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Recall Maximum-Subarray Problem
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Recall Maximum-Subarray Problem
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Recall Maximum-Subarray Problem
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Also find the maximum subarray that crosses the midpoint!
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Also find the maximum subarray that crosses the midpoint!
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Finding maximum subarray crossing midpoint
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Finding maximum subarray crossing midpoint

> Any subarray crossing the midpoint A[mid] is made of two
subarrays A[i ... mid] and Almid + 1,...,j] where low < i < mid
and mid < j < high

> Find maximum subarrays of the form A[i ... mid] and
Almid +1...j] and then combine them.
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray i — o
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray o =
;:;ni; mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
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right-sum = —o0
sum = 0
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sum = sum + A[j]
if sum > right-sum
right-sum = sum
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// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 6, 05.03.2025



FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray o =
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sum = sum + Ali]
if sum > left-sum
left-sum = sum
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right-sum = —o0
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i . . mid].

left-sum = —oo
. sum = 0
low mid for i = mid downto low

sum = sum + Ali]
if sum > left-sum

o 2 _4 5 left-sum = sum

max-left = i
L // Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j

Lecture 6, 05.03.2025
o // Return the indices and the sum of the two subarrays.



FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray i

low

sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum
max-lef

// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

high

mid
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
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// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 6, 05.03.2025



FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray
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right-sum = sum
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return (max-left, max-right, left-sum + right-sum)
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Lecture 6, 05.03.2025



FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray i — o
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
H H if sum > left-sum
Running time? lef s sum
max-left =i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0
for j = mid + 1 to high
Space? sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

Crossing subarray

low mid high

Lecture 6, 05.03.2025



FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]

Crossing subarray

. . if sum > left-sum
Running time? ©(n) lef s sum
max-left =i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0
for j = mid + 1 to high
Space? sum = sum + A[j]

if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]

Crossing subarray

. . if left-
Running time? ©(n) s s
max-left =i

// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0
for j = mid + 1 to high

Space? ©(n) sum = sum -+ ALj]

if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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Analysis
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FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low

return (low, high, A[low]) // base case: only one element

else mid = |(low + high)/2]

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

(right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

( I L-bl'~ ) .

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return ( low, ci high, ¢




FIND-MAXIMUM-SUBARRAY (4, low, high)
e if high == low
A n a Iys I S return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

(right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

( I h, o h . ) .

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return ( low, ci high, ¢

Divide takes constant time,i.e., ©(1)
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FIND-MAXIMUM-SUBARRAY (4, low, high)
e if high == low
A n a Iys I s return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]
(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)
(right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
( low, high. ¢ —
FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return ( low, ci high, ¢

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2=2T(n/2)
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Analysis

Divide

Conquer

Merge
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FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2)
(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)
(right-low. right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

takes constant time,i.e., ©(1)

recursively solve two subproblems, each of size
n/2=2T(n/2)

time dominated by FIND-MAX-CROSSING-SUBARRAY
= O(n)



FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (A, low, mid)

(right-low, right-high. right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

(cross-low. cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)

if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)

elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)

else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2=2T(n/2)

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY
= O(n)

Recursion for the running time is

O(1) if n=1,

Tn) = 2T(n/2)+©(n) otherwise



FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (A, low, mid)

(right-low, right-high. right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

(cross-low. cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)

if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)

elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)

else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2=2T(n/2)
Merge time dominated by FIND-MAX-CROSSING-SUBARRAY
= O(n)

Recursion for the running time is

O(1) if n=1,

Tn) = 2T(n/2)+©(n) otherwise

Hence, T(n) = ©(nlog n)
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Matrix Multiplication

Definition
Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (¢;j), where C=A-B
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Matrix Multiplication

Definition

Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (¢;j), where C=A-B

Example (n = 2):
cn cz)| _ (an a2\ (bu
C1 2 a1 axn b1

c11 = anbi1 + anboy,
c12 = annbiz + annb2o,
C21 = ap1b11 + axnby,
Co2 = ax1b12 + anbzo.

where
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Matrix Multiplication

Definition
Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (¢;j), where C=A-B

Example (n = 2):

Lecture 6, 05.03.2025



Matrix Multiplication

Definition
Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (¢;j), where C=A-B

o236

Example (n = 2):
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How to multiply two matrices?
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How to multiply two matrices?

1 c2 biy b2 - bia
G1 G2 ' Cn b1 bro - b,
Ch1 Cn2 - Cpn bn 1 bn,2 e bn n

) )

n

al=aiibii+aipbi+aizbsi+...,810bn1 = E aikbi1
k=1
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How to multiply two matrices?

C1,1 C2 -°° Cin a1l a2 o ain b11 b12 bln

) )

@1 @2 v an| [@a @ o @ [ba bz o b

Ch1 Cn2 - Cpn an1l dn2 " ann bn,l b,,’2 .o bn,n
n
o1 =ap1bi1+azobo1+ax3bsi+ ... a2 0bp1 = E ackbi1
k=1
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How to multiply two matrices?

i1 G2 ' Cinp a1 a2 v ain bi1 b1

) )

21 @d o an| [@a @ @] b b

Ch1 Cn2 - Cpn an1l dn2 " ann bn 1 bn,2

)

n

c2=ax1bip2+azobr2+ax3bs2+...,820bp2 = E ackbra
k=1
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How to multiply two matrices?

€11 €12 -t Cp a1 a2 - aun bii bip -+ bip

o B | | Bma | b b o

Cn71 Cn,2 N C,,?n a"’l an’2 o amn bn71 bn,2 e bn n

)

Lecture 6, 05.03.2025



Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij + @ik - by;
return C
Example:

77 1 2 3 -1
77 -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij + @ik - by;
return C
Example:

77 1 2 3 -1
77 -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij + @ik - by;
return C
Example:

3 7 1 2 3 -1
77 -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij + @ik - by;
return C
Example:

5 7 1 2 3 -1
77 -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij + @ik - by;
return C
Example:

5 7 1 2 3 -1
77 -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij + @ik - by;
return C
Example:

5 -1 1 2 3 -1
77 -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij + @ik - by;
return C
Example:

5 3 1 2 3 -1
77 -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)
let C be a new n X n matrix
fori = 1ton
for j = 1ton
Cij = 0
fork = 1ton
cij = cij + aix - byj
return C

P R R

Example:
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij=0
fork = 1ton

Cij = Cij + @ik - by;
return C

Running time?
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij=0
fork = 1ton

Cij = Cij + @ik - by;
return C

Running time? ©(n?) @
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)
let C be a new n X n matrix
fori = 1ton
for j = 1ton
Cij = 0
fork = 1ton
cij = cij + aix - byj
return C

Running time? ©(n?) @

Space?
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij=0
fork = 1ton

Cij = Cij + @ik - by;
return C

Running time? ©(n?) @

Space? ©(n?)
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer

VS ]

()
>

OOtﬁ)O

@)

>

>
vy)

D)

Lecture 6, 05.03.2025



Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer

Ci1 = A1 Bi1 + Ai2Bx Cio = A1 Bix + A12B

Co1 = AnBi1 + AnBx Coo = A Bio + A Boo
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Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 x n/2 matrices: so that

G1 CGo _ Aun A\ (Bu Bn
G G Ay Ax By1 Bo
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Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Cu Go) _ (An A\ [(Bu B
Ca An Ax By Bx
Conquer: Since

Ci1 = A1 - Bi1 + Az - By

Cio = A1 - Bio + Az - B

Co1 = Aoy - Bir + Az - By

Cop = Ay - Bio + Az - B

we recursively solve 8 matrix multiplications that each
multiply two n/2 x n/2 matrices.

Lecture 6, 05.03.2025



Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Cu Go) _ (An A\ [(Bu B
Ca An Ax By Bx
Conquer: Since

Ci1 = A1 - Bi1 + Az - By

Cio = A1 - Bio + Az - B

Co1 = Aoy - Bir + Az - By

Cop = Ay - Bio + Az - B

we recursively solve 8 matrix multiplications that each
multiply two n/2 x n/2 matrices.

Combine: Make the additions to get C
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REC-MAT-MULT(A, B.n)
. let C be anew n x n matrix
Pseudocode and Analysiszesss
else partition A, B, and C into /2 x n/2 submatrices
Ci1 = REC-MAT-MULT(Ay, By1,1/2) + REC-MAT-MULT (A2, B2y, 1/2)

H H Ci> = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
Let T(n) be the time to mUItlply C;T =REC-MAT—MULT(A:,B::,H/Z)+REC-MAT—MULT(AZ.B:,n/z)
tWO nxn matrices. remfnnC= REC-MAT-MULT (A3, Bi2.n/2) + REC-MAT-MULT (A, B2, 1/2)

Lecture 6, 05.03.2025



REC-MAT-MULT (A, B.n)
. let C be a new n x n matrix
Pseudocode and Analysiszess
else partition A, B, and C into /2 x n/2 submatrices
Ci1 = REC-MAT-MULT(Ay, By1,n/2) + REC-MAT-MULT (A2, By, 1/2)

H H Ci2 = REC-MAT-MULT (A4, B12.1/2) + REC-MAT-MULT (A,,. B2;.n/2)
Let T(n) be the time to mU|th|y Cor — REC-MAT-MULT(As1. Bry.1/2) + REC-MAT-MULT (Ass. Bop.1/2)
tWO nxn matrices. .-en.f.:zc= REC-MAT-MULT (A3y. Bi2.1/2) + REC-MAT-MULT (A, B2, 1n/2)

Base case: n = 1. Perform one scalar multiplication: ©(1)
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REC-MAT-MULT (4, B.n)
. let C be anew n x n matrix
Pseudocode and Analysiszeasss
else partition A, B, and C into /2 x n/2 submatrices
Cy; = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B21.n/2)

H H Cy2 = REC-MAT-MULT (A4, B12.1/2) + REC-MAT-MULT (A4,,. B2;.n/2)
Let T(n) be the time to mUlth'Y Cor — REC-MAT-MULT(As1. Bry.1/2) + REC-MAT-MULT (Ass. Bop.1/2)
tWO nxn matrices. ren.f.:zc= REC-MAT-MULT (A3, B12.1/2) + REC-MAT-MULT (A2, B2y, n/2)

Base case: n = 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.

> Dividing takes ©(1) time if careful and ©(n?) if simply copying
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REC-MAT-MULT (A, B.n)
let C be anew n x n matrix
ifn==

cn = an-bn

else partition A, B, and C into /2 x n/2 submatrices
Cy; = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B21.n/2)

H H Ci> = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
Let T(n) be the time to multiply Ca1 = REC-MAT-MULT(A1. By1.11/2) + REC-MAT-MULT (A2, Bay.1/2)
tWO nxn matrices. re(ugfz(;: REC-MAT-MULT (A3, By2.n/2) + REC-MAT-MULT (A2, Bys,n/2)

Base case: n= 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.
> Dividing takes ©(1) time if careful and ©(n?) if simply copying

» Conquering makes 8 recursive calls, each multiplying n/2 x n/2
matrices = 8T (n/2)



REC-MAT-MULT (A, B.n)
let C be anew n x n matrix
ifn==

cn = an-bn

else partition A, B, and C into /2 x n/2 submatrices
Cyy = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B2y.n/2)

. . Ci> = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
Let T(n) be the time to multiply Ca1 = REC-MAT-MULT(Aa1. By1.11/2) + REC-MAT-MULT (A2, Bay.1/2)
two n X n matrices. remf:ZC: REC-MAT-MULT (A3, B12.1/2) + REC-MAT-MULT (A2;, By, n/2)

Base case: n= 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.
> Dividing takes ©(1) time if careful and ©(n?) if simply copying

» Conquering makes 8 recursive calls, each multiplying n/2 x n/2
matrices = 8T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.



REC-MAT-MULT (A, B.n)
let C be anew n x n matrix
ifn==

cn = an-bn

else partition A, B, and C into /2 x n/2 submatrices
Cyy = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B2y.n/2)

. . Ci> = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
Let T(n) be the time to multiply Ca1 = REC-MAT-MULT(Az1. By1.11/2) + REC-MAT-MULT (A2, Bay.1/2)
tWO nxn matrices. remf:ZC: REC-MAT-MULT (A3, By2.n/2) + REC-MAT-MULT (A2, B3z, n/2)

Base case: n= 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.
> Dividing takes ©(1) time if careful and ©(n?) if simply copying

» Conquering makes 8 recursive calls, each multiplying n/2 x n/2
matrices = 8T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.
Recurrence is

O(1) ifn=1

T =\ e 7(n/2) + 0(2) ifn>1



REC-MAT-MULT (A, B.n)
let C be anew n x n matrix
ifn==

cn = an-bn

else partition A, B, and C into /2 x n/2 submatrices
Cyy = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B2y.n/2)

. . Ci> = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
Let T(n) be the time to multiply Ca1 = REC-MAT-MULT(Az1. By1.11/2) + REC-MAT-MULT (A2, Bay.1/2)
two n X n matrices. re(uf:Z(j: REC-MAT-MULT (A2, B12.1/2) + REC-MAT-MULT (A2;, By, n/2)

Base case: n= 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.
> Dividing takes ©(1) time if careful and ©(n?) if simply copying

» Conquering makes 8 recursive calls, each multiplying n/2 x n/2
matrices = 8T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.
Recurrence is

O(1) ifn=1

T =\ e 7(n/2) + 0(2) ifn>1

Master method = T(n) = ©(n%)



STRASSEN’S ALGORITHM FOR
MATRIX MULTIPLICATION

Lecture 6, 05.03.2025



The ldea

Make less recursive calls

> Perform only 7 recursive multiplications of n/2 x n/2 matrices,
rather than 8
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The Idea

Make less recursive calls

> Perform only 7 recursive multiplications of n/2 x n/2 matrices,
rather than 8

> Will cost several additions of n/2 x n/2 matrices, but just a
constant more

= can still absorb the constant factor for matrix additions into the
O(n?) term
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The Idea

Make less recursive calls

> Perform only 7 recursive multiplications of n/2 x n/2 matrices,
rather than 8

> Will cost several additions of n/2 x n/2 matrices, but just a
constant more

= can still absorb the constant factor for matrix additions into the
O(n?) term

To obtain the recurrence

_Je) ifn=1
Tim) = {7T(n/2) +0(n) ifn>1
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The Idea

Make less recursive calls

> Perform only 7 recursive multiplications of n/2 x n/2 matrices,
rather than 8

> Will cost several additions of n/2 x n/2 matrices, but just a
constant more

= can still absorb the constant factor for matrix additions into the
O(n?) term

To obtain the recurrence

_Je) ifn=1
Tim) = {7T(n/2) +0(n) ifn>1

Master method = T(n) = ©(n'°&:7)
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Strassen’s method

Divide each of A, B, C into four n/2 x n/2 matrices: so that

Cu Go) _ (Au A\ [(Bu B
C1 (o A Ax By Bx
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Strassen’s method

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Cu Go) _ (Au A\ [(Bu B
C1 G A Az Ba Ba

Conquer: Calculate recursively 7 matrix multiplications, each of two
n/2 x n/2 matrices:
My := (A1 + An)(Bi1 + Bx)  Ms := (A1 + A12) B2
Mo := (A21 + Ax)Bn Ms := (A21 — A11)(B11 + Bi12)
M3 := A11(B12 — Bx) My := (A2 — A2)(Bo1 + Bx)
My := A22(Bo1 — Bu1)
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Strassen’s method

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Cu Go) _ (Au A\ [(Bu B
C1 G A Az Ba Ba

Conquer: Calculate recursively 7 matrix multiplications, each of two
n/2 x n/2 matrices:
My i= (A1 + An)(Bi1 + Bn)  Ms = (A1 + A12)Bx

My = (Ag1 + Az)Bry Mg := (A21 — A11)(B11 + B12)
Ms := A1 (Bia — Bap) My = (A12 — A22)(B21 + B22)
My := Az (Bo1 — Bi1)

Combine: Let
Ci1=M +My—Ms+M; Cip=Ms+ Ms
Co1 = My + My Coo = My — My + M3 + Mg

Lecture 6, 05.03.2025



Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)
Recursive case: n>1

> Dividing takes time ©(n?)
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Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)
Recursive case: n>1
> Dividing takes time ©(n?)

> Conquering makes 7 recursive calls, each multiplying n/2 x n/2
matrices = 7T (n/2)
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Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)
Recursive case: n>1
> Dividing takes time ©(n?)

> Conquering makes 7 recursive calls, each multiplying n/2 x n/2
matrices = 7T (n/2)

> Combining takes time ©(n?) time to add n/2 x n/2 matrices.
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Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)

Recursive case: n>1
> Dividing takes time ©(n?)

> Conquering makes 7 recursive calls, each multiplying n/2 x n/2
matrices = 7T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.

Recurrence is

o) ifn=1
Tin) = {7T(n/2) +o(m) ifn>1
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Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)

Recursive case: n>1
> Dividing takes time ©(n?)

> Conquering makes 7 recursive calls, each multiplying n/2 x n/2
matrices = 7T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.

Recurrence is

o) ifn=1
Tin) = {7T(n/2) +o(m) ifn>1

Master method = T(n) = ©(n'°&:7)
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Notes about Strassen’s method

> First to beat ©(n%) time

> Faster known today, method by Coppersmith and Winograd runs in
time O(n*37%) recently improved by Vassilevska Williams to
O(n?3727).

> Big open problem how to multiply matrices in best way

> Naive method better for small instances because of hidden
constants
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Karatsuba's algorithm

Problem: given two n-digit long integers x and y base b, find x - y

Grade school algorithm: runtime

Lecture 6, 05.03.2025



Karatsuba's algorithm

Problem: given two n-digit long integers x and y base b, find x - y
Grade school algorithm: runtime O(n?)

Can we do better than that?
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Multiplying integers via divide and conquer

Divide: each number into two halves:
x =xy-b"?+x
y=yn-b"?+y

Then we have

x-y=(xu-b"?+x)) (yu-b"?+y)
=Xy -y b+ (xyr + xeyn) - b2+ xy

Runtime?

Naive approach: compute Xy - Vi, Xy - Vi, XL - YH, XL VL

All additions take ©(n)

T(n)=4T(n/2) + ©(n)
T(n) = ©(n?)
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Multiplying integers via divide and conquer

Divide: each number into two halves:
x =xy-b"?+x
y=yn-b"?+y

Then we have

Xy =(xp-b"2+x) (yn b2+ y)
=Xy Yo - b+ (xuyL + xeyn) - b2+ Xy
Runtime?
Naive approach: compute Xy - Vi, Xy - Vi, XL - YH, XL VL
Suffices to compute xpyw, xiyr, (X + x0)(yn + yi)
All additions take ©(n)

T(n) =3T(n/2)+ ©(n)
T(n) = O(n'°&23)
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Summary of divide-and-conquer

> Divide-and-conquer simple but powerful algorithmic paradigm
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Summary of divide-and-conquer

> Divide-and-conquer simple but powerful algorithmic paradigm

> Merge-sort and maximum subarray both run in time ©(nlog n)

Lecture 6, 05.03.2025



Summary of divide-and-conquer

> Divide-and-conquer simple but powerful algorithmic paradigm
> Merge-sort and maximum subarray both run in time ©(nlog n)

» Strassen’s algorithm for matrix multiplication in time ©(n'°&27)
where log, 7 ~ 2.8.
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Algorithm  worst-case running time in-place
Insertion Sort o(n?) YES

Merge Sort O(nlogn) NO

Heapsort:
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Algorithm  worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlogn) NO
Heapsort:

» O(nlg n) worst case — like merge sort

Lecture 6, 05.03.2025



Algorithm  worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlogn) NO
Heapsort:

» O(nlg n) worst case — like merge sort
> Sorts in place — like insertion sort
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Algorithm  worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlogn) NO
Heapsort:

» O(nlg n) worst case — like merge sort
> Sorts in place — like insertion sort
» Combines the best of both algorithms
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Algorithm  worst-case running time in-place

Insertion Sort o(n?) YES
Merge Sort O(nlog n) NO
Heapsort:

» O(nlg n) worst case — like merge sort
» Sorts in place — like insertion sort
» Combines the best of both algorithms

Uses a cool datastructure: heaps

Lecture 6, 05.03.2025



Data Structures = “Building Blocks”
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Data Structures = “Building Blocks”

Algorithm
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Data Structures = “Building Blocks”

Algorithm

Algorithm
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Data structure containing numbers



What kind of operations do we want to do?

Data structure containing numbers



What kind of operations do we want to do?

» Modifying operations: insertion, deletion, ...

» Query operations: search, maximum, minimum, ...

Data structure containing numbers



(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 3
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 4
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 5
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 6

Lecture 6, 05.03.2025



(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 7

Lecture 6, 05.03.2025



(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 8
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 9
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 10
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i's children is greater or equal to i's key
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i's children is greater or equal to i's key

Lecture 6, 05.03.2025



Max-Heap = maximum element is the root

E A

Min-Heap = minimum element is the root

E A
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

@ Height = 1
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

@ Height = 2
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

@ @ Height — 0
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root

@ @ Height = 3
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root = ©(log n)

@ @ Height = 3
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How to store a heap/tree?
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How to store a heap/tree?

pointer to left and right children
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How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array
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How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

Al8]  A[9]  A[L0]
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How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) =777
RiGHT(i) =777

PARENT(i) =777

Al8]  A[9]  A[L0]
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, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) = 2i
RiGHT(i) =777

PARENT(i) =777

Al8]  A[9]  A[L0]

Lecture 6, 05.03.2025



How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) = 2i
RIGHT(/) = 2i + 1

PARENT(i) =777

Al8]  A[9]  A[L0]
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How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) = 2i
RIGHT(/) = 2i + 1
PARENT(i) = [i/2]

Al8]  A[9]  A[L0]
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BUILDING AND MANIPULATING HEAPS
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Maintaining the heap property

MAX-HEAPIFY is important for manipulating heaps:

Given an j such that the subtrees of i are heaps, it ensures that the
subtree rooted at i is a heap satisfy the heap property

Lecture 6, 05.03.2025



MAX-HEAPIFY(A, i, n)
Algorithm:
> Compare A[i], A[LEFT(i)], A[RIGHT(i)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property

> Continue this process of comparing and swapping down the heap, until subtree
rooted at i is max-heap

Al A[9]  A[l0]

Lecture 6, 05.03.2025



MAX-HEAPIFY(A, i, n)
Algorithm:
> Compare A[i], A[LEFT(i)], A[RIGHT(i)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property

> Continue this process of comparing and swapping down the heap, until subtree
rooted at i is max-heap
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MAX-HEAPIFY(A, i, n)
Algorithm:
> Compare A[i], A[LEFT(i)], A[RIGHT(i)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property

> Continue this process of comparing and swapping down the heap, until subtree
rooted at i is max-heap
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MAX-HEAPIFY(A, i, n)
Algorithm:
> Compare A[i], A[LEFT(i)], A[RIGHT(i)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property

> Continue this process of comparing and swapping down the heap, until subtree
rooted at i is max-heap

ORORO. @
Al A[9]  A[l0]
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: MAX-HEAPIFY (A4, i,n)
Pseudo-code and analysis I = Lerr(i)
r = RIGHT(i)

if | <nand A[l] > Ali]
largest = 1

else largest = i

if r < n and A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Al8]  A[9]  A[10]
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if r < n and A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
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: MAX-HEAPIFY (A4, i,n)
Pseudo-code and analysis I = Lerr(i)
r = RIGHT(i)

if | <nand A[l] > Ali]
largest = 1
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: MAX-HEAPIFY (A4, i,n)
Pseudo-code and analysis I = Lerr(i)
r = RIGHT(i)

if /| <nand A[l] > Ali]
largest =1

else largest = i

if r < n and A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

A8l A[9]  A[10] N

Lecture 6, 05.03.2025



MAX-HEAPIFY (A4, i,n)
| = LEFT(i)

r = RIGHT(i)

if | < nand A[l] > Ali]
largest = [

else largest = i

if » < nand A[r] > Allargest]
largest = r

if largest # i

Space? exchange A[i] with A[largest]

MAX-HEAPIFY (A, largest, n)

Running time?

AlB]  Al9]  Al10]



MAX-HEAPIFY (A4, i,n)
| = LEFT(i)

r = RIGHT(i)
if | < nand A[l] > Ali]
largest = [
O(height of /) = O(log n) ‘else largest = i
if » < nand A[r] > Allargest]
largest = r
if largest # i
Space? exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Running time?

AlB]  Al9]  Al10]



MAX-HEAPIFY (A4, i,n)
| = LEFT(i)

r = RIGHT(i)
if | <nand A[l] > Ali]
largest = [
O(height of /) = O(log n) ‘else largest = i
if » < nand A[r] > Allargest]
largest = r
if largest # i
Space? ©O(n) exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Running time?

AlB]  Al9]  Al10]



— BUILD-MAX-HEAP(A4,n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

|4|1|3|2|16|9|10|14|8|7|

Al8] Al9]  A[10]
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— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9]  A[10]

Lecture 6, 05.03.2025



— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9]  A[10]

Lecture 6, 05.03.2025



— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9]  A[10]

Lecture 6, 05.03.2025



— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9]  A[10]

Lecture 6, 05.03.2025



— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9]  A[10]

Lecture 6, 05.03.2025



— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9]  A[10]

Lecture 6, 05.03.2025



— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9]  A[10]

Lecture 6, 05.03.2025



— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1
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— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap
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— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9]  A[10]
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: BUILD-MAX-HEAP(A4,n)
Ana|ySIS fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

What is the worst-case running time of BUILD-MAX-HEAP?
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: BUILD-MAX-HEAP(A4,n)
Ana|ySIS fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

What is the worst-case running time of BUILD-MAX-HEAP?

Simple bound: O(n) calls to MAX-HEAPIFY, each of which takes
O(lg n) time = O(nlgn) in total
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BUILD-MAX-HEAP(A,n)
fori = |n/2] downto 1

MAX-HEAPIFY (A,i,n)

What is the worst-case running time of BUILD-MAX-HEAP?
Simple bound: O(n) calls to MAX-HEAPIFY, each of which takes
O(lg n) time = O(nlg n) in total

Tighter analysis: Time to run MAX-HEAPIFY is linear in the height of
the node it's run on. Hence, the time is bounded by

lg n Ign h
Z{# nodes of height h}-O(h) =0 <n Z 2h> ,
h=0 h=0

which is O(n) since 332 £ = % =2.



HEAPSORT
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Builds a max-heap from the array

Starting with the root (the maximum element), the algorithm
places the maximum element into the correct place in the array by
swapping it with the element in the last position in the array

“Discard” this last node (knowing that it is in its correct place) by
decreasing the heap size, and calling MAX-HEAPIFY on the new
(possibly incorrectly-placed) root

Repeat this “discarding” process until only one node (the smallest
element) remains, and therefore is in the correct place in the array



HEAPSORT(A4, n)
SEMPE BUILD-MAX-HEAP (4, 1)
for i = n downto 2

exchange A[1] with A[i]
MAX-HEAPIFY (A4, 1,i — 1)

|4|1|3|2|16|9|10 14|18 | 7

Al8] A[9]  A[10]
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HEAPSORT(A4, n)
SEMPE BUILD-MAX-HEAP (A4, 1)
for i = n downto 2

exchange A[1] with A[i]
MAX-HEAPIFY (A4, 1,i — 1)

|16|14|10|8|7|9|3 21411

Al8] A[9]  A[10]
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HEAPSORT(A4, n)
SEMPE BUILD-MAX-HEAP (A4, 1)
for i = n downto 2

exchange A[1] with A[i]
MAX-HEAPIFY (4, 1,i — 1)

[Tl [ To [ 2]+ I

Al8] Al9]  A[10]
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HEAPSORT(A4, n)
SEMPE BUILD-MAX-HEAP (A4, 1)
for i = n downto 2

exchange A[1] with A[i]
MAX-HEAPIFY (A4, 1,i — 1)

[elo [w0] #7532 1]

Al8] Al9]  A[10]
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HEAPSORT(A4, n)
SEMPE BUILD-MAX-HEAP (A4, 1)
for i = n downto 2

exchange A[1] with A[i]
MAX-HEAPIFY (4, 1,i — 1)

[1]s[wof 7 o]~ [5e]ss]

Al8] Al9]  A[10]
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HEAPSORT(A4, n)
SEMPE BUILD-MAX-HEAP (A4, 1)
for i = n downto 2

exchange A[1] with A[i]
MAX-HEAPIFY (A4, 1,i — 1)

(o] s [ ]7]x]s]> [5afss]

Al8] Al9]  A[10]
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HEAPSORT(A4,n)
SEMPE BUILD-MAX-HEAP (A4, 1)
for i = n downto 2
exchange A[1] with A[i]

K-HEAPIFY (A4, 1,i — 1)

Al8] Al9] A[10]
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HEAPSORT(A4,n)
SEMPE BUILD-MAX-HEAP (A4, 1)

fori = n downto 2

AX HEPIFY (A 1 i—1)

[efel=]e]7]:] Foluslus]

Al8] Al9] A[10]
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HEAPSORT(A4,n)
Example BUILD-MAX-HEAP (4, 1)
for i = n downto 2
exchange A[1] with A[i]
MAX-H IFY(A,1,i —

[2]s[s]« ][ [ofuo]ue]us]

Al8] Al9] A[10]
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HEAPSORT(A4,n)
Example BUILD-MAX-HEAP (4, 1)

for i = n downto 2

MAX-HEAPIFY (A4, 1,i — 1)

DB
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for i = n downto 2
exchange A[1] with A[i]
MAX-H IFY(A,1,i —1
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HEAPSORT(A4,n)
Example BUILD-MAX-HEAP (4, 1)

for i = n downto 2

MAX-HEAPIFY (A4, 1,i — 1)
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HEAPSORT(A4,n)
Example BUILD-MAX-HEAP (4, 1)
for i = n downto 2
exchange A[1] with A[i]

»

EEIEIES

Al8] Al9] A[10]
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HEAPSORT(A4,n)
Example BUILD-MAX-HEAP (4, 1)

for i = n downto 2

MAX-HEAPIFY (A4, 1,i — 1)

EIEIENES
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for i = n downto 2
exchange A[1] with A[i]
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HEAPSORT(A4,n)
Example BUILD-MAX-HEAP (4, 1)

for i = n downto 2

MAX-HEAPIFY (A4, 1,i — 1)
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HEAPSORT(A4,n)
Example BUILD-MAX-HEAP (4, 1)
for i = n downto 2
exchange A[1] with A[i]

»
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HEAPSORT(A4,n)
SEMPE BUILD-MAX-HEAP (4, )
for i = n downto 2

exchange A[1] with A[i]
MAX-HEAPIFY (A, 1,i — 1)

Al8] Al9]  A[10] @
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: HEAPSORT(A,n)
Analysis of Heapsort BUILD-MAX-HEAP (4, 1)

for i = n downto 2
exchange A[1] with A[i]
MAX-HEAPIFY (A, 1,i — 1)
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: HEAPSORT(A,n)
Analysis of Heapsort BUILD-MAX-HEAP (4, 1)

for i = n downto 2
exchange A[1] with A[i]
MAX-HEAPIFY (A, 1,i — 1)

> BuiLD-Max-HEaP: O(n)
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: HEAPSORT(A,n)
Analysis of Heapsort BUILD-MAX-HEAP (4, 1)

for i = n downto 2
exchange A[1] with A[i]
MAX-HEAPIFY (A, 1,i — 1)

> BuiLD-Max-HEaP: O(n)

> for loop: n—1 times
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: HEAPSORT(A,n)
Analysis of Heapsort BUILD-MAX-HEAP (4, 1)

for i = n downto 2
exchange A[1] with A[i]
MAX-HEAPIFY (A, 1,i — 1)

> BuiLD-Max-HEaP: O(n)
> for loop: n—1 times

> exchange elements: O(1)
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: HEAPSORT(A,n)
Analysis of Heapsort BUILD-MAX-HEAP (4, 1)

for i = n downto 2
exchange A[1] with A[i]
MAX-HEAPIFY (A, 1,i — 1)

v

BuiLp-Max-HEaP: O(n)

v

for loop: n—1 times
> exchange elements: O(1)

> Max-HeaPIFy: O(lgn)
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: HEAPSORT(A4,n)
Analysis of Heapsort BUILD-MAX-HEAP (4, 1)

for i = n downto 2
exchange A[l] with A[i]
MAX-HEAPIFY (A, 1,i — 1)

v

BuiLp-Max-HEaP: O(n)

v

for loop: n—1 times
> exchange elements: O(1)

> Max-HeaPIFy: O(lgn)

Total time: O(nlgn)
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> Heapsort runs in time O(nlog n) and is in-place

> Great algorithm but a well-implemented quicksort usually beats it in
practice

> Heaps are nice, next lecture we will see how to use them for priority
queues and we will also start with other data structures
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HEAP IMPLEMENTATION
OF PRIORITY QUEUE
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> Maintains a dynamic set S of elements

> Each set element has a key — an associated value that regulates its
importance
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> Maintains a dynamic set S of elements

> Each set element has a key — an associated value that regulates its
importance

What kind of operations do we want to do?

INSERT(S,X): inserts element x into S
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> Maintains a dynamic set S of elements

> Each set element has a key — an associated value that regulates its
importance

What kind of operations do we want to do?
INSERT(S,X): inserts element x into S

MAXIMUM(S): returns element of S with largest key
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> Maintains a dynamic set S of elements

> Each set element has a key — an associated value that regulates its
importance

What kind of operations do we want to do?
INSERT(S,X): inserts element x into S
MAXIMUM(S): returns element of S with largest key

EXTRACT-MAX(S): removes and returns element of S with largest key
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> Maintains a dynamic set S of elements

> Each set element has a key — an associated value that regulates its
importance

What kind of operations do we want to do?
INSERT(S,X): inserts element x into S
MAXIMUM(S): returns element of S with largest key
EXTRACT-MAX(S): removes and returns element of S with largest key

INCREASE-KEY(S,X,K): increases value of element x's key to k;
assume k > x's current key value
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> Maintains a dynamic set S of elements

> Each set element has a key — an associated value that regulates its
importance

What kind of operations do we want to do?
INSERT(S,X): inserts element x into S
MAXIMUM(S): returns element of S with largest key
EXTRACT-MAX(S): removes and returns element of S with largest key
INCREASE-KEY(S,X,K): increases value of element x's key to k;

assume k > x's current key value

Example max-priority queue application: schedule jobs on shared
computer



> Maintains a dynamic set S of elements

> Each set element has a key — an associated value that regulates its
importance

What kind of operations do we want to do?
INSERT(S,X): inserts element x into S
MAXIMUM(S): returns element of S with largest key
EXTRACT-MAX(S): removes and returns element of S with largest key
INCREASE-KEY(S,X,K): increases value of element x's key to k;

assume k > x's current key value

Example max-priority queue application: schedule jobs on shared
computer

Heaps efficiently implement priority queues



o : HEAP-MAXIMUM(A)
Finding maximum element return A[1]

Simply return the root in time ©(1)

Lecture 6, 05.03.2025



c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element n <1

error “heap underflow”
max = A[l]
A[l] = Aln]
n=n-1
MAX-HEAPIFY (4, 1,n)
return max
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c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element i£n <1

error “heap underflow”
1. Make sure heap is not empty max = A[l]

A[l] = A[n]
n=n-—1
MAX-HEAPIFY (4, 1,n)
return max
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c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element n <1

. error “heap underflow”
1. Make sure heap is not empty

= A[l
2. Make a copy of the maximum element (the root) :Z‘[ll)a _ A[[n]]

n=n-—1
MAX-HEAPIFY (4, 1, n)
return max
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c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element n <1

. error “heap underflow”
1. Make sure heap is not empty

max = A[l
2. Make a copy of the maximum element (the root) A[l] = A[[n]]
3. Make the last node in the tree the new root N o= n_— 1
MAX-HEAPIFY (4, 1, n)
return max

new root
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c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element n <1

. error “heap underflow”
1. Make sure heap is not empty

max = A[l
2. Make a copy of the maximum element (the root) A[l] = A[[n]]
3. Make the last node in the tree the new root N o= n_— 1
MAX-HEAPIFY (4, 1, n)
return max

new root
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c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element n <1

error “heap underflow”

1. Make sure heap is not empty max = A[l]

2. Make a copy of the maximum element (the root) A[] = Aln]

3. Make the last node in the tree the new root — __ 1

4. Re-heapify the heap, with one fewer node rli/lz:XnHEAPIFY(A 1)
return max
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c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element n <1

error “heap underflow”

1. Make sure heap is not empty max = A[l]

2. Make a copy of the maximum element (the root) A[] = Aln]

3. Make the last node in the tree the new root — __ 1

4. Re-heapify the heap, with one fewer node rli/lz:XnHEAPIFY(A 1)
return max
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c 5 HEAP-EXTRACT-MAX (A, 1)
Extracting maximum element n <1

error “heap underflow”

1. Make sure heap is not empty max = A[l]

2. Make a copy of the maximum element (the root) A[] = Aln]

3. Make the last node in the tree the new root N o= n_ 1

4. Re-heapify the heap, with one fewer node -t

5. Return the copy of the maximum element MAX-HEAPIFY (4,1, 1)
return max
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8 HEAP-INCREASE-KEY (A4, i, key)
Increasing key value if key < Al]
error “new key is smaller than current key”

Given a heap A, index i, and new value key Ali] = key
while ; > 1 and A[PARENT(i)] < A[i]
exchange A[i] with A[PARENT(7)]
i = PARENT(i)
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- Ali] = key
Analysis: while i > 1 and A[PARENT(/)] < A[i]
exchange A[i] with A[PARENT(i)]
i = PARENT(i)

Lecture 6, 05.03.2025



8 HEAP-INCREASE-KEY (A4, i, key)
Increasing key value if key < A]
error “new key is smaller than current key”

- Ali] = key
Analysis: _ while i > 1 and A[PARENT(i)] < A[i]
Upward path from node i has exchange A[i] with A[PARENT(i)]
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: : MAX-HEAP-INSERT (A4, key, n)
Inserting into the heap N

Given a new key to insert into heap Aln] = —o0
HEAP-INCREASE-KEY (4, n, key)
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: : MAX-HEAP-INSERT (A, key, n)
Inserting into the heap o

_ Aln] = —o0
Analysis: HEAP-INCREASE-KEY (4, 1, key)
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Heapsort runs in time O(nlog n) and is in-place

v

v

Great algorithm but a well-implemented quicksort usually beats it in
practice

\4

Heaps efficiently implement priority queues
INSERT(S,X): O(lgn)
MaximMuM(S): O(1)
EXTRACT-MAX(S): O(lg n)
INCREASE-KEY(S,X,K): O(lgn)

> Min-priority queues are implemented with min-heaps similarly
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