 05.03.2025



Heapsort

Algorithm worst-case running time in-place
Insertion Sort Θ(n2) YES

Merge Sort Θ(n log n) NO

Heapsort:
▶ O(n lg n) worst case – like merge sort

▶ Sorts in place – like insertion sort
▶ Combines the best of both algorithms

Uses a cool datastructure: heaps

Lecture 6, 05.03.2025



Heapsort

Algorithm worst-case running time in-place
Insertion Sort Θ(n2) YES

Merge Sort Θ(n log n) NO

Heapsort:
▶ O(n lg n) worst case – like merge sort
▶ Sorts in place – like insertion sort

▶ Combines the best of both algorithms

Uses a cool datastructure: heaps

Lecture 6, 05.03.2025



Heapsort

Algorithm worst-case running time in-place
Insertion Sort Θ(n2) YES

Merge Sort Θ(n log n) NO

Heapsort:
▶ O(n lg n) worst case – like merge sort
▶ Sorts in place – like insertion sort
▶ Combines the best of both algorithms

Uses a cool datastructure: heaps

Lecture 6, 05.03.2025



Heapsort

Algorithm worst-case running time in-place
Insertion Sort Θ(n2) YES

Merge Sort Θ(n log n) NO

Heapsort:
▶ O(n lg n) worst case – like merge sort
▶ Sorts in place – like insertion sort
▶ Combines the best of both algorithms

Uses a cool datastructure: heaps

Lecture 6, 05.03.2025



Data Structures = “Building Blocks”

Lecture 6, 05.03.2025



Algorithm

Data Structures = “Building Blocks”

Lecture 6, 05.03.2025



Algorithm

Algorithm

Data Structures = “Building Blocks”

Lecture 6, 05.03.2025



Data structures = dynamic sets of items

What kind of operations do we want to do?

▶ Modifying operations: insertion, deletion, . . .
▶ Query operations: search, maximum, minimum, . . .

Data structure containing numbers

Lecture 6, 05.03.2025



Data structures = dynamic sets of items
What kind of operations do we want to do?

▶ Modifying operations: insertion, deletion, . . .
▶ Query operations: search, maximum, minimum, . . .

Data structure containing numbers

Lecture 6, 05.03.2025



Data structures = dynamic sets of items
What kind of operations do we want to do?

▶ Modifying operations: insertion, deletion, . . .
▶ Query operations: search, maximum, minimum, . . .

Data structure containing numbers

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 3

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 4

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 5

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 6

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 7

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 8

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 9

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 10

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i ’s children is smaller or equal to i ’s key

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i ’s children is smaller or equal to i ’s key

9

8 7

6 5 4 3

2 1 0

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i ’s children is smaller or equal to i ’s key

9

8 7

6 5 4 3

2 1 0

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i ’s children is smaller or equal to i ’s key

9

8 5

6 7 1 0

4 1 3

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i ’s children is smaller or equal to i ’s key

9

8 5

6 7 1 0

4 1 3

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i ’s children is smaller or equal to i ’s key

8

7 5

6 9 1 0

4 1 3

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i ’s children is smaller or equal to i ’s key

8

7 5

6 9

violated

1 0

4 1 3

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i ’s children is greater or equal to i ’s key

0

1 3

4 2 4 8

6 7 5

Lecture 6, 05.03.2025



(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i ’s children is greater or equal to i ’s key

0

1 3

4 2 4 8

6 7 5

Lecture 6, 05.03.2025



Max-Heap ⇒ maximum element is the root
key

ℓ r
≤ ≥

≤ ℓ ≤ r

Min-Heap ⇒ minimum element is the root
key

ℓ r
≥ ≤

≥ ℓ ≥ r

Lecture 6, 05.03.2025



Height of a heap
Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root

= Θ(log n)

16

14 10

8 7 9 3

2 4 1

Lecture 6, 05.03.2025



Height of a heap
Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root

= Θ(log n)

16

14 10

8 7 9 3

2 4 1

Height = 1

Lecture 6, 05.03.2025



Height of a heap
Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root

= Θ(log n)

16

14 10

8 7 9 3

2 4 1

Height = 2

Lecture 6, 05.03.2025



Height of a heap
Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root

= Θ(log n)

16

14 10

8 7 9 3

2 4 1

Height = 0

Lecture 6, 05.03.2025



Height of a heap
Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root

= Θ(log n)

16

14 10

8 7 9 3

2 4 1

Height = 3

Lecture 6, 05.03.2025



Height of a heap
Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root = Θ(log n)

16

14 10

8 7 9 3

2 4 1

Height = 3

Lecture 6, 05.03.2025



How to store a heap/tree?

pointer to left and right children

Use that tree is almost complete to store it in array

16

14 10

8 7 9 3

2 4 1

Lecture 6, 05.03.2025



How to store a heap/tree?
pointer to left and right children

Use that tree is almost complete to store it in array

16

14 10

8 7 9 3

2 4 1

Lecture 6, 05.03.2025



How to store a heap/tree?
pointer to left and right children

Use that tree is almost complete to store it in array

16

14 10

8 7 9 3

2 4 1

Lecture 6, 05.03.2025



How to store a heap/tree?
pointer to left and right children

Use that tree is almost complete to store it in array

16

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

A = 16 14 10 8 7 9 3 2 4 1

Lecture 6, 05.03.2025



How to store a heap/tree?
pointer to left and right children

Use that tree is almost complete to store it in array

16

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

A = 16 14 10 8 7 9 3 2 4 1

In this representation:

Root is A[1]

Left(i) =???

Right(i) =???

Parent(i) =???

Lecture 6, 05.03.2025



How to store a heap/tree?
pointer to left and right children

Use that tree is almost complete to store it in array

16

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

A = 16 14 10 8 7 9 3 2 4 1

In this representation:

Root is A[1]

Left(i) = 2i

Right(i) =???

Parent(i) =???

Lecture 6, 05.03.2025



How to store a heap/tree?
pointer to left and right children

Use that tree is almost complete to store it in array

16

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

A = 16 14 10 8 7 9 3 2 4 1

In this representation:

Root is A[1]

Left(i) = 2i

Right(i) = 2i + 1

Parent(i) =???

Lecture 6, 05.03.2025



How to store a heap/tree?
pointer to left and right children

Use that tree is almost complete to store it in array

16

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

A = 16 14 10 8 7 9 3 2 4 1

In this representation:

Root is A[1]

Left(i) = 2i

Right(i) = 2i + 1

Parent(i) = ⌊i/2⌋

Lecture 6, 05.03.2025



BUILDING AND MANIPULATING HEAPS

Lecture 6, 05.03.2025



Maintaining the heap property

Max-Heapify is important for manipulating heaps:

Given an i such that the subtrees of i are heaps, it ensures that the
subtree rooted at i is a heap satisfy the heap property

⇒

Lecture 6, 05.03.2025



Max-Heapify(A, i , n)
Algorithm:
▶ Compare A[i], A[Left(i)], A[Right(i)]
▶ If necessary, swap A[i] with the largest of the two children to preserve heap

property
▶ Continue this process of comparing and swapping down the heap, until subtree

rooted at i is max-heap

5

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Max-Heapify(A, i , n)
Algorithm:
▶ Compare A[i], A[Left(i)], A[Right(i)]
▶ If necessary, swap A[i] with the largest of the two children to preserve heap

property
▶ Continue this process of comparing and swapping down the heap, until subtree

rooted at i is max-heap

5

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Max-Heapify(A, i , n)
Algorithm:
▶ Compare A[i], A[Left(i)], A[Right(i)]
▶ If necessary, swap A[i] with the largest of the two children to preserve heap

property
▶ Continue this process of comparing and swapping down the heap, until subtree

rooted at i is max-heap

14

5 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Max-Heapify(A, i , n)
Algorithm:
▶ Compare A[i], A[Left(i)], A[Right(i)]
▶ If necessary, swap A[i] with the largest of the two children to preserve heap

property
▶ Continue this process of comparing and swapping down the heap, until subtree

rooted at i is max-heap

14

8 10

5 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Max-Heapify(A, i , n)
Algorithm:
▶ Compare A[i], A[Left(i)], A[Right(i)]
▶ If necessary, swap A[i] with the largest of the two children to preserve heap

property
▶ Continue this process of comparing and swapping down the heap, until subtree

rooted at i is max-heap

14

8 10

5 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Pseudo-code and analysis

Running time?

Θ(height of i) = O(log n)

Space?

Θ(n)

5

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Pseudo-code and analysis

Running time?

Θ(height of i) = O(log n)

Space?

Θ(n)

5

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Pseudo-code and analysis

Running time?

Θ(height of i) = O(log n)

Space?

Θ(n)

14

5 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Pseudo-code and analysis

Running time?

Θ(height of i) = O(log n)

Space?

Θ(n)

14

8 10

5 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Pseudo-code and analysis

Running time?

Θ(height of i) = O(log n)

Space?

Θ(n)

14

8 10

5 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Pseudo-code and analysis
Running time?

Θ(height of i) = O(log n)

Space?

Θ(n)

14

8 10

5 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Pseudo-code and analysis
Running time?

Θ(height of i) = O(log n)

Space?

Θ(n)

14

8 10

5 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Pseudo-code and analysis
Running time?

Θ(height of i) = O(log n)

Space? Θ(n)

14

8 10

5 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

Lecture 6, 05.03.2025



Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

4

1 3

2 16 9 10

14 8 7

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

4 1 3 2 16 9 10 14 8 7

Lecture 6, 05.03.2025



Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

4

1 3

2 16 9 10

14 8 7

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

4 1 3 2 16 9 10 14 8 7

Lecture 6, 05.03.2025



Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

4

1 3

2 16 9 10

14 8 7

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

4 1 3 2 16 9 10 14 8 7

Lecture 6, 05.03.2025



Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

4

1 3

14 16 9 10

2 8 7

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

4 1 3 14 16 9 10 2 8 7

Lecture 6, 05.03.2025



Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

4

1 3

14 16 9 10

2 8 7

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

4 1 3 14 16 9 10 2 8 7

Lecture 6, 05.03.2025



Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

4

1 10

14 16 9 3

2 8 7

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

4 1 10 14 16 9 3 2 8 7

Lecture 6, 05.03.2025



Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

4

1 10

14 16 9 3

2 8 7

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

4 1 10 14 16 9 3 2 8 7

Lecture 6, 05.03.2025



Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

4

16 10

14 7 9 3

2 8 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

4 16 10 14 7 9 3 2 8 1

Lecture 6, 05.03.2025



Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

4

16 10

14 7 9 3

2 8 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

4 16 10 14 7 9 3 2 8 1

Lecture 6, 05.03.2025



Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

16

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

16 14 10 8 7 9 3 2 4 1

Lecture 6, 05.03.2025



Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap

16

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

16 14 10 8 7 9 3 2 4 1

Lecture 6, 05.03.2025



Analysis

What is the worst-case running time of Build-Max-Heap?

Simple bound: O(n) calls to Max-Heapify, each of which takes
O(lg n) time ⇒ O(n lg n) in total

Tighter analysis: Time to run Max-Heapify is linear in the height of
the node it’s run on. Hence, the time is bounded by

lg n∑
h=0

{# nodes of height h}O(h) = O
(

n
lg n∑
h=0

h
2h

)
,

which is O(n) since
∑∞

h=0
h
2h = 1/2

(1−1/2)2 = 2.

Lecture 6, 05.03.2025



Analysis

What is the worst-case running time of Build-Max-Heap?

Simple bound: O(n) calls to Max-Heapify, each of which takes
O(lg n) time ⇒ O(n lg n) in total

Tighter analysis: Time to run Max-Heapify is linear in the height of
the node it’s run on. Hence, the time is bounded by

lg n∑
h=0

{# nodes of height h}O(h) = O
(

n
lg n∑
h=0

h
2h

)
,

which is O(n) since
∑∞

h=0
h
2h = 1/2

(1−1/2)2 = 2.

Lecture 6, 05.03.2025



Analysis

What is the worst-case running time of Build-Max-Heap?

Simple bound: O(n) calls to Max-Heapify, each of which takes
O(lg n) time ⇒ O(n lg n) in total

Tighter analysis: Time to run Max-Heapify is linear in the height of
the node it’s run on. Hence, the time is bounded by

lg n∑
h=0

{# nodes of height h}O(h) = O
(

n
lg n∑
h=0

h
2h

)
,

which is O(n) since
∑∞

h=0
h
2h = 1/2

(1−1/2)2 = 2.

Lecture 6, 05.03.2025



HEAPSORT

Lecture 6, 05.03.2025



The heapsort algorithm

▶ Builds a max-heap from the array

▶ Starting with the root (the maximum element), the algorithm
places the maximum element into the correct place in the array by
swapping it with the element in the last position in the array

▶ “Discard” this last node (knowing that it is in its correct place) by
decreasing the heap size, and calling Max-Heapify on the new
(possibly incorrectly-placed) root

▶ Repeat this “discarding” process until only one node (the smallest
element) remains, and therefore is in the correct place in the array

Lecture 6, 05.03.2025



Example

4

1 3

2 16 9 10

14 8 7

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

4 1 3 2 16 9 10 14 8 7

Lecture 6, 05.03.2025



Example

16

14 10

8 7 9 3

2 4 1

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

16 14 10 8 7 9 3 2 4 1

Lecture 6, 05.03.2025



Example

1

14 10

8 7 9 3

2 4 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

1 14 10 8 7 9 3 2 4 16

Lecture 6, 05.03.2025



Example

14

8 10

4 7 9 3

2 1 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

14 8 10 4 7 9 3 2 1 16

Lecture 6, 05.03.2025



Example

1

8 10

4 7 9 3

2 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

1 8 10 4 7 9 3 2 14 16

Lecture 6, 05.03.2025



Example

10

8 9

4 7 1 3

2 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

10 8 9 4 7 1 3 2 14 16

Lecture 6, 05.03.2025



Example

2

8 9

4 7 1 3

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

2 8 9 4 7 1 3 10 14 16

Lecture 6, 05.03.2025



Example

9

8 3

4 7 1 2

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

9 8 3 4 7 1 2 10 14 16

Lecture 6, 05.03.2025



Example

2

8 3

4 7 1 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

2 8 3 4 7 1 9 10 14 16

Lecture 6, 05.03.2025



Example

8

7 3

4 2 1 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

8 7 3 4 2 1 9 10 14 16

Lecture 6, 05.03.2025



Example

1

7 3

4 2 8 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

1 7 3 4 2 8 9 10 14 16

Lecture 6, 05.03.2025



Example

7

4 3

1 2 8 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

7 4 3 1 2 8 9 10 14 16

Lecture 6, 05.03.2025



Example

2

4 3

1 7 8 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

2 4 3 1 7 8 9 10 14 16

Lecture 6, 05.03.2025



Example

4

2 3

1 7 8 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

4 2 3 1 7 8 9 10 14 16

Lecture 6, 05.03.2025



Example

1

2 3

4 7 8 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

1 2 3 4 7 8 9 10 14 16

Lecture 6, 05.03.2025



Example

3

2 1

4 7 8 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

3 2 1 4 7 8 9 10 14 16

Lecture 6, 05.03.2025



Example

1

2 3

4 7 8 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

1 2 3 4 7 8 9 10 14 16

Lecture 6, 05.03.2025



Example

2

1 3

4 7 8 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

2 1 3 4 7 8 9 10 14 16

Lecture 6, 05.03.2025



Example

1

2 3

4 7 8 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

1 2 3 4 7 8 9 10 14 16

Lecture 6, 05.03.2025



Example

1

2 3

4 7 8 9

10 14 16

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10]

1 2 3 4 7 8 9 10 14 16

Lecture 6, 05.03.2025



Analysis of Heapsort

▶ Build-Max-Heap: O(n)
▶ for loop: n − 1 times
▶ exchange elements: O(1)
▶ Max-Heapify: O(lg n)

Total time: O(n lg n)

Lecture 6, 05.03.2025



Analysis of Heapsort

▶ Build-Max-Heap: O(n)

▶ for loop: n − 1 times
▶ exchange elements: O(1)
▶ Max-Heapify: O(lg n)

Total time: O(n lg n)

Lecture 6, 05.03.2025



Analysis of Heapsort

▶ Build-Max-Heap: O(n)
▶ for loop: n − 1 times

▶ exchange elements: O(1)
▶ Max-Heapify: O(lg n)

Total time: O(n lg n)

Lecture 6, 05.03.2025



Analysis of Heapsort

▶ Build-Max-Heap: O(n)
▶ for loop: n − 1 times
▶ exchange elements: O(1)

▶ Max-Heapify: O(lg n)

Total time: O(n lg n)

Lecture 6, 05.03.2025



Analysis of Heapsort

▶ Build-Max-Heap: O(n)
▶ for loop: n − 1 times
▶ exchange elements: O(1)
▶ Max-Heapify: O(lg n)

Total time: O(n lg n)

Lecture 6, 05.03.2025



Analysis of Heapsort

▶ Build-Max-Heap: O(n)
▶ for loop: n − 1 times
▶ exchange elements: O(1)
▶ Max-Heapify: O(lg n)

Total time: O(n lg n)

Lecture 6, 05.03.2025



Summary

▶ Heapsort runs in time O(n log n) and is in-place

▶ Great algorithm but a well-implemented quicksort usually beats it in
practice

▶ Heaps are nice, next lecture we will see how to use them for priority
queues and we will also start with other data structures

Lecture 6, 05.03.2025



HEAP IMPLEMENTATION
OF PRIORITY QUEUE

Lecture 6, 05.03.2025



Priority Queue
▶ Maintains a dynamic set S of elements
▶ Each set element has a key — an associated value that regulates its

importance

What kind of operations do we want to do?

Insert(S,x): inserts element x into S

Maximum(S): returns element of S with largest key

Extract-Max(S): removes and returns element of S with largest key

Increase-Key(S,x,k): increases value of element x ’s key to k;
Increase-Key(S,x,k): assume k ≥ x ’s current key value

Example max-priority queue application: schedule jobs on shared
computer

Heaps efficiently implement priority queues

Lecture 6, 05.03.2025



Priority Queue
▶ Maintains a dynamic set S of elements
▶ Each set element has a key — an associated value that regulates its

importance

What kind of operations do we want to do?

Insert(S,x): inserts element x into S

Maximum(S): returns element of S with largest key

Extract-Max(S): removes and returns element of S with largest key

Increase-Key(S,x,k): increases value of element x ’s key to k;
Increase-Key(S,x,k): assume k ≥ x ’s current key value

Example max-priority queue application: schedule jobs on shared
computer

Heaps efficiently implement priority queues

Lecture 6, 05.03.2025



Priority Queue
▶ Maintains a dynamic set S of elements
▶ Each set element has a key — an associated value that regulates its

importance

What kind of operations do we want to do?

Insert(S,x): inserts element x into S

Maximum(S): returns element of S with largest key

Extract-Max(S): removes and returns element of S with largest key

Increase-Key(S,x,k): increases value of element x ’s key to k;
Increase-Key(S,x,k): assume k ≥ x ’s current key value

Example max-priority queue application: schedule jobs on shared
computer

Heaps efficiently implement priority queues

Lecture 6, 05.03.2025



Priority Queue
▶ Maintains a dynamic set S of elements
▶ Each set element has a key — an associated value that regulates its

importance

What kind of operations do we want to do?

Insert(S,x): inserts element x into S

Maximum(S): returns element of S with largest key

Extract-Max(S): removes and returns element of S with largest key

Increase-Key(S,x,k): increases value of element x ’s key to k;
Increase-Key(S,x,k): assume k ≥ x ’s current key value

Example max-priority queue application: schedule jobs on shared
computer

Heaps efficiently implement priority queues

Lecture 6, 05.03.2025



Priority Queue
▶ Maintains a dynamic set S of elements
▶ Each set element has a key — an associated value that regulates its

importance

What kind of operations do we want to do?

Insert(S,x): inserts element x into S

Maximum(S): returns element of S with largest key

Extract-Max(S): removes and returns element of S with largest key

Increase-Key(S,x,k): increases value of element x ’s key to k;
Increase-Key(S,x,k): assume k ≥ x ’s current key value

Example max-priority queue application: schedule jobs on shared
computer

Heaps efficiently implement priority queues

Lecture 6, 05.03.2025



Priority Queue
▶ Maintains a dynamic set S of elements
▶ Each set element has a key — an associated value that regulates its

importance

What kind of operations do we want to do?

Insert(S,x): inserts element x into S

Maximum(S): returns element of S with largest key

Extract-Max(S): removes and returns element of S with largest key

Increase-Key(S,x,k): increases value of element x ’s key to k;
Increase-Key(S,x,k): assume k ≥ x ’s current key value

Example max-priority queue application: schedule jobs on shared
computer

Heaps efficiently implement priority queues

Lecture 6, 05.03.2025



Priority Queue
▶ Maintains a dynamic set S of elements
▶ Each set element has a key — an associated value that regulates its

importance

What kind of operations do we want to do?

Insert(S,x): inserts element x into S

Maximum(S): returns element of S with largest key

Extract-Max(S): removes and returns element of S with largest key

Increase-Key(S,x,k): increases value of element x ’s key to k;
Increase-Key(S,x,k): assume k ≥ x ’s current key value

Example max-priority queue application: schedule jobs on shared
computer

Heaps efficiently implement priority queues

Lecture 6, 05.03.2025



Finding maximum element
Simply return the root in time Θ(1)

9

8 5

6 7 1 0

4 1 3

Lecture 6, 05.03.2025

Heap-Maximum(A)
return A[1]



Extracting maximum element
1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node
5. Return the copy of the maximum element

9

8 5

6 7 1 0

4 1 3

Lecture 6, 05.03.2025



Extracting maximum element
1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node
5. Return the copy of the maximum element

9

8 5

6 7 1 0

4 1 3

Lecture 6, 05.03.2025



Extracting maximum element
1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node
5. Return the copy of the maximum element

9 max = 9

8 5

6 7 1 0

4 1 3

Lecture 6, 05.03.2025



Extracting maximum element
1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node
5. Return the copy of the maximum element

9 max = 9

new root

8 5

6 7 1 0

4 1 3

Lecture 6, 05.03.2025



Extracting maximum element
1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node
5. Return the copy of the maximum element

3 max = 9

new root

8 5

6 7 1 0

4 1 3

Lecture 6, 05.03.2025



Extracting maximum element
1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node
5. Return the copy of the maximum element

3 max = 9

8 5

6 7 1 0

4 1

Lecture 6, 05.03.2025



Extracting maximum element
1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node
5. Return the copy of the maximum element

8 max = 9

7 5

6 3 1 0

4 1

Lecture 6, 05.03.2025



Extracting maximum element
1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node
5. Return the copy of the maximum element

8 max = 9

7 5

6 3 1 0

4 1

Lecture 6, 05.03.2025



Extracting maximum element
1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node
5. Return the copy of the maximum element

8 max = 9

7 5

6 3 1 0

4 1

Lecture 6, 05.03.2025



Extracting maximum element
Analysis:

Constant-time assignments plus
time for Max-Heapify

Hence, it runs in time O(lg n)

8 max = 9

7 5

6 3 1 0

4 1

Lecture 6, 05.03.2025



Extracting maximum element
Analysis: Constant-time assignments plus
time for Max-Heapify

Hence, it runs in time O(lg n)

8 max = 9

7 5

6 3 1 0

4 1

Lecture 6, 05.03.2025



Extracting maximum element
Analysis: Constant-time assignments plus
time for Max-Heapify

Hence, it runs in time O(lg n)

8 max = 9

7 5

6 3 1 0

4 1

Lecture 6, 05.03.2025



Increasing key value
Given a heap A, index i , and new value key
1. Make sure key ≥ A[i]
2. Update A[i]’s value to key
3. Traverse the tree upward comparing new

key to the parent and swapping keys if
necessary, until the new key is smaller than the parent’s key

12 key = 10

8 5

6 7 1 0

4 1 3

Lecture 6, 05.03.2025



Increasing key value
Given a heap A, index i , and new value key
1. Make sure key ≥ A[i]
2. Update A[i]’s value to key
3. Traverse the tree upward comparing new

key to the parent and swapping keys if
necessary, until the new key is smaller than the parent’s key

12 key = 10

8 5

6 7 1 0

4 1 3

Lecture 6, 05.03.2025



Increasing key value
Given a heap A, index i , and new value key
1. Make sure key ≥ A[i]
2. Update A[i]’s value to key
3. Traverse the tree upward comparing new

key to the parent and swapping keys if
necessary, until the new key is smaller than the parent’s key

12 key = 10

8 5

6 7 1 0

10 1 3

Lecture 6, 05.03.2025



Increasing key value
Given a heap A, index i , and new value key
1. Make sure key ≥ A[i]
2. Update A[i]’s value to key
3. Traverse the tree upward comparing new

key to the parent and swapping keys if
necessary, until the new key is smaller than the parent’s key

12 key = 10

8 5

6 7 1 0

10 1 3

Lecture 6, 05.03.2025



Increasing key value
Given a heap A, index i , and new value key
1. Make sure key ≥ A[i]
2. Update A[i]’s value to key
3. Traverse the tree upward comparing new

key to the parent and swapping keys if
necessary, until the new key is smaller than the parent’s key

12 key = 10

8 5

10 7 1 0

6 1 3

Lecture 6, 05.03.2025



Increasing key value
Given a heap A, index i , and new value key
1. Make sure key ≥ A[i]
2. Update A[i]’s value to key
3. Traverse the tree upward comparing new

key to the parent and swapping keys if
necessary, until the new key is smaller than the parent’s key

12 key = 10

8 5

10 7 1 0

6 1 3

Lecture 6, 05.03.2025



Increasing key value
Given a heap A, index i , and new value key
1. Make sure key ≥ A[i]
2. Update A[i]’s value to key
3. Traverse the tree upward comparing new

key to the parent and swapping keys if
necessary, until the new key is smaller than the parent’s key

12 key = 10

10 5

8 7 1 0

6 1 3

Lecture 6, 05.03.2025



Increasing key value
Given a heap A, index i , and new value key
1. Make sure key ≥ A[i]
2. Update A[i]’s value to key
3. Traverse the tree upward comparing new

key to the parent and swapping keys if
necessary, until the new key is smaller than the parent’s key

12 key = 10

10 5

8 7 1 0

6 1 3

Lecture 6, 05.03.2025



Increasing key value
Analysis:

Upward path from node i has
length O(lg n) in an n-element heap

Hence, it runs in time O(lg n)

12 key = 10

10 5

8 7 1 0

6 1 3

Lecture 6, 05.03.2025



Increasing key value
Analysis:
Upward path from node i has
length O(lg n) in an n-element heap

Hence, it runs in time O(lg n)

12 key = 10

10 5

8 7 1 0

6 1 3

Lecture 6, 05.03.2025



Increasing key value
Analysis:
Upward path from node i has
length O(lg n) in an n-element heap

Hence, it runs in time O(lg n)

12 key = 10

10 5

8 7 1 0

6 1 3

Lecture 6, 05.03.2025



Inserting into the heap
Given a new key to insert into heap
1. Increment the heap size
2. Insert a new node in the last position

in the heap, with key −∞
3. Increase the −∞ value to key using Heap-Increase-Key

12 key = 10

8 5

6 7 1 0

4 1 3

Lecture 6, 05.03.2025



Inserting into the heap
Given a new key to insert into heap
1. Increment the heap size
2. Insert a new node in the last position

in the heap, with key −∞
3. Increase the −∞ value to key using Heap-Increase-Key

12 key = 10

8 5

6 7 1 0

4 1 3

Lecture 6, 05.03.2025



Inserting into the heap
Given a new key to insert into heap
1. Increment the heap size
2. Insert a new node in the last position

in the heap, with key −∞
3. Increase the −∞ value to key using Heap-Increase-Key

12 key = 10

8 5

6 7 1 0

4 1 3 -∞

Lecture 6, 05.03.2025



Inserting into the heap
Given a new key to insert into heap
1. Increment the heap size
2. Insert a new node in the last position

in the heap, with key −∞
3. Increase the −∞ value to key using Heap-Increase-Key

12 key = 10

8 5

6 7 1 0

4 1 3 10

Lecture 6, 05.03.2025



Inserting into the heap
Given a new key to insert into heap
1. Increment the heap size
2. Insert a new node in the last position

in the heap, with key −∞
3. Increase the −∞ value to key using Heap-Increase-Key

12 key = 10

8 5

6 7 1 0

4 1 3 10

Lecture 6, 05.03.2025



Inserting into the heap
Given a new key to insert into heap
1. Increment the heap size
2. Insert a new node in the last position

in the heap, with key −∞
3. Increase the −∞ value to key using Heap-Increase-Key

12 key = 10

8 5

6 10 1 0

4 1 3 7

Lecture 6, 05.03.2025



Inserting into the heap
Given a new key to insert into heap
1. Increment the heap size
2. Insert a new node in the last position

in the heap, with key −∞
3. Increase the −∞ value to key using Heap-Increase-Key

12 key = 10

8 5

6 10 1 0

4 1 3 7

Lecture 6, 05.03.2025



Inserting into the heap
Given a new key to insert into heap
1. Increment the heap size
2. Insert a new node in the last position

in the heap, with key −∞
3. Increase the −∞ value to key using Heap-Increase-Key

12 key = 10

10 5

6 8 1 0

4 1 3 7

Lecture 6, 05.03.2025



Inserting into the heap
Given a new key to insert into heap
1. Increment the heap size
2. Insert a new node in the last position

in the heap, with key −∞
3. Increase the −∞ value to key using Heap-Increase-Key

12 key = 10

10 5

6 8 1 0

4 1 3 7

Lecture 6, 05.03.2025



Inserting into the heap
Analysis:

Constant time assignments
+

Time for Heap-Increase-Key

Hence, it runs in time O(lg n)

12 key = 10

10 5

6 8 1 0

4 1 3 7

Lecture 6, 05.03.2025



Inserting into the heap
Analysis: Constant time assignments

+
Time for Heap-Increase-Key

Hence, it runs in time O(lg n)

12 key = 10

10 5

6 8 1 0

4 1 3 7

Lecture 6, 05.03.2025



Inserting into the heap
Analysis: Constant time assignments

+
Time for Heap-Increase-Key

Hence, it runs in time O(lg n)

12 key = 10

10 5

6 8 1 0

4 1 3 7

Lecture 6, 05.03.2025



Summary

▶ Heapsort runs in time O(n log n) and is in-place

▶ Great algorithm but a well-implemented quicksort usually beats it in
practice

▶ Heaps efficiently implement priority queues
Insert(S,x): O(lg n)
Maximum(S): O(1)
Extract-Max(S): O(lg n)
Increase-Key(S,x,k): O(lg n)

▶ Min-priority queues are implemented with min-heaps similarly

Lecture 6, 05.03.2025



Summary

▶ Heapsort runs in time O(n log n) and is in-place

▶ Great algorithm but a well-implemented quicksort usually beats it in
practice

▶ Heaps efficiently implement priority queues

Insert(S,x): O(lg n)
Maximum(S): O(1)
Extract-Max(S): O(lg n)
Increase-Key(S,x,k): O(lg n)

▶ Min-priority queues are implemented with min-heaps similarly

Lecture 6, 05.03.2025



Summary

▶ Heapsort runs in time O(n log n) and is in-place

▶ Great algorithm but a well-implemented quicksort usually beats it in
practice

▶ Heaps efficiently implement priority queues
Insert(S,x):

O(lg n)
Maximum(S): O(1)
Extract-Max(S): O(lg n)
Increase-Key(S,x,k): O(lg n)

▶ Min-priority queues are implemented with min-heaps similarly

Lecture 6, 05.03.2025



Summary

▶ Heapsort runs in time O(n log n) and is in-place

▶ Great algorithm but a well-implemented quicksort usually beats it in
practice

▶ Heaps efficiently implement priority queues
Insert(S,x): O(lg n)

Maximum(S): O(1)
Extract-Max(S): O(lg n)
Increase-Key(S,x,k): O(lg n)

▶ Min-priority queues are implemented with min-heaps similarly

Lecture 6, 05.03.2025



Summary

▶ Heapsort runs in time O(n log n) and is in-place

▶ Great algorithm but a well-implemented quicksort usually beats it in
practice

▶ Heaps efficiently implement priority queues
Insert(S,x): O(lg n)
Maximum(S):

O(1)
Extract-Max(S): O(lg n)
Increase-Key(S,x,k): O(lg n)

▶ Min-priority queues are implemented with min-heaps similarly

Lecture 6, 05.03.2025



Summary

▶ Heapsort runs in time O(n log n) and is in-place

▶ Great algorithm but a well-implemented quicksort usually beats it in
practice

▶ Heaps efficiently implement priority queues
Insert(S,x): O(lg n)
Maximum(S): O(1)

Extract-Max(S): O(lg n)
Increase-Key(S,x,k): O(lg n)

▶ Min-priority queues are implemented with min-heaps similarly

Lecture 6, 05.03.2025



Summary

▶ Heapsort runs in time O(n log n) and is in-place

▶ Great algorithm but a well-implemented quicksort usually beats it in
practice

▶ Heaps efficiently implement priority queues
Insert(S,x): O(lg n)
Maximum(S): O(1)
Extract-Max(S):

O(lg n)
Increase-Key(S,x,k): O(lg n)

▶ Min-priority queues are implemented with min-heaps similarly

Lecture 6, 05.03.2025



Summary

▶ Heapsort runs in time O(n log n) and is in-place

▶ Great algorithm but a well-implemented quicksort usually beats it in
practice

▶ Heaps efficiently implement priority queues
Insert(S,x): O(lg n)
Maximum(S): O(1)
Extract-Max(S): O(lg n)

Increase-Key(S,x,k): O(lg n)

▶ Min-priority queues are implemented with min-heaps similarly

Lecture 6, 05.03.2025



Summary

▶ Heapsort runs in time O(n log n) and is in-place

▶ Great algorithm but a well-implemented quicksort usually beats it in
practice

▶ Heaps efficiently implement priority queues
Insert(S,x): O(lg n)
Maximum(S): O(1)
Extract-Max(S): O(lg n)
Increase-Key(S,x,k):

O(lg n)

▶ Min-priority queues are implemented with min-heaps similarly

Lecture 6, 05.03.2025



Summary

▶ Heapsort runs in time O(n log n) and is in-place

▶ Great algorithm but a well-implemented quicksort usually beats it in
practice

▶ Heaps efficiently implement priority queues
Insert(S,x): O(lg n)
Maximum(S): O(1)
Extract-Max(S): O(lg n)
Increase-Key(S,x,k): O(lg n)

▶ Min-priority queues are implemented with min-heaps similarly

Lecture 6, 05.03.2025


