

Algorithms: Strassen's Algorithm for Matrix Multiplication + Heaps and Heapsort

Alessandro Chiesa, Ola Svensson

EPFL School of Computer and Communication Sciences

Lecture 6, 05.03.2025

DIVIDE-AND-CONQUER

Merge Sort

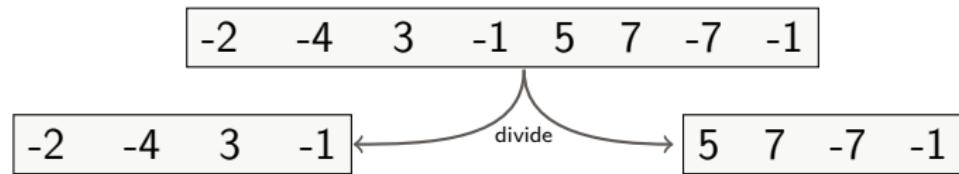
Maximum-Subarray Problem

Matrix Multiplication

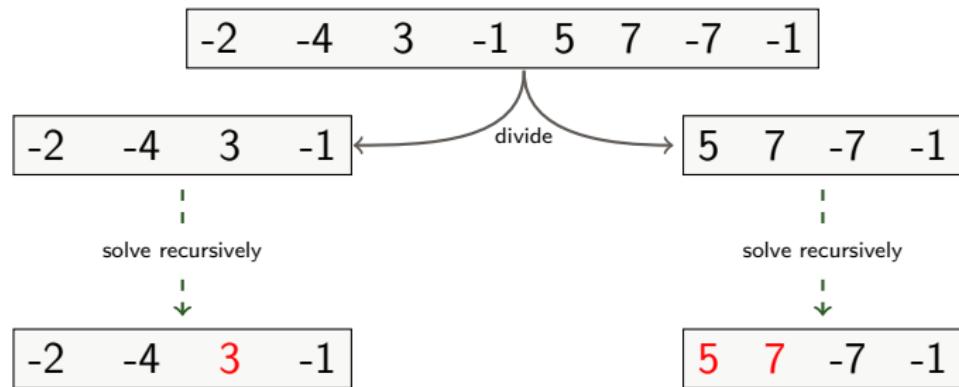
Recall Maximum-Subarray Problem

-2	-4	3	-1	5	7	-7	-1
----	----	---	----	---	---	----	----

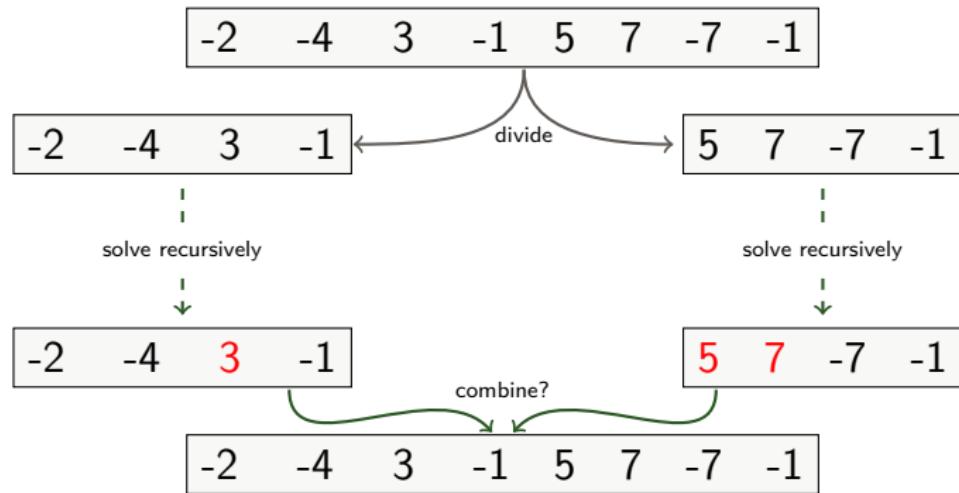
Recall Maximum-Subarray Problem



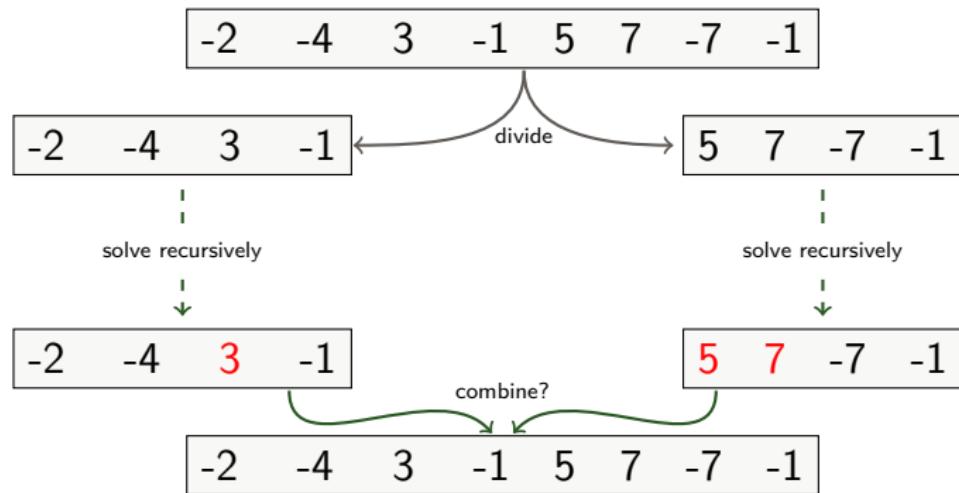
Recall Maximum-Subarray Problem



Recall Maximum-Subarray Problem



Recall Maximum-Subarray Problem

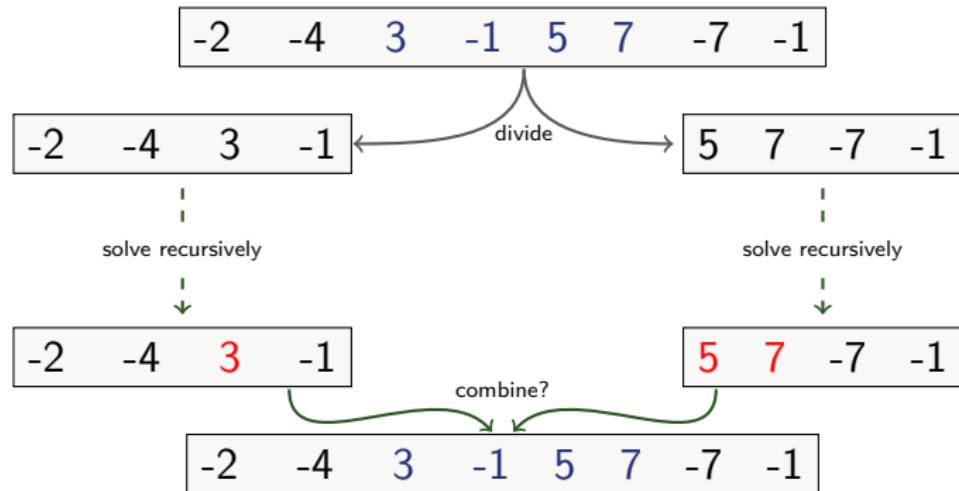


Solution

Also find the maximum subarray that crosses the midpoint!

Solution

Also find the maximum subarray that crosses the midpoint!



Finding maximum subarray crossing midpoint

Finding maximum subarray crossing midpoint

- ▶ Any subarray crossing the midpoint $A[mid]$ is made of two subarrays $A[i \dots mid]$ and $A[mid + 1, \dots, j]$ where $low \leq i \leq mid$ and $mid < j \leq high$
- ▶ Find maximum subarrays of the form $A[i \dots mid]$ and $A[mid + 1 \dots j]$ and then combine them.

-2	-4	3	-1	5	7	-7	-1
----	----	---	----	---	---	----	----

-2	-4	3	-1	5	7	-7	-1
----	----	---	----	---	---	----	----

-2	-4	3	-1	5	7	-7	-1
----	----	---	----	---	---	----	----

Crossing subarray

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

low		mid		high
-2	-4	3	-1	5

7 -7 -1

Crossing subarray

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

low

mid

high

-2	-4	3	-1	5	7	-7	-1
----	----	---	----	---	---	----	----

Crossing subarray

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

low		mid		high
-2	-4	3	-1	5 7 -7 -1

Crossing subarray

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

low

mid

high

-2	-4	3	-1	5	7	-7	-1
----	----	---	----	---	---	----	----

Crossing subarray

low	mid
-2	-4

3	-1	5
---	----	---

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

$\leftarrow \left(max-left, max-right, left-sum + right-sum \right)$

Crossing subarray

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

low

mid

high

-2	-4	3	-1	5	7	-7	-1
----	----	---	----	---	---	----	----

Crossing subarray

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

low

mid

high

-2	-4	3	-1	5	7	-7	-1
----	----	---	----	---	---	----	----

Crossing subarray

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

low

mid

high

-2	-4	3	-1	5	7	-7	-1
----	----	---	----	---	---	----	----

Crossing subarray

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

low

mid

high

-2	-4	3	-1	5	7	-7	-1
----	----	---	----	---	---	----	----

Crossing subarray

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return $(max-left, max-right, left-sum + right-sum)$

low		mid		high
-2	-4	3	-1	5 7 -7 -1

Crossing subarray

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return $(max-left, max-right, left-sum + right-sum)$

low

mid

high

-2	-4	3	-1	5	7	-7	-1
----	----	---	----	---	---	----	----

Crossing subarray

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

low		mid		high
-2	-4	3	-1	5

Crossing subarray

Running time?

Space?

low		mid		high
-2	-4	3	-1	5 7 -7 -1

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

Crossing subarray

Running time? $\Theta(n)$

Space?

low		mid		high
-2	-4	3	-1	5 7 -7 -1

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

Crossing subarray

Running time? $\Theta(n)$

Space? $\Theta(n)$

low			mid				high
-2	-4	3	-1	5	7	-7	-1

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

// Find a maximum subarray of the form $A[i \dots mid]$.

$left-sum = -\infty$

$sum = 0$

for $i = mid$ **downto** low

$sum = sum + A[i]$

if $sum > left-sum$

$left-sum = sum$

$max-left = i$

// Find a maximum subarray of the form $A[mid + 1 \dots j]$.

$right-sum = -\infty$

$sum = 0$

for $j = mid + 1$ **to** $high$

$sum = sum + A[j]$

if $sum > right-sum$

$right-sum = sum$

$max-right = j$

// Return the indices and the sum of the two subarrays.

return ($max-left, max-right, left-sum + right-sum$)

Analysis

FIND-MAXIMUM-SUBARRAY($A, low, high$)

if $high == low$

return ($low, high, A[low]$)

 // base case: only one element

else $mid = \lfloor (low + high)/2 \rfloor$

 ($left-low, left-high, left-sum$) =

 FIND-MAXIMUM-SUBARRAY(A, low, mid)

 ($right-low, right-high, right-sum$) =

 FIND-MAXIMUM-SUBARRAY($A, mid + 1, high$)

 ($cross-low, cross-high, cross-sum$) =

 FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

if $left-sum \geq right-sum$ and $left-sum \geq cross-sum$

return ($left-low, left-high, left-sum$)

elseif $right-sum \geq left-sum$ and $right-sum \geq cross-sum$

return ($right-low, right-high, right-sum$)

else **return** ($cross-low, cross-high, cross-sum$)

Analysis

FIND-MAXIMUM-SUBARRAY($A, low, high$)

if $high == low$

return ($low, high, A[low]$)

 // base case: only one element

else $mid = \lfloor (low + high)/2 \rfloor$

 ($left-low, left-high, left-sum$) =

 FIND-MAXIMUM-SUBARRAY(A, low, mid)

 ($right-low, right-high, right-sum$) =

 FIND-MAXIMUM-SUBARRAY($A, mid + 1, high$)

 ($cross-low, cross-high, cross-sum$) =

 FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

if $left-sum \geq right-sum$ and $left-sum \geq cross-sum$

return ($left-low, left-high, left-sum$)

elseif $right-sum \geq left-sum$ and $right-sum \geq cross-sum$

return ($right-low, right-high, right-sum$)

else **return** ($cross-low, cross-high, cross-sum$)

Divide takes constant time, i.e., $\Theta(1)$

Analysis

```
FIND-MAXIMUM-SUBARRAY( $A, low, high$ )
  if  $high == low$ 
    return ( $low, high, A[low]$ ) // base case: only one element
  else  $mid = \lfloor (low + high)/2 \rfloor$ 
    ( $left-low, left-high, left-sum$ ) =
      FIND-MAXIMUM-SUBARRAY( $A, low, mid$ )
    ( $right-low, right-high, right-sum$ ) =
      FIND-MAXIMUM-SUBARRAY( $A, mid + 1, high$ )
    ( $cross-low, cross-high, cross-sum$ ) =
      FIND-MAX-CROSSING-SUBARRAY( $A, low, mid, high$ )
    if  $left-sum \geq right-sum$  and  $left-sum \geq cross-sum$ 
      return ( $left-low, left-high, left-sum$ )
    elseif  $right-sum \geq left-sum$  and  $right-sum \geq cross-sum$ 
      return ( $right-low, right-high, right-sum$ )
    else return ( $cross-low, cross-high, cross-sum$ )
```

Divide takes constant time, i.e., $\Theta(1)$

Conquer recursively solve two subproblems, each of size $n/2 \Rightarrow 2T(n/2)$

Analysis

FIND-MAXIMUM-SUBARRAY($A, low, high$)

if $high == low$

return ($low, high, A[low]$)

 // base case: only one element

else $mid = \lfloor (low + high)/2 \rfloor$

 ($left-low, left-high, left-sum$) =

 FIND-MAXIMUM-SUBARRAY(A, low, mid)

 ($right-low, right-high, right-sum$) =

 FIND-MAXIMUM-SUBARRAY($A, mid + 1, high$)

 ($cross-low, cross-high, cross-sum$) =

 FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

if $left-sum \geq right-sum$ and $left-sum \geq cross-sum$

return ($left-low, left-high, left-sum$)

elseif $right-sum \geq left-sum$ and $right-sum \geq cross-sum$

return ($right-low, right-high, right-sum$)

else **return** ($cross-low, cross-high, cross-sum$)

Divide takes constant time, i.e., $\Theta(1)$

Conquer recursively solve two subproblems, each of size
 $n/2 \Rightarrow 2T(n/2)$

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY
 $\Rightarrow \Theta(n)$

Analysis

FIND-MAXIMUM-SUBARRAY($A, low, high$)

if $high == low$

return $(low, high, A[low])$

// base case: only one element

else $mid = \lfloor (low + high)/2 \rfloor$

$(left-low, left-high, left-sum) =$

FIND-MAXIMUM-SUBARRAY(A, low, mid)

$(right-low, right-high, right-sum) =$

FIND-MAXIMUM-SUBARRAY($A, mid + 1, high$)

$(cross-low, cross-high, cross-sum) =$

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

if $left-sum \geq right-sum$ and $left-sum \geq cross-sum$

return $(left-low, left-high, left-sum)$

elseif $right-sum \geq left-sum$ and $right-sum \geq cross-sum$

return $(right-low, right-high, right-sum)$

else return $(cross-low, cross-high, cross-sum)$

Divide takes constant time, i.e., $\Theta(1)$

Conquer recursively solve two subproblems, each of size $n/2 \Rightarrow 2T(n/2)$

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY
 $\Rightarrow \Theta(n)$

Recursion for the running time is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$$

Analysis

FIND-MAXIMUM-SUBARRAY($A, low, high$)

if $high == low$

return $(low, high, A[low])$

// base case: only one element

else $mid = \lfloor (low + high)/2 \rfloor$

$(left-low, left-high, left-sum) =$

FIND-MAXIMUM-SUBARRAY(A, low, mid)

$(right-low, right-high, right-sum) =$

FIND-MAXIMUM-SUBARRAY($A, mid + 1, high$)

$(cross-low, cross-high, cross-sum) =$

FIND-MAX-CROSSING-SUBARRAY($A, low, mid, high$)

if $left-sum \geq right-sum$ and $left-sum \geq cross-sum$

return $(left-low, left-high, left-sum)$

elseif $right-sum \geq left-sum$ and $right-sum \geq cross-sum$

return $(right-low, right-high, right-sum)$

else return $(cross-low, cross-high, cross-sum)$

Divide takes constant time, i.e., $\Theta(1)$

Conquer recursively solve two subproblems, each of size $n/2 \Rightarrow 2T(n/2)$

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY
 $\Rightarrow \Theta(n)$

Recursion for the running time is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$$

Hence, $T(n) = \Theta(n \log n)$

MATRIX MULTIPLICATION

Matrix Multiplication

Definition

Input: Two $n \times n$ (square) matrices, $A = (a_{ij})$ and $B = (b_{ij})$

Output: $n \times n$ matrix $C = (c_{ij})$, where $C = A \cdot B$

Matrix Multiplication

Definition

Input: Two $n \times n$ (square) matrices, $A = (a_{ij})$ and $B = (b_{ij})$

Output: $n \times n$ matrix $C = (c_{ij})$, where $C = A \cdot B$

Example ($n = 2$):

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

where

$$c_{11} = a_{11}b_{11} + a_{12}b_{21},$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22},$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21},$$

$$c_{22} = a_{21}b_{12} + a_{22}b_{22}.$$

Matrix Multiplication

Definition

Input: Two $n \times n$ (square) matrices, $A = (a_{ij})$ and $B = (b_{ij})$

Output: $n \times n$ matrix $C = (c_{ij})$, where $C = A \cdot B$

Example ($n = 2$):

$$\begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

Matrix Multiplication

Definition

Input: Two $n \times n$ (square) matrices, $A = (a_{ij})$ and $B = (b_{ij})$

Output: $n \times n$ matrix $C = (c_{ij})$, where $C = A \cdot B$

Example ($n = 2$):

$$\begin{pmatrix} 5 & 3 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

How to multiply two matrices?

How to multiply two matrices?

$$\begin{pmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,n} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n,1} & c_{n,2} & \cdots & c_{n,n} \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,n} \end{pmatrix}$$

$$c_{1,1} = a_{1,1}b_{1,1} + a_{1,2}b_{2,1} + a_{1,3}b_{3,1} + \dots, a_{1,n}b_{n,1} = \sum_{k=1}^n a_{1k}b_{k1}$$

How to multiply two matrices?

$$\begin{pmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,n} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n,1} & c_{n,2} & \cdots & c_{n,n} \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,n} \end{pmatrix}$$

$$c_{2,1} = a_{2,1}b_{1,1} + a_{2,2}b_{2,1} + a_{2,3}b_{3,1} + \dots, a_{2,n}b_{n,1} = \sum_{k=1}^n a_{2k}b_{k1}$$

How to multiply two matrices?

$$\begin{pmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,n} \\ c_{2,1} & \textcolor{red}{c_{2,2}} & \cdots & c_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n,1} & c_{n,2} & \cdots & c_{n,n} \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & \textcolor{green}{a_{2,2}} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\ b_{2,1} & \textcolor{blue}{b_{2,2}} & \cdots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,n} \end{pmatrix}$$

$$c_{2,2} = a_{2,1}b_{1,2} + a_{2,2}b_{2,2} + a_{2,3}b_{3,2} + \dots, a_{2,n}b_{n,2} = \sum_{k=1}^n a_{2k}b_{k2}$$

How to multiply two matrices?

$$\begin{pmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,n} \\ c_{2,1} & \textcolor{red}{c_{2,2}} & \cdots & c_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n,1} & c_{n,2} & \cdots & c_{n,n} \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,n} \end{pmatrix}$$

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$$

Naive Algorithm

Well simply multiply the matrices...

```
SQUARE-MAT-MULT( $A, B, n$ )
let  $C$  be a new  $n \times n$  matrix
for  $i = 1$  to  $n$ 
    for  $j = 1$  to  $n$ 
         $c_{ij} = 0$ 
        for  $k = 1$  to  $n$ 
             $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
return  $C$ 
```

Example:

$$\begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

Naive Algorithm

Well simply multiply the matrices...

```
SQUARE-MAT-MULT( $A, B, n$ )
let  $C$  be a new  $n \times n$  matrix
for  $i = 1$  to  $n$ 
    for  $j = 1$  to  $n$ 
         $c_{ij} = 0$ 
        for  $k = 1$  to  $n$ 
             $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
return  $C$ 
```

Example:

$$\begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

Naive Algorithm

Well simply multiply the matrices...

```
SQUARE-MAT-MULT( $A, B, n$ )
let  $C$  be a new  $n \times n$  matrix
for  $i = 1$  to  $n$ 
    for  $j = 1$  to  $n$ 
         $c_{ij} = 0$ 
        for  $k = 1$  to  $n$ 
             $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
return  $C$ 
```

Example:

$$\begin{pmatrix} 3 & ? \\ ? & ? \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

Naive Algorithm

Well simply multiply the matrices...

```
SQUARE-MAT-MULT( $A, B, n$ )
let  $C$  be a new  $n \times n$  matrix
for  $i = 1$  to  $n$ 
    for  $j = 1$  to  $n$ 
         $c_{ij} = 0$ 
        for  $k = 1$  to  $n$ 
             $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
return  $C$ 
```

Example:

$$\begin{pmatrix} 5 & ? \\ ? & ? \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

Naive Algorithm

Well simply multiply the matrices...

```
SQUARE-MAT-MULT( $A, B, n$ )
let  $C$  be a new  $n \times n$  matrix
for  $i = 1$  to  $n$ 
    for  $j = 1$  to  $n$ 
         $c_{ij} = 0$ 
        for  $k = 1$  to  $n$ 
             $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
return  $C$ 
```

Example:

$$\begin{pmatrix} 5 & ? \\ ? & ? \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

Naive Algorithm

Well simply multiply the matrices...

```
SQUARE-MAT-MULT( $A, B, n$ )
let  $C$  be a new  $n \times n$  matrix
for  $i = 1$  to  $n$ 
    for  $j = 1$  to  $n$ 
         $c_{ij} = 0$ 
        for  $k = 1$  to  $n$ 
             $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
return  $C$ 
```

Example:

$$\begin{pmatrix} 5 & -1 \\ ? & ? \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

Naive Algorithm

Well simply multiply the matrices...

```
SQUARE-MAT-MULT( $A, B, n$ )
let  $C$  be a new  $n \times n$  matrix
for  $i = 1$  to  $n$ 
    for  $j = 1$  to  $n$ 
         $c_{ij} = 0$ 
        for  $k = 1$  to  $n$ 
             $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
return  $C$ 
```

Example:

$$\begin{pmatrix} 5 & 3 \\ ? & ? \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

Naive Algorithm

Well simply multiply the matrices...

```
SQUARE-MAT-MULT( $A, B, n$ )
let  $C$  be a new  $n \times n$  matrix
for  $i = 1$  to  $n$ 
    for  $j = 1$  to  $n$ 
         $c_{ij} = 0$ 
        for  $k = 1$  to  $n$ 
             $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
return  $C$ 
```

Example:

$$\begin{pmatrix} 5 & 3 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

Naive Algorithm

Well simply multiply the matrices...

```
SQUARE-MAT-MULT( $A, B, n$ )
let  $C$  be a new  $n \times n$  matrix
for  $i = 1$  to  $n$ 
    for  $j = 1$  to  $n$ 
         $c_{ij} = 0$ 
        for  $k = 1$  to  $n$ 
             $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
return  $C$ 
```

Running time?

Naive Algorithm

Well simply multiply the matrices...

```
SQUARE-MAT-MULT( $A, B, n$ )
let  $C$  be a new  $n \times n$  matrix
for  $i = 1$  to  $n$ 
    for  $j = 1$  to  $n$ 
         $c_{ij} = 0$ 
        for  $k = 1$  to  $n$ 
             $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
return  $C$ 
```

Running time? $\Theta(n^3)$

Naive Algorithm

Well simply multiply the matrices...

```
SQUARE-MAT-MULT( $A, B, n$ )
let  $C$  be a new  $n \times n$  matrix
for  $i = 1$  to  $n$ 
    for  $j = 1$  to  $n$ 
         $c_{ij} = 0$ 
        for  $k = 1$  to  $n$ 
             $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
return  $C$ 
```

Running time? $\Theta(n^3)$

Space?

Naive Algorithm

Well simply multiply the matrices...

```
SQUARE-MAT-MULT( $A, B, n$ )
let  $C$  be a new  $n \times n$  matrix
for  $i = 1$  to  $n$ 
    for  $j = 1$  to  $n$ 
         $c_{ij} = 0$ 
        for  $k = 1$  to  $n$ 
             $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ 
return  $C$ 
```

Running time? $\Theta(n^3)$

Space? $\Theta(n^2)$

Smart Algorithm: Divide-and-Conquer

=

×

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline \hline A_{21} & A_{22} \\ \hline \end{array} \times \begin{array}{|c|c|} \hline B_{11} & B_{12} \\ \hline \hline B_{21} & B_{22} \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline A_{21} & A_{22} \\ \hline \end{array} \times \begin{array}{|c|c|} \hline B_{11} & B_{12} \\ \hline B_{21} & B_{22} \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|c|} \hline & \text{C}_{11} & \text{C}_{12} \\ \hline \text{C}_{21} & \text{C}_{22} & \\ \hline \end{array} = \begin{array}{|c|c|c|} \hline & \text{A}_{11} & \text{A}_{12} \\ \hline & \text{A}_{21} & \text{A}_{22} \\ \hline \end{array} \times \begin{array}{|c|c|c|} \hline & \text{B}_{11} & \text{B}_{12} \\ \hline & \text{B}_{21} & \text{B}_{22} \\ \hline \end{array}$$

The diagram illustrates the divide-and-conquer strategy for matrix multiplication. It shows a 2x2 matrix C being decomposed into four submatrices: C_{11} (top-left, red), C_{12} (top-right), C_{21} (bottom-left), and C_{22} (bottom-right). This is equated to the product of two 2x2 matrices A and B . Matrix A is partitioned into A_{11} (top-left, green), A_{12} (top-right), A_{21} (bottom-left), and A_{22} (bottom-right). Matrix B is partitioned into B_{11} (top-left, blue), B_{12} (top-right), B_{21} (bottom-left), and B_{22} (bottom-right). The top-left cell of A contains a 4x4 grid with the first row filled with 'o' and the first column with '*' (representing a 2x2 submatrix). The bottom-left cell of B contains a 5x5 grid with the first 4 rows filled with 'o' and the first 4 columns with '*' (representing a 2x2 submatrix).

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline \begin{matrix} \circ & \circ & \circ & \circ \end{matrix} & \begin{matrix} * & * & * & * \end{matrix} \\ \hline A_{11} & A_{12} \\ \hline A_{21} & A_{22} \\ \hline \end{array} \times \begin{array}{|c|c|} \hline \begin{matrix} \circ \\ \circ \\ \circ \\ * \\ * \end{matrix} & B_{12} \\ \hline B_{21} & B_{22} \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline \textcircled{o} & \textcircled{o} & \textcircled{o} & \textcircled{o} & * & * & * & * \\ \hline A_{11} & & & & A_{12} & & & \\ \hline A_{21} & & & & A_{22} & & & \\ \hline \end{array} \times \begin{array}{|c|c|} \hline \textcircled{o} & \\ \hline \textcircled{o} & \\ \hline \textcircled{o} & \\ \hline * & \\ \hline \textcircled{B}_{21}^* & \\ \hline \textcircled{B}_{21}^* & \\ \hline \end{array} = \begin{array}{|c|c|} \hline B_{11} & B_{12} \\ \hline B_{21} & B_{22} \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline \textcircled{o} & \textcircled{o} & \textcircled{o} & \textcircled{o} & * & * & * & * \\ \hline A_{11} & & & & A_{12} & & & \\ \hline A_{21} & & & & A_{22} & & & \\ \hline \end{array} \times \begin{array}{|c|c|} \hline B_{11} & \textcircled{o} \\ \hline \textcircled{o} & \textcircled{o} \\ \hline \textcircled{o} & \textcircled{o} \\ \hline \textcircled{*} & \textcircled{*} \\ \hline \textcircled{*} & \textcircled{*} \\ \hline \textcircled{*} & \textcircled{*} \\ \hline B_{12} & \\ \hline B_{21} & \\ \hline B_{22} & \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline \textcircled{o} & \textcircled{o} & \textcircled{o} & * & * & * \\ \hline A_{11} & & & A_{12} & & \\ \hline A_{21} & & & A_{22} & & \\ \hline \end{array} \times \begin{array}{|c|c|} \hline \textcircled{o} & B_{11} \\ \hline \textcircled{o} & B_{12} \\ \hline \textcircled{o} & \\ \hline \textcircled{o} & \\ \hline * & B_{21} \\ \hline * & B_{22} \\ \hline * & \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline \textcircled{o} & \textcircled{o} & \textcircled{o} & * & * & * \\ \hline A_{11} & & & A_{12} & & \\ \hline A_{21} & & & A_{22} & & \\ \hline \end{array} \times \begin{array}{|c|c|} \hline \textcircled{o} & B_{11} \\ \hline \textcircled{o} & \\ \hline * & B_{21} \\ \hline * & \\ \hline B_{12} & B_{22} \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline \textcircled{o} & \textcircled{o} & \textcircled{o} & * & * & * \\ \hline A_{11} & & & A_{12} & & \\ \hline A_{21} & & & A_{22} & & \\ \hline \end{array} \times \begin{array}{|c|c|} \hline \textcircled{o} & \\ \hline B_{11} & \\ \hline \textcircled{o} & \\ \hline * & \\ \hline B_{21} & \\ \hline * & \\ \hline \end{array} \begin{array}{|c|c|} \hline B_{12} \\ \hline B_{22} \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline \textcircled{o} & \textcircled{o} & \textcircled{o} & * & * & * \\ \hline A_{11} & & & A_{12} & & \\ \hline A_{21} & & & A_{22} & & \\ \hline \end{array} \times \begin{array}{|c|c|} \hline \textcircled{o} & B_{12} \\ \hline \textcircled{o} & \\ \hline \textcircled{o} & \\ \hline \textcircled{o} & \\ \hline * & B_{22} \\ \hline * & \\ \hline * & \\ \hline * & \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline A_{21} & A_{22} \\ \hline \end{array} \times \begin{array}{|c|c|} \hline B_{11} & B_{12} \\ \hline B_{21} & B_{22} \\ \hline \end{array}$$

The diagram illustrates the divide-and-conquer strategy for matrix multiplication. It shows a 2x2 matrix C being decomposed into four 1x1 blocks (C_{11} , C_{12} , C_{21} , C_{22}), which are then multiplied by a 2x2 matrix A (decomposed into A_{11} , A_{12} , A_{21} , A_{22}) and a 2x2 matrix B (decomposed into B_{11} , B_{12} , B_{21} , B_{22}). The blocks are color-coded: C_{11} is red, A_{11} has a green border, B_{11} has a blue border, and the other blocks are white. The multiplication is represented by the equals sign and the times sign.

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline A_{21} & A_{22} \\ \hline \end{array} \times \begin{array}{|c|c|} \hline B_{11} & B_{12} \\ \hline B_{21} & B_{22} \\ \hline \end{array}$$

The diagram illustrates a divide-and-conquer strategy for matrix multiplication. It shows a 2x2 matrix C being multiplied by a 2x2 matrix A to produce a 2x2 matrix B . The matrix C is divided into four quadrants: C_{11} (red, top-left), C_{12} (white, top-right), C_{21} (white, bottom-left), and C_{22} (white, bottom-right). The matrix A is divided into four quadrants: A_{11} (light green, top-left), A_{12} (light green, top-right), A_{21} (white, bottom-left), and A_{22} (white, bottom-right). The matrix B is divided into four quadrants: B_{11} (light blue, top-left), B_{12} (white, top-right), B_{21} (light blue, bottom-left), and B_{22} (white, bottom-right). The central element A_{11} is further subdivided into a 2x2 grid with a red center cell labeled A_{11} , surrounded by white cells with small circles, and a 2x2 grid of asterisks $*$ in the bottom-right corner of the A matrix.

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline A_{21} & A_{22} \\ \hline \end{array} \times \begin{array}{|c|c|} \hline B_{11} & B_{12} \\ \hline B_{21} & B_{22} \\ \hline \end{array}$$

The diagram illustrates the divide-and-conquer strategy for matrix multiplication. It shows a 2x2 matrix C being decomposed into four 1x1 blocks (C_{11} , C_{12} , C_{21} , C_{22}), which are then multiplied by a 2x2 matrix A and a 2x2 matrix B . The blocks are highlighted with different colors: C_{11} is red, C_{12} is white, C_{21} is white, and C_{22} is white. The blocks in matrix A are A_{11} (light green), A_{12} (light green), A_{21} (white), and A_{22} (white). The blocks in matrix B are B_{11} (light blue), B_{12} (white), B_{21} (light blue), and B_{22} (white). The multiplication is represented by the equals sign and the times sign (\times).

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline A_{21} & A_{22} \\ \hline \end{array} \times \begin{array}{|c|c|} \hline B_{11} & B_{12} \\ \hline B_{21} & B_{22} \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline \textcircled{o} & \textcircled{o} & \textcircled{o} & \textcircled{o} & * & * & * & * \\ \hline A_{21} & A_{22} \\ \hline \end{array} \times \begin{array}{|c|c|} \hline \textcircled{o} & B_{11} & B_{12} \\ \hline * & B_{21} & B_{22} \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline \textcircled{o} & \textcircled{o} & \textcircled{o} & \textcircled{o} & * & * & * & * \\ \hline A_{21} & A_{22} \\ \hline \end{array} \times \begin{array}{|c|c|} \hline \textcircled{o} & B_{11} \\ \hline \textcircled{o} & \textcircled{o} \\ \hline * & B_{21} \\ \hline * & \textcircled{*} \\ \hline B_{22} & \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline \textcircled{o} & \textcircled{o} & \textcircled{o} & \textcircled{o} & * & * & * & * \\ \hline A_{21} & A_{22} \\ \hline \end{array} \times \begin{array}{|c|c|} \hline B_{11} & B_{12} \\ \hline \textcircled{o} & \textcircled{o} \\ \hline \textcircled{o} & * \\ \hline B_{21} & B_{22} \\ \hline \textcircled{*} & \textcircled{*} \\ \hline \end{array}$$

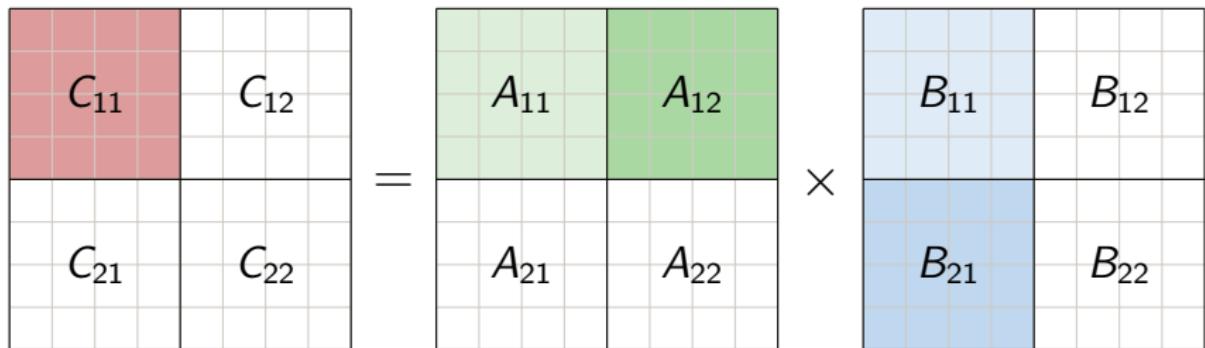
Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline \textcircled{o} & \textcircled{o} & \textcircled{o} & \textcircled{o} & * & * & * & * \\ \hline A_{21} & A_{22} \\ \hline \end{array} \times \begin{array}{|c|c|} \hline B_{11} & B_{12} \\ \hline \textcircled{o} & \textcircled{o} \\ \hline B_{21} & B_{22} \\ \hline \textcircled{*} & \textcircled{*} \\ \hline \textcircled{*} & \textcircled{*} \\ \hline \textcircled{*} & \textcircled{*} \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer

$$\begin{array}{|c|c|} \hline C_{11} & C_{12} \\ \hline C_{21} & C_{22} \\ \hline \end{array} = \begin{array}{|c|c|} \hline A_{11} & A_{12} \\ \hline A_{21} & A_{22} \\ \hline \end{array} \times \begin{array}{|c|c|} \hline B_{11} & B_{12} \\ \hline B_{21} & B_{22} \\ \hline \end{array}$$

Smart Algorithm: Divide-and-Conquer



$$C_{11} = A_{11}B_{11} + A_{12}B_{21} \quad C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21} \quad C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

Divide-and-Conquer Algorithm

Divide each of A, B, C into four $n/2 \times n/2$ matrices: so that

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Divide-and-Conquer Algorithm

Divide each of A, B, C into four $n/2 \times n/2$ matrices: so that

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Conquer: Since

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

we recursively solve 8 **matrix multiplications** that each multiply two $n/2 \times n/2$ matrices.

Divide-and-Conquer Algorithm

Divide each of A, B, C into four $n/2 \times n/2$ matrices: so that

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Conquer: Since

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

we recursively solve 8 **matrix multiplications** that each multiply two $n/2 \times n/2$ matrices.

Combine: Make the additions to get C

Pseudocode and Analysis

Let $T(n)$ be the time to multiply two $n \times n$ matrices.

REC-MAT-MULT(A, B, n)

let C be a new $n \times n$ matrix

if $n == 1$

$c_{11} = a_{11} \cdot b_{11}$

else partition A , B , and C into $n/2 \times n/2$ submatrices

$C_{11} = \text{REC-MAT-MULT}(A_{11}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{21}, n/2)$

$C_{12} = \text{REC-MAT-MULT}(A_{11}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{22}, n/2)$

$C_{21} = \text{REC-MAT-MULT}(A_{21}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{21}, n/2)$

$C_{22} = \text{REC-MAT-MULT}(A_{21}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{22}, n/2)$

return C

Pseudocode and Analysis

Let $T(n)$ be the time to multiply two $n \times n$ matrices.

Base case: $n = 1$. Perform one scalar multiplication: $\Theta(1)$

REC-MAT-MULT(A, B, n)

let C be a new $n \times n$ matrix

if $n == 1$

$c_{11} = a_{11} \cdot b_{11}$

else partition A, B , and C into $n/2 \times n/2$ submatrices

$C_{11} = \text{REC-MAT-MULT}(A_{11}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{21}, n/2)$

$C_{12} = \text{REC-MAT-MULT}(A_{11}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{22}, n/2)$

$C_{21} = \text{REC-MAT-MULT}(A_{21}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{21}, n/2)$

$C_{22} = \text{REC-MAT-MULT}(A_{21}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{22}, n/2)$

return C

Pseudocode and Analysis

Let $T(n)$ be the time to multiply two $n \times n$ matrices.

Base case: $n = 1$. Perform one scalar multiplication: $\Theta(1)$

Recursive case: $n > 1$.

- Dividing takes $\Theta(1)$ time if careful and $\Theta(n^2)$ if simply copying

REC-MAT-MULT(A, B, n)

let C be a new $n \times n$ matrix

if $n == 1$

$c_{11} = a_{11} \cdot b_{11}$

else partition A , B , and C into $n/2 \times n/2$ submatrices

$C_{11} = \text{REC-MAT-MULT}(A_{11}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{21}, n/2)$

$C_{12} = \text{REC-MAT-MULT}(A_{11}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{22}, n/2)$

$C_{21} = \text{REC-MAT-MULT}(A_{21}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{21}, n/2)$

$C_{22} = \text{REC-MAT-MULT}(A_{21}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{22}, n/2)$

return C

Pseudocode and Analysis

Let $T(n)$ be the time to multiply two $n \times n$ matrices.

Base case: $n = 1$. Perform one scalar multiplication: $\Theta(1)$

Recursive case: $n > 1$.

- ▶ Dividing takes $\Theta(1)$ time if careful and $\Theta(n^2)$ if simply copying
- ▶ Conquering makes 8 recursive calls, each multiplying $n/2 \times n/2$ matrices $\Rightarrow 8T(n/2)$

REC-MAT-MULT(A, B, n)

let C be a new $n \times n$ matrix

if $n == 1$

$c_{11} = a_{11} \cdot b_{11}$

else partition A , B , and C into $n/2 \times n/2$ submatrices

$C_{11} = \text{REC-MAT-MULT}(A_{11}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{21}, n/2)$

$C_{12} = \text{REC-MAT-MULT}(A_{11}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{22}, n/2)$

$C_{21} = \text{REC-MAT-MULT}(A_{21}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{21}, n/2)$

$C_{22} = \text{REC-MAT-MULT}(A_{21}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{22}, n/2)$

return C

Pseudocode and Analysis

Let $T(n)$ be the time to multiply two $n \times n$ matrices.

Base case: $n = 1$. Perform one scalar multiplication: $\Theta(1)$

Recursive case: $n > 1$.

- ▶ Dividing takes $\Theta(1)$ time if careful and $\Theta(n^2)$ if simply copying
- ▶ Conquering makes 8 recursive calls, each multiplying $n/2 \times n/2$ matrices $\Rightarrow 8T(n/2)$
- ▶ Combining takes time $\Theta(n^2)$ time to add $n/2 \times n/2$ matrices.

REC-MAT-MULT(A, B, n)

let C be a new $n \times n$ matrix

if $n == 1$

$c_{11} = a_{11} \cdot b_{11}$

else partition A , B , and C into $n/2 \times n/2$ submatrices

$C_{11} = \text{REC-MAT-MULT}(A_{11}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{21}, n/2)$

$C_{12} = \text{REC-MAT-MULT}(A_{11}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{22}, n/2)$

$C_{21} = \text{REC-MAT-MULT}(A_{21}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{21}, n/2)$

$C_{22} = \text{REC-MAT-MULT}(A_{21}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{22}, n/2)$

return C

Pseudocode and Analysis

Let $T(n)$ be the time to multiply two $n \times n$ matrices.

Base case: $n = 1$. Perform one scalar multiplication: $\Theta(1)$

Recursive case: $n > 1$.

- ▶ Dividing takes $\Theta(1)$ time if careful and $\Theta(n^2)$ if simply copying
- ▶ Conquering makes 8 recursive calls, each multiplying $n/2 \times n/2$ matrices $\Rightarrow 8T(n/2)$
- ▶ Combining takes time $\Theta(n^2)$ time to add $n/2 \times n/2$ matrices.

Recurrence is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

REC-MAT-MULT(A, B, n)

let C be a new $n \times n$ matrix

if $n == 1$

$$c_{11} = a_{11} \cdot b_{11}$$

else partition A , B , and C into $n/2 \times n/2$ submatrices

$$C_{11} = \text{REC-MAT-MULT}(A_{11}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{21}, n/2)$$

$$C_{12} = \text{REC-MAT-MULT}(A_{11}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{22}, n/2)$$

$$C_{21} = \text{REC-MAT-MULT}(A_{21}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{21}, n/2)$$

$$C_{22} = \text{REC-MAT-MULT}(A_{21}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{22}, n/2)$$

return C

Pseudocode and Analysis

Let $T(n)$ be the time to multiply two $n \times n$ matrices.

Base case: $n = 1$. Perform one scalar multiplication: $\Theta(1)$

Recursive case: $n > 1$.

- ▶ Dividing takes $\Theta(1)$ time if careful and $\Theta(n^2)$ if simply copying
- ▶ Conquering makes 8 recursive calls, each multiplying $n/2 \times n/2$ matrices $\Rightarrow 8T(n/2)$
- ▶ Combining takes time $\Theta(n^2)$ time to add $n/2 \times n/2$ matrices.

Recurrence is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

Master method $\Rightarrow T(n) = \Theta(n^3)$

REC-MAT-MULT(A, B, n)

let C be a new $n \times n$ matrix

if $n == 1$

$$c_{11} = a_{11} \cdot b_{11}$$

else partition A , B , and C into $n/2 \times n/2$ submatrices

$$C_{11} = \text{REC-MAT-MULT}(A_{11}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{21}, n/2)$$

$$C_{12} = \text{REC-MAT-MULT}(A_{11}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{22}, n/2)$$

$$C_{21} = \text{REC-MAT-MULT}(A_{21}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{21}, n/2)$$

$$C_{22} = \text{REC-MAT-MULT}(A_{21}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{22}, n/2)$$

return C

Volker Strassen

STRASSEN'S ALGORITHM FOR MATRIX MULTIPLICATION

The Idea

Make less recursive calls

- ▶ Perform only 7 recursive multiplications of $n/2 \times n/2$ matrices, rather than 8

The Idea

Make less recursive calls

- ▶ Perform only 7 recursive multiplications of $n/2 \times n/2$ matrices, rather than 8
- ▶ Will cost several additions of $n/2 \times n/2$ matrices, but just a constant more

⇒ can still absorb the constant factor for matrix additions into the $\Theta(n^2)$ term

The Idea

Make less recursive calls

- ▶ Perform only 7 recursive multiplications of $n/2 \times n/2$ matrices, rather than 8
- ▶ Will cost several additions of $n/2 \times n/2$ matrices, but just a constant more

⇒ can still absorb the constant factor for matrix additions into the $\Theta(n^2)$ term

To obtain the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

The Idea

Make less recursive calls

- ▶ Perform only 7 recursive multiplications of $n/2 \times n/2$ matrices, rather than 8
- ▶ Will cost several additions of $n/2 \times n/2$ matrices, but just a constant more

⇒ can still absorb the constant factor for matrix additions into the $\Theta(n^2)$ term

To obtain the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

Master method $\Rightarrow T(n) = \Theta(n^{\log_2 7})$

Strassen's method

Divide each of A, B, C into four $n/2 \times n/2$ matrices: so that

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Strassen's method

Divide each of A, B, C into four $n/2 \times n/2$ matrices: so that

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Conquer: Calculate recursively 7 matrix multiplications, each of two $n/2 \times n/2$ matrices:

$$M_1 := (A_{11} + A_{22})(B_{11} + B_{22}) \quad M_5 := (A_{11} + A_{12})B_{22}$$

$$M_2 := (A_{21} + A_{22})B_{11} \quad M_6 := (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_3 := A_{11}(B_{12} - B_{22}) \quad M_7 := (A_{12} - A_{22})(B_{21} + B_{22})$$

$$M_4 := A_{22}(B_{21} - B_{11})$$

Strassen's method

Divide each of A, B, C into four $n/2 \times n/2$ matrices: so that

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Conquer: Calculate recursively 7 matrix multiplications, each of two $n/2 \times n/2$ matrices:

$$M_1 := (A_{11} + A_{22})(B_{11} + B_{22}) \quad M_5 := (A_{11} + A_{12})B_{22}$$

$$M_2 := (A_{21} + A_{22})B_{11} \quad M_6 := (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_3 := A_{11}(B_{12} - B_{22}) \quad M_7 := (A_{12} - A_{22})(B_{21} + B_{22})$$

$$M_4 := A_{22}(B_{21} - B_{11})$$

Combine: Let

$$C_{11} = M_1 + M_4 - M_5 + M_7 \quad C_{12} = M_3 + M_5$$

$$C_{21} = M_2 + M_4 \quad C_{22} = M_1 - M_2 + M_3 + M_6$$

Analysis of Strassen's Method

Base case: $n = 1 \Rightarrow$ it takes time $\Theta(1)$

Recursive case: $n > 1$

- ▶ Dividing takes time $\Theta(n^2)$

Analysis of Strassen's Method

Base case: $n = 1 \Rightarrow$ it takes time $\Theta(1)$

Recursive case: $n > 1$

- ▶ Dividing takes time $\Theta(n^2)$
- ▶ Conquering makes 7 recursive calls, each multiplying $n/2 \times n/2$ matrices $\Rightarrow 7T(n/2)$

Analysis of Strassen's Method

Base case: $n = 1 \Rightarrow$ it takes time $\Theta(1)$

Recursive case: $n > 1$

- ▶ Dividing takes time $\Theta(n^2)$
- ▶ Conquering makes 7 recursive calls, each multiplying $n/2 \times n/2$ matrices $\Rightarrow 7T(n/2)$
- ▶ Combining takes time $\Theta(n^2)$ time to add $n/2 \times n/2$ matrices.

Analysis of Strassen's Method

Base case: $n = 1 \Rightarrow$ it takes time $\Theta(1)$

Recursive case: $n > 1$

- ▶ Dividing takes time $\Theta(n^2)$
- ▶ Conquering makes 7 recursive calls, each multiplying $n/2 \times n/2$ matrices $\Rightarrow 7T(n/2)$
- ▶ Combining takes time $\Theta(n^2)$ time to add $n/2 \times n/2$ matrices.

Recurrence is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

Analysis of Strassen's Method

Base case: $n = 1 \Rightarrow$ it takes time $\Theta(1)$

Recursive case: $n > 1$

- ▶ Dividing takes time $\Theta(n^2)$
- ▶ Conquering makes 7 recursive calls, each multiplying $n/2 \times n/2$ matrices $\Rightarrow 7T(n/2)$
- ▶ Combining takes time $\Theta(n^2)$ time to add $n/2 \times n/2$ matrices.

Recurrence is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

Master method $\Rightarrow T(n) = \Theta(n^{\log_2 7})$

Notes about Strassen's method

- ▶ First to beat $\Theta(n^3)$ time
- ▶ Faster known today, method by Coppersmith and Winograd runs in time $O(n^{2.376})$ recently improved by Vassilevska Williams to $O(n^{2.3727})$.
- ▶ Big open problem how to multiply matrices in best way
- ▶ Naive method better for small instances because of hidden constants

Karatsuba's algorithm

Problem: given two n -digit long integers x and y base b , find $x \cdot y$

Grade school algorithm: runtime

Karatsuba's algorithm

Problem: given two n -digit long integers x and y base b , find $x \cdot y$

Grade school algorithm: runtime $O(n^2)$

Can we do better than that?

Multiplying integers via divide and conquer

Divide: each number into two halves:

$$x = x_H \cdot b^{n/2} + x_L$$

$$y = y_H \cdot b^{n/2} + y_L$$

Then we have

$$\begin{aligned}x \cdot y &= (x_H \cdot b^{n/2} + x_L) \cdot (y_H \cdot b^{n/2} + y_L) \\&= x_H \cdot y_H \cdot b^n + (x_H y_L + x_L y_H) \cdot b^{n/2} + x_L y_L\end{aligned}$$

Runtime?

Naive approach: compute $x_H \cdot y_H, x_H \cdot y_L, x_L \cdot y_H, x_L \cdot y_L$

All additions take $\Theta(n)$

$$T(n) = 4T(n/2) + \Theta(n)$$

$$T(n) = \Theta(n^2)$$

Multiplying integers via divide and conquer

Divide: each number into two halves:

$$x = x_H \cdot b^{n/2} + x_L$$

$$y = y_H \cdot b^{n/2} + y_L$$

Then we have

$$\begin{aligned}x \cdot y &= (x_H \cdot b^{n/2} + x_L) \cdot (y_H \cdot b^{n/2} + y_L) \\&= x_H \cdot y_H \cdot b^n + (x_H y_L + x_L y_H) \cdot b^{n/2} + x_L y_L\end{aligned}$$

Runtime?

Naive approach: compute $x_H \cdot y_H, x_H \cdot y_L, x_L \cdot y_H, x_L \cdot y_L$

Suffices to compute $x_H y_H, x_L y_L, (x_H + x_L)(y_H + y_L)$

All additions take $\Theta(n)$

$$T(n) = 3T(n/2) + \Theta(n)$$

$$T(n) = \Theta(n^{\log_2 3})$$

Summary of divide-and-conquer

- ▶ Divide-and-conquer simple but powerful algorithmic paradigm

Summary of divide-and-conquer

- ▶ Divide-and-conquer simple but powerful algorithmic paradigm
- ▶ Merge-sort and maximum subarray both run in time $\Theta(n \log n)$

Summary of divide-and-conquer

- ▶ Divide-and-conquer simple but powerful algorithmic paradigm
- ▶ Merge-sort and maximum subarray both run in time $\Theta(n \log n)$
- ▶ Strassen's algorithm for matrix multiplication in time $\Theta(n^{\log_2 7})$ where $\log_2 7 \approx 2.8$.

HEAPS AND HEAPSORT

Heapsort

Algorithm	worst-case running time	in-place
Insertion Sort	$\Theta(n^2)$	YES
Merge Sort	$\Theta(n \log n)$	NO

Heapsort:

Heapsort

Algorithm	worst-case running time	in-place
Insertion Sort	$\Theta(n^2)$	YES
Merge Sort	$\Theta(n \log n)$	NO

Heapsort:

- ▶ $O(n \lg n)$ worst case – like merge sort

Heapsort

Algorithm	worst-case running time	in-place
Insertion Sort	$\Theta(n^2)$	YES
Merge Sort	$\Theta(n \log n)$	NO

Heapsort:

- ▶ $O(n \lg n)$ worst case – like merge sort
- ▶ Sorts in place – like insertion sort

Heapsort

Algorithm	worst-case running time	in-place
Insertion Sort	$\Theta(n^2)$	YES
Merge Sort	$\Theta(n \log n)$	NO

Heapsort:

- ▶ $O(n \lg n)$ worst case – like merge sort
- ▶ Sorts in place – like insertion sort
- ▶ Combines the best of both algorithms

Heapsort

Algorithm	worst-case running time	in-place
Insertion Sort	$\Theta(n^2)$	YES
Merge Sort	$\Theta(n \log n)$	NO

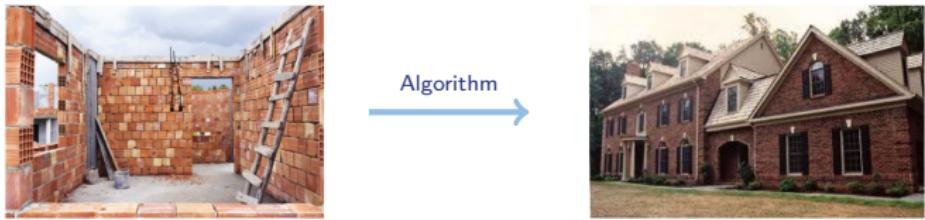
Heapsort:

- ▶ $O(n \lg n)$ worst case – like merge sort
- ▶ Sorts in place – like insertion sort
- ▶ Combines the best of both algorithms

Uses a cool datastructure: heaps

Data Structures = “Building Blocks”

Data Structures = “Building Blocks”

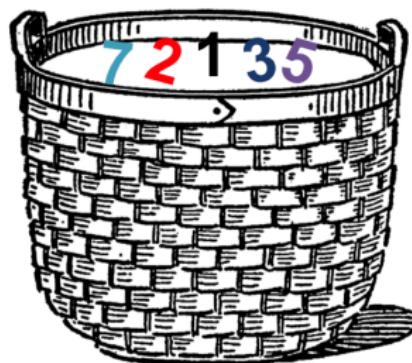


Data Structures = “Building Blocks”

Algorithm

Algorithm

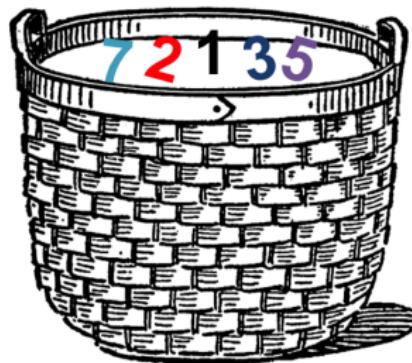
Data structures = dynamic sets of items



Data structure containing numbers

Data structures = dynamic sets of items

What kind of operations do we want to do?

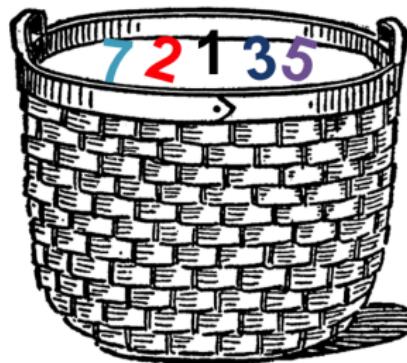


Data structure containing numbers

Data structures = dynamic sets of items

What kind of operations do we want to do?

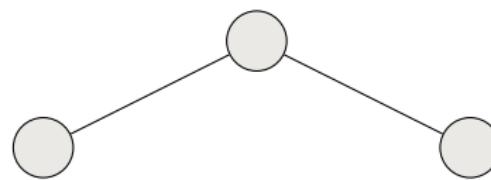
- ▶ Modifying operations: insertion, deletion, ...
- ▶ Query operations: search, maximum, minimum, ...



Data structure containing numbers

(Binary) heap data structure

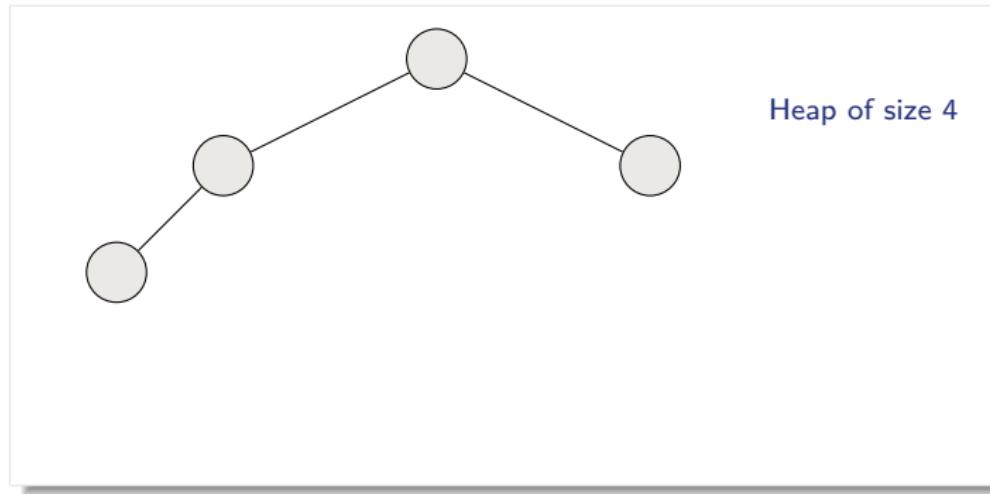
Heap A (not garbage-collected storage) is a **nearly complete binary tree**



Heap of size 3

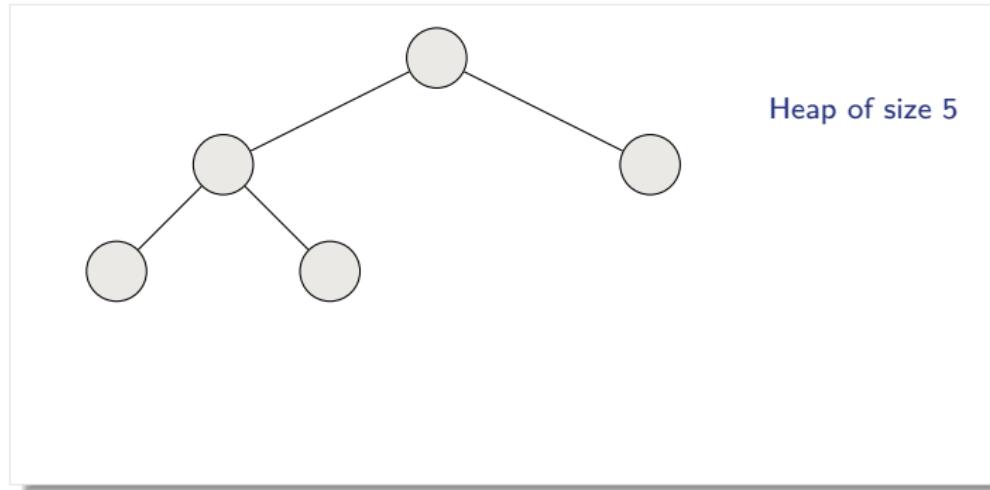
(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**



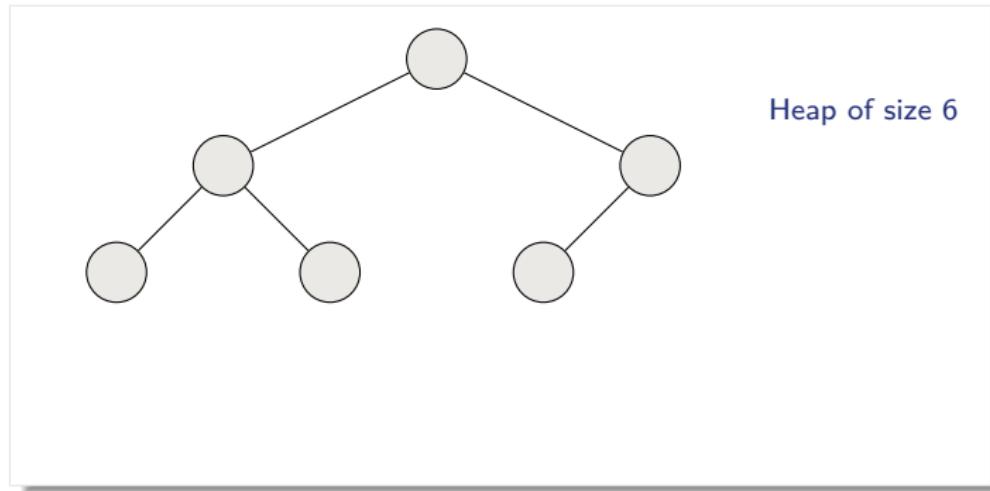
(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**



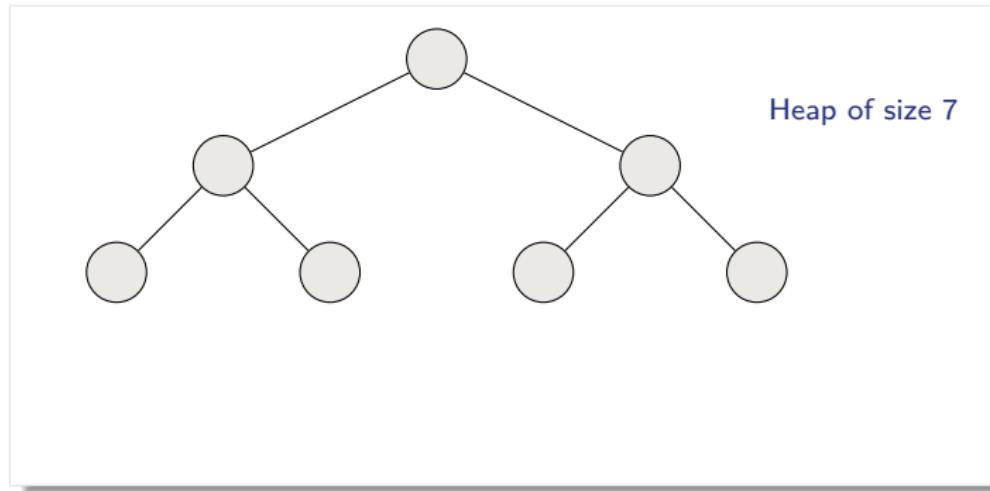
(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**



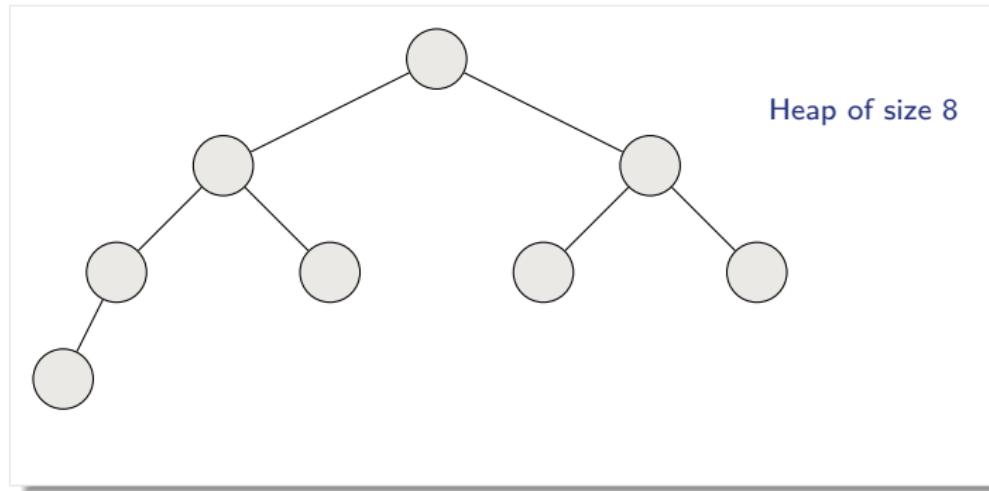
(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**



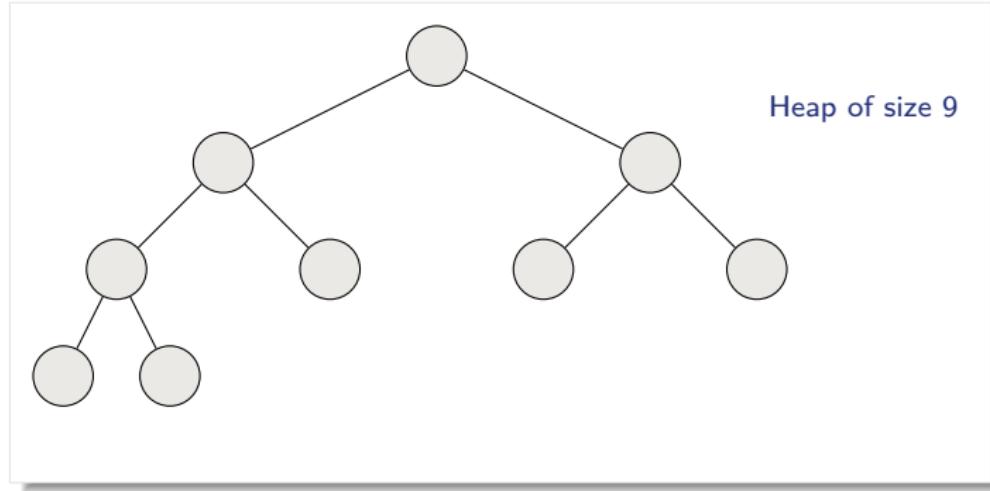
(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**



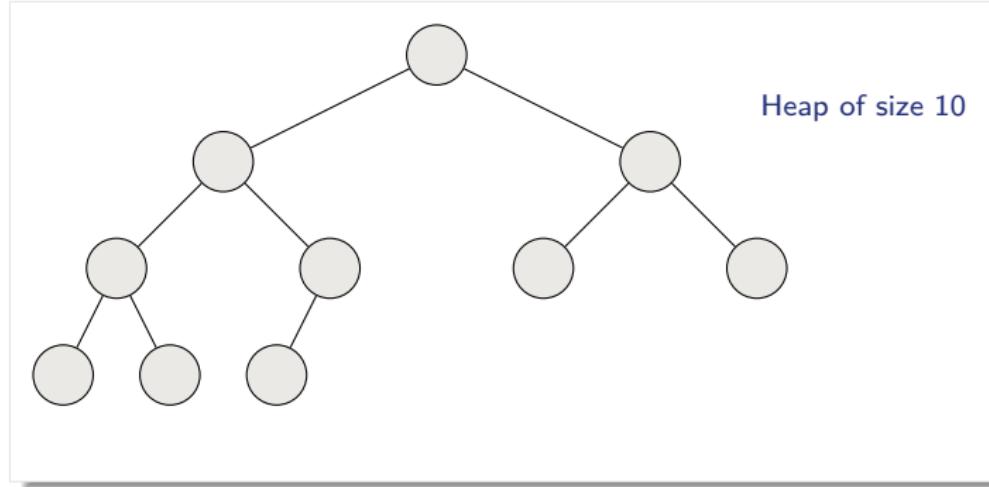
(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**



(Binary) heap data structure

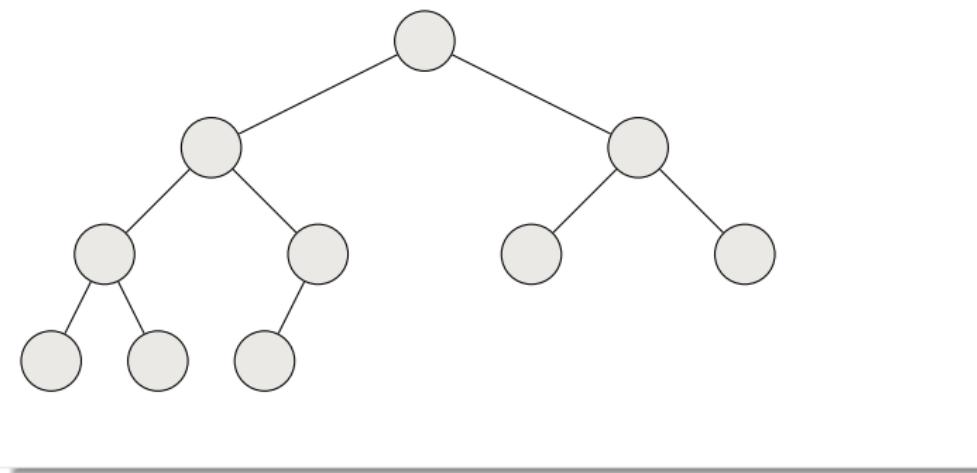
Heap A (not garbage-collected storage) is a **nearly complete binary tree**



(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**

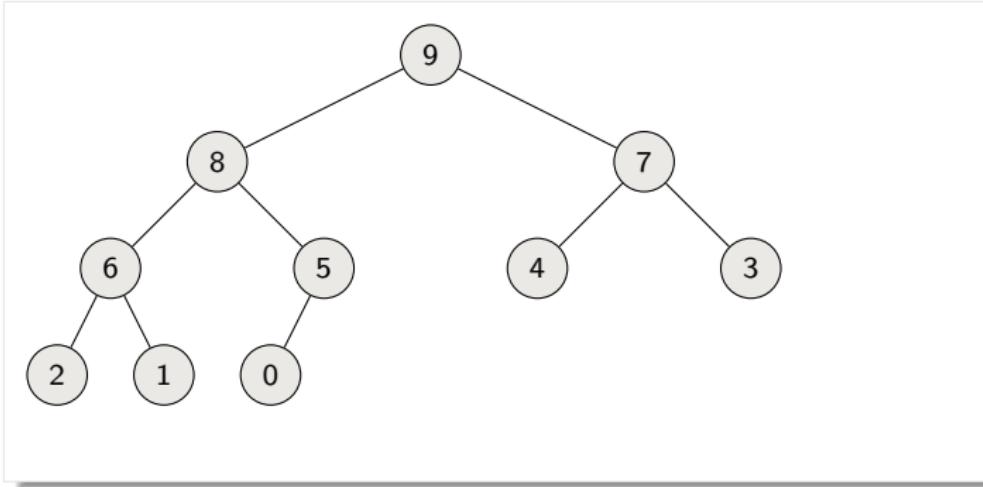
(Max)-Heap property: **key of i 's children is smaller or equal to i 's key**



(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**

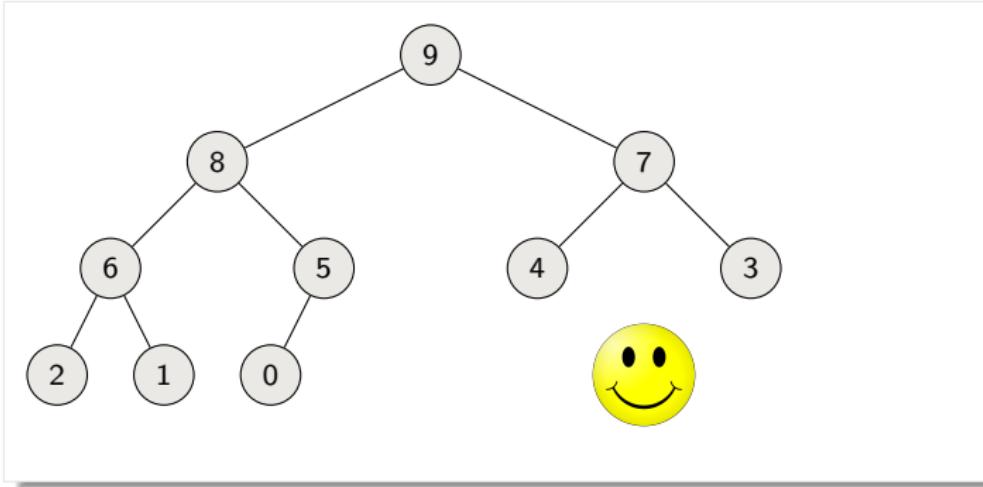
(Max)-Heap property: **key of i 's children is smaller or equal to i 's key**



(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**

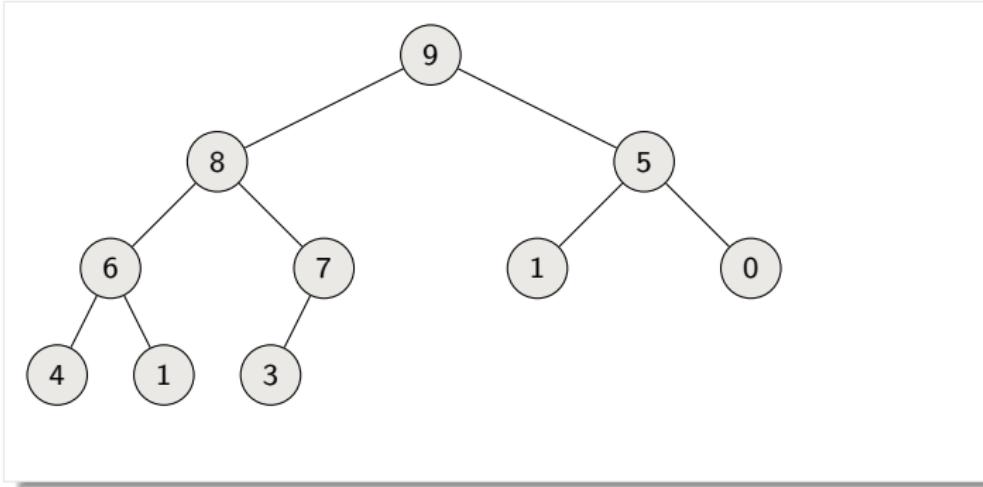
(Max)-Heap property: **key of i 's children is smaller or equal to i 's key**



(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**

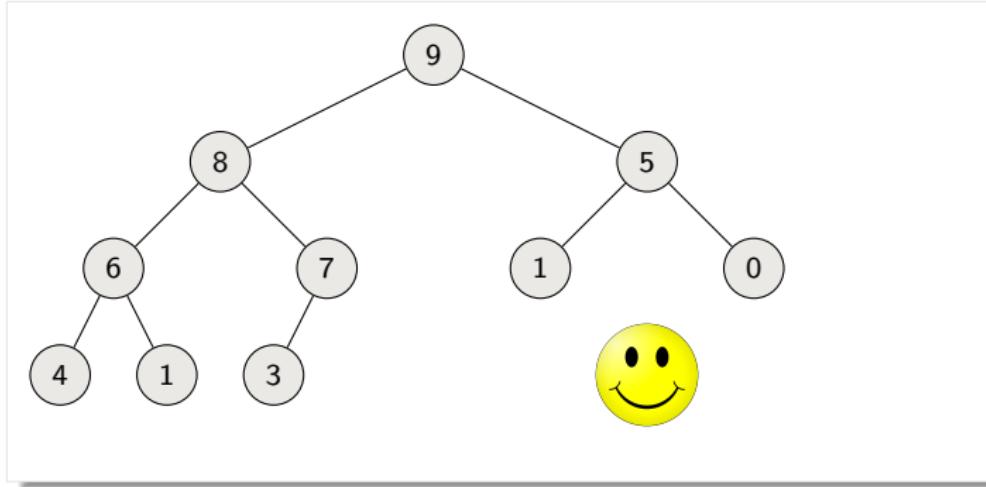
(Max)-Heap property: **key of i 's children is smaller or equal to i 's key**



(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**

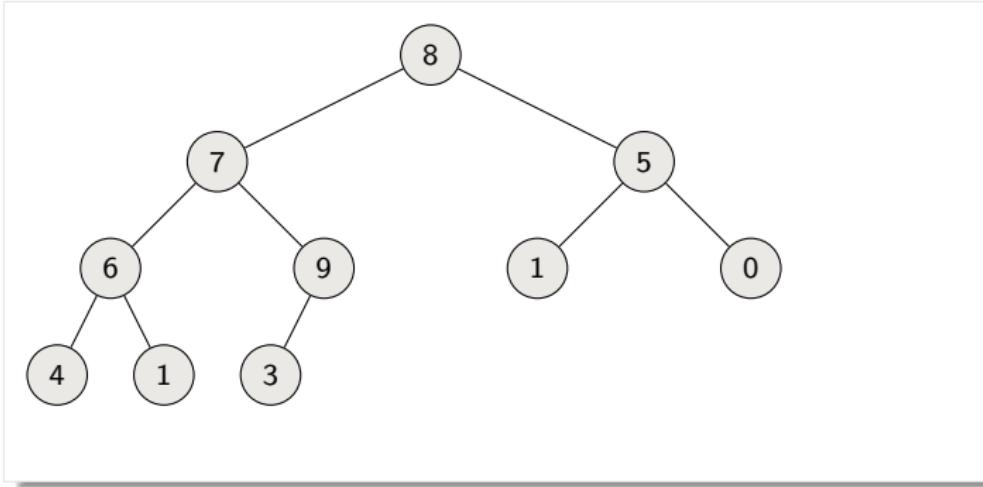
(Max)-Heap property: **key of i 's children is smaller or equal to i 's key**



(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**

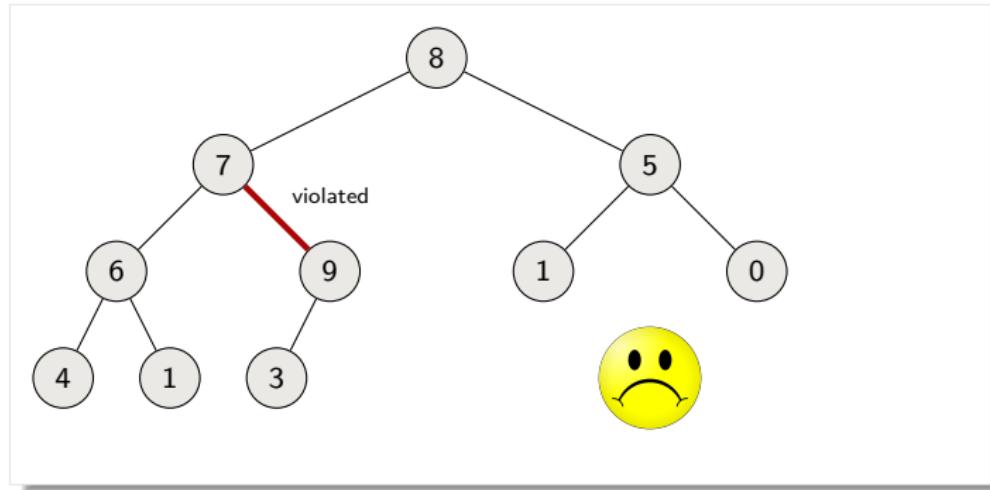
(Max)-Heap property: **key of i 's children is smaller or equal to i 's key**



(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**

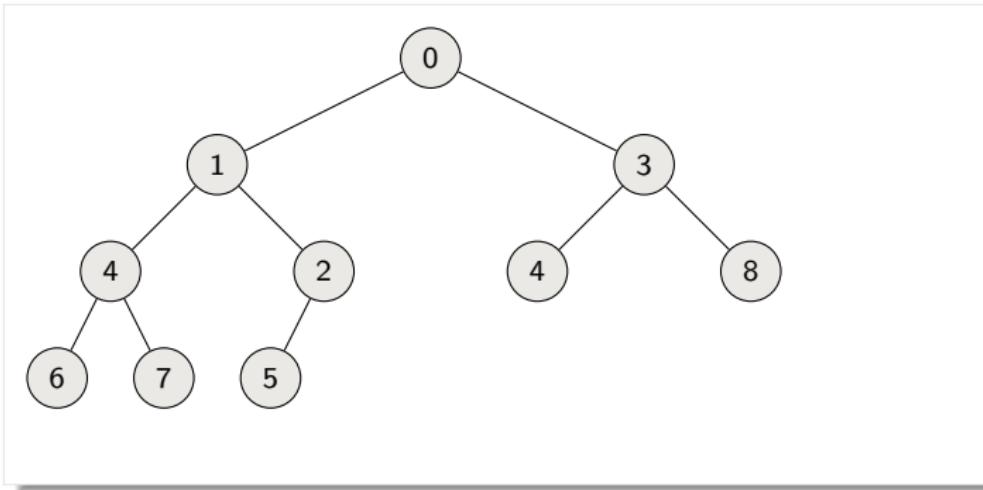
(Max)-Heap property: **key of i 's children is smaller or equal to i 's key**



(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**

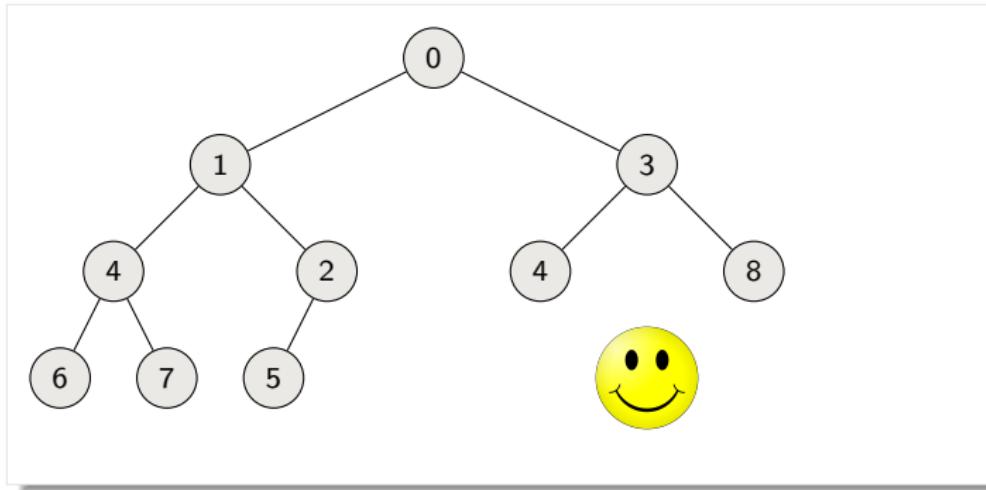
(Min)-Heap property: key of i 's children is greater or equal to i 's key



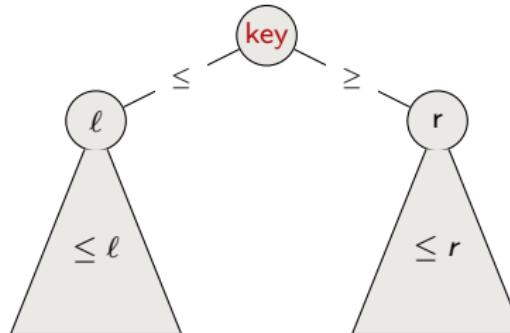
(Binary) heap data structure

Heap A (not garbage-collected storage) is a **nearly complete binary tree**

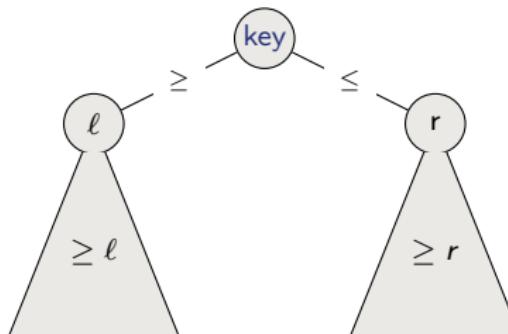
(Min)-Heap property: key of i 's children is greater or equal to i 's key



Max-Heap \Rightarrow maximum element is the root

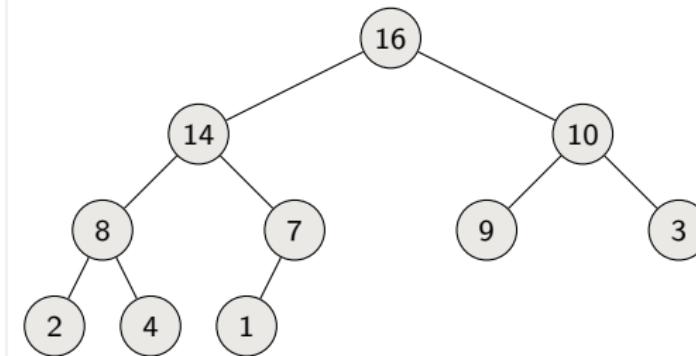


Min-Heap \Rightarrow minimum element is the root



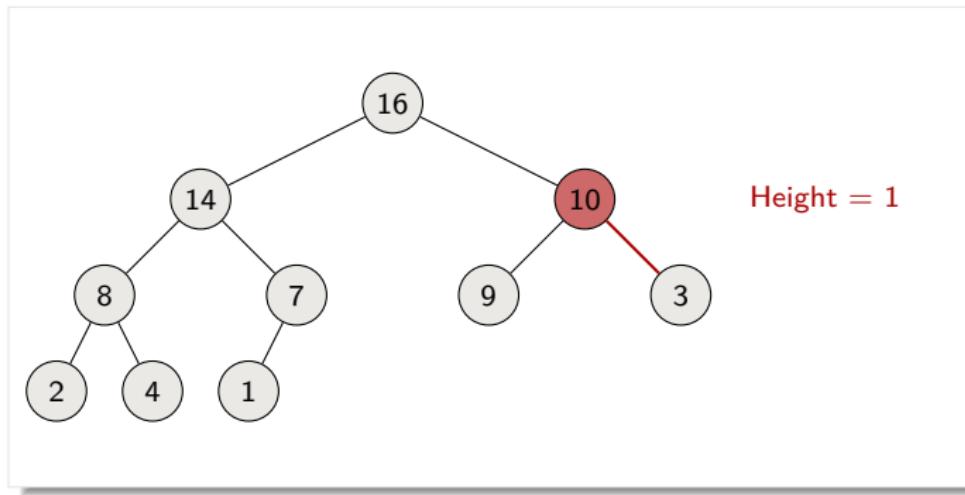
Height of a heap

Height of node = # of edges on a longest simple path from the node down to a leaf



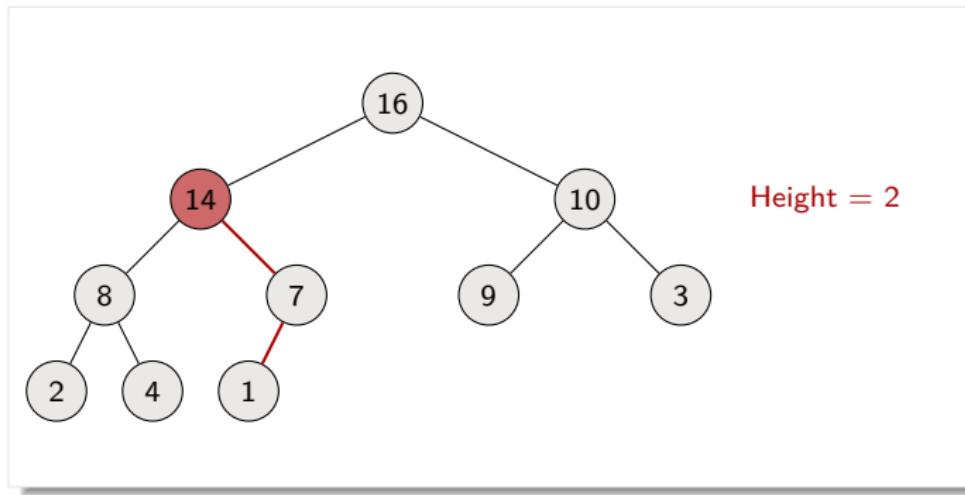
Height of a heap

Height of node = # of edges on a longest simple path from the node down to a leaf



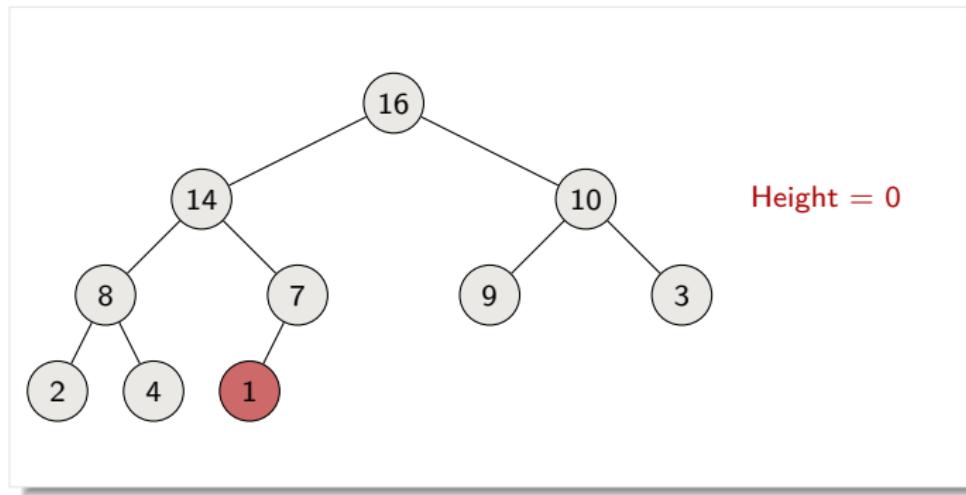
Height of a heap

Height of node = # of edges on a longest simple path from the node down to a leaf



Height of a heap

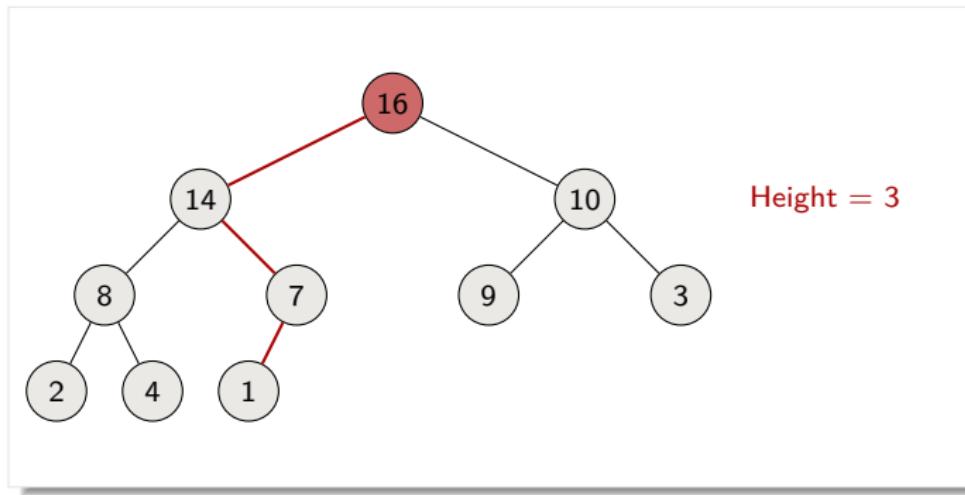
Height of node = # of edges on a longest simple path from the node down to a leaf



Height of a heap

Height of node = # of edges on a longest simple path from the node down to a leaf

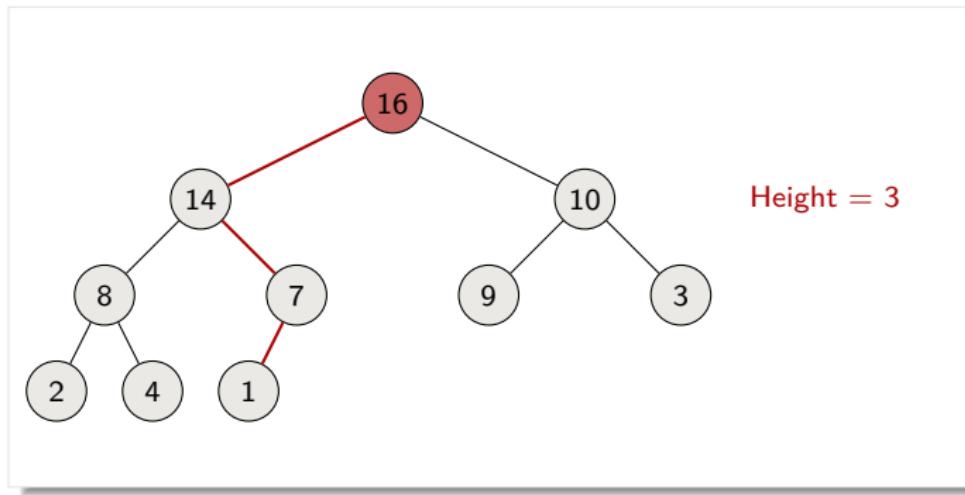
Height of heap = height of root



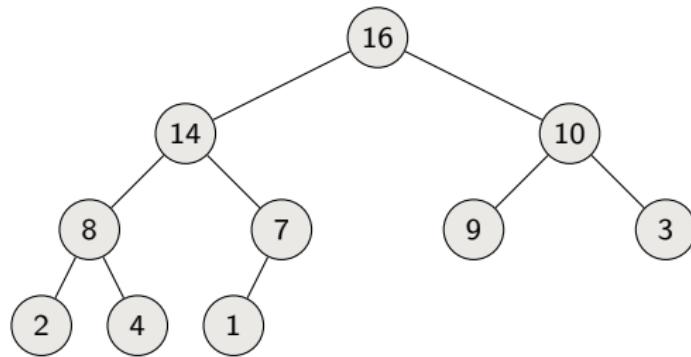
Height of a heap

Height of node = # of edges on a longest simple path from the node down to a leaf

Height of heap = height of root = $\Theta(\log n)$

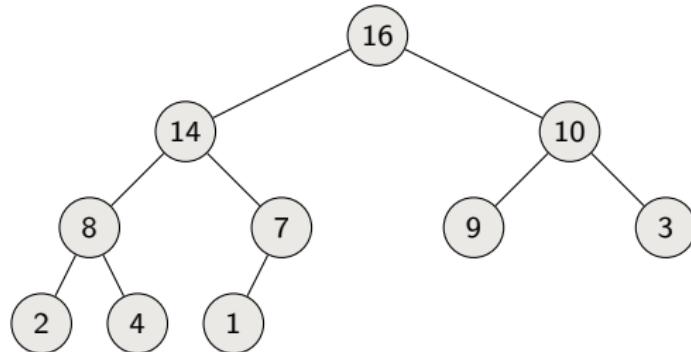


How to store a heap/tree?



How to store a heap/tree?

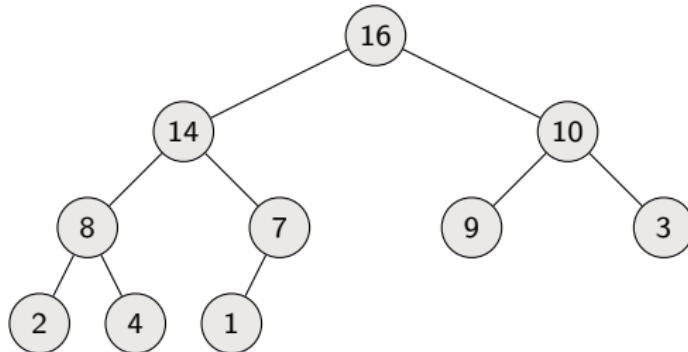
pointer to left and right children



How to store a heap/tree?

~~pointer to left and right children~~

Use that tree is almost complete to store it in array

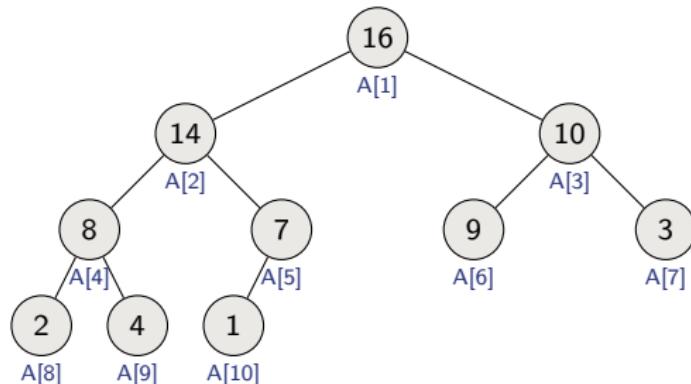


How to store a heap/tree?

~~pointer to left and right children~~

Use that tree is almost complete to store it in array

$A = [16 \ 14 \ 10 \ 8 \ 7 \ 9 \ 3 \ 2 \ 4 \ 1]$

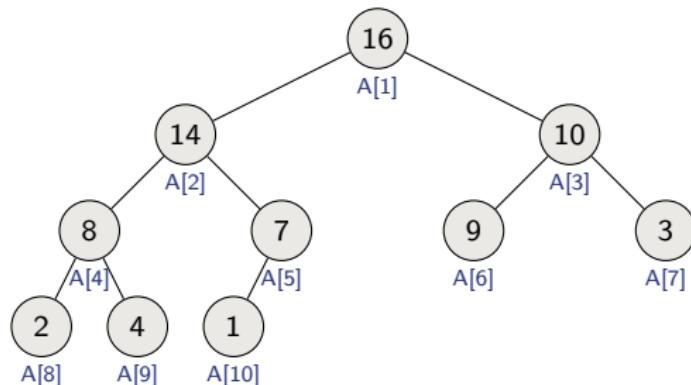


How to store a heap/tree?

~~pointer to left and right children~~

Use that tree is almost complete to store it in array

$A = [16 \ 14 \ 10 \ 8 \ 7 \ 9 \ 3 \ 2 \ 4 \ 1]$



In this representation:

ROOT is $A[1]$

LEFT(i) = ???

RIGHT(i) = ???

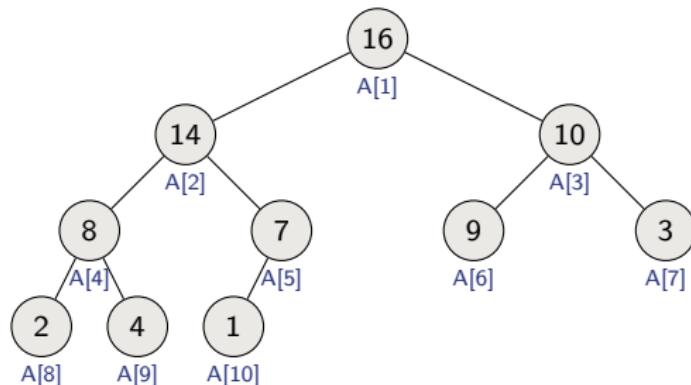
PARENT(i) = ???

How to store a heap/tree?

~~pointer to left and right children~~

Use that tree is almost complete to store it in array

$A = [16 \ 14 \ 10 \ 8 \ 7 \ 9 \ 3 \ 2 \ 4 \ 1]$



In this representation:

ROOT is $A[1]$

LEFT(i) = $2i$

RIGHT(i) = ???

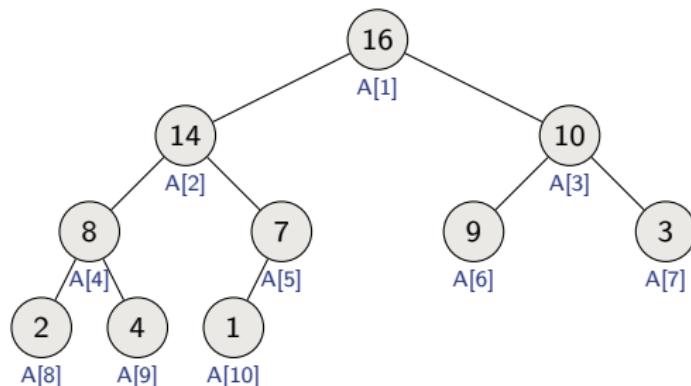
PARENT(i) = ???

How to store a heap/tree?

~~pointer to left and right children~~

Use that tree is almost complete to store it in array

$A = [16 \ 14 \ 10 \ 8 \ 7 \ 9 \ 3 \ 2 \ 4 \ 1]$



In this representation:

ROOT is $A[1]$

LEFT(i) = $2i$

RIGHT(i) = $2i + 1$

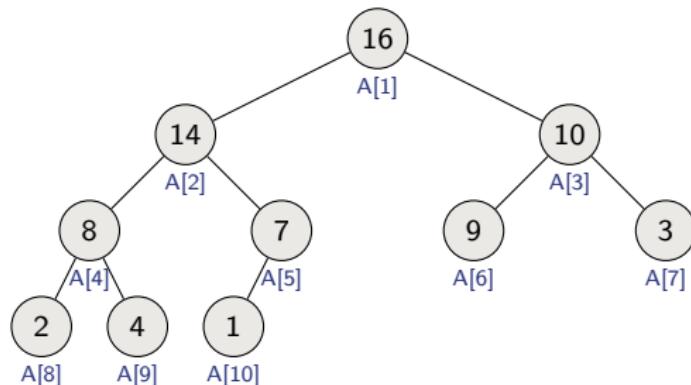
PARENT(i) = ???

How to store a heap/tree?

~~pointer to left and right children~~

Use that tree is almost complete to store it in array

$A = [16 \ 14 \ 10 \ 8 \ 7 \ 9 \ 3 \ 2 \ 4 \ 1]$



In this representation:

ROOT is $A[1]$

LEFT(i) = $2i$

RIGHT(i) = $2i + 1$

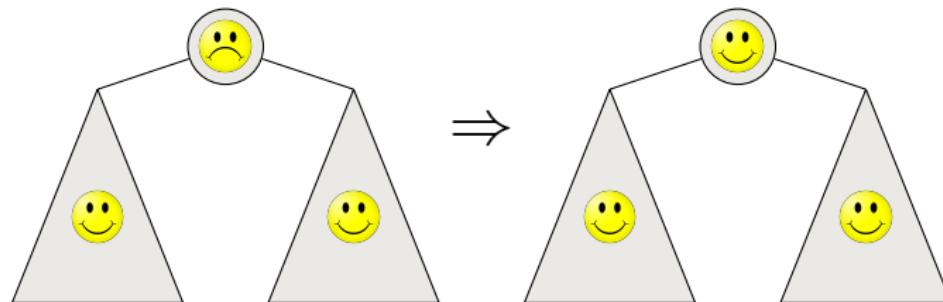
PARENT(i) = $\lfloor i/2 \rfloor$

BUILDING AND MANIPULATING HEAPS

Maintaining the heap property

MAX-HEAPIFY is important for manipulating heaps:

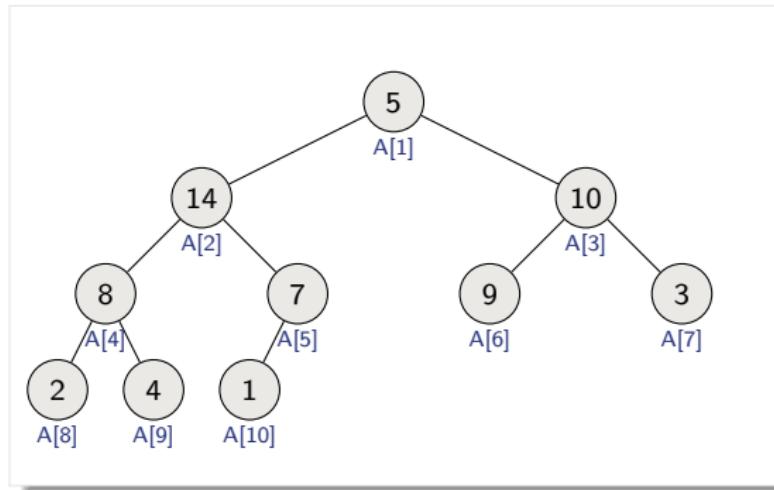
Given an i such that the subtrees of i are heaps, it ensures that the subtree rooted at i satisfy the heap property



MAX-HEAPIFY(A, i, n)

Algorithm:

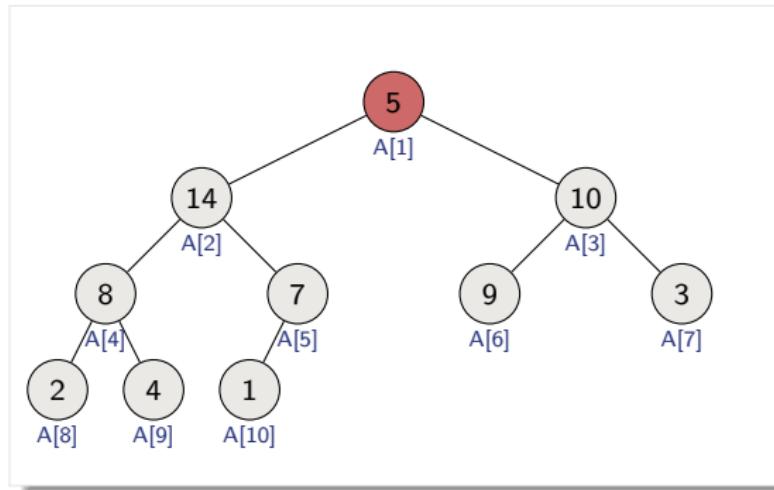
- ▶ Compare $A[i], A[\text{LEFT}(i)], A[\text{RIGHT}(i)]$
- ▶ If necessary, swap $A[i]$ with the largest of the two children to preserve heap property
- ▶ Continue this process of comparing and swapping down the heap, until subtree rooted at i is max-heap



MAX-HEAPIFY(A, i, n)

Algorithm:

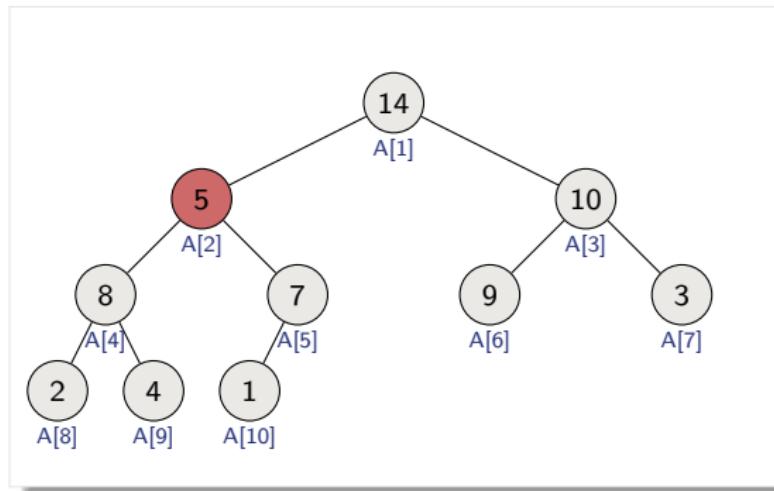
- ▶ Compare $A[i], A[\text{LEFT}(i)], A[\text{RIGHT}(i)]$
- ▶ If necessary, swap $A[i]$ with the largest of the two children to preserve heap property
- ▶ Continue this process of comparing and swapping down the heap, until subtree rooted at i is max-heap



MAX-HEAPIFY(A, i, n)

Algorithm:

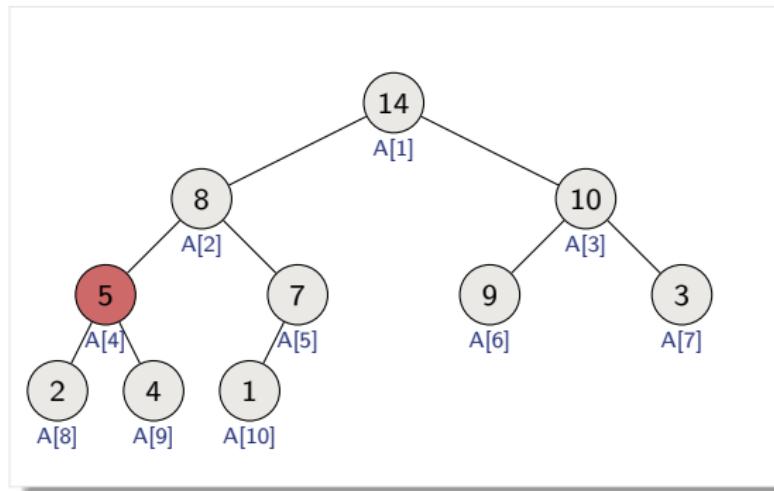
- ▶ Compare $A[i], A[\text{LEFT}(i)], A[\text{RIGHT}(i)]$
- ▶ If necessary, swap $A[i]$ with the largest of the two children to preserve heap property
- ▶ Continue this process of comparing and swapping down the heap, until subtree rooted at i is max-heap



MAX-HEAPIFY(A, i, n)

Algorithm:

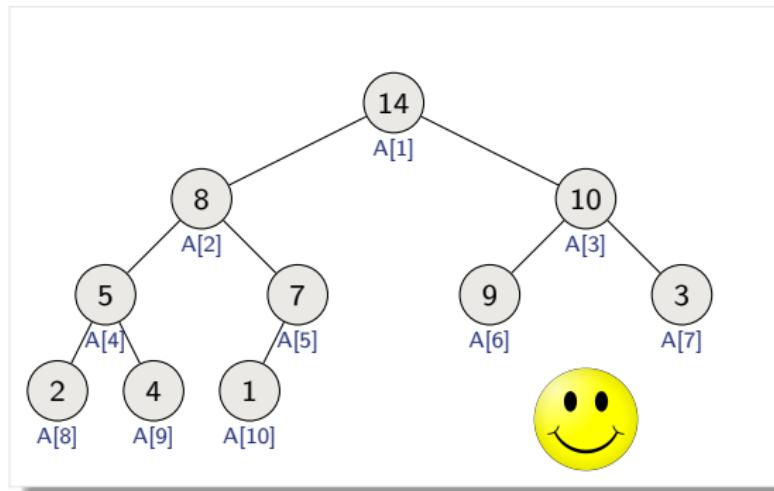
- ▶ Compare $A[i], A[\text{LEFT}(i)], A[\text{RIGHT}(i)]$
- ▶ If necessary, swap $A[i]$ with the largest of the two children to preserve heap property
- ▶ Continue this process of comparing and swapping down the heap, until subtree rooted at i is max-heap



MAX-HEAPIFY(A, i, n)

Algorithm:

- ▶ Compare $A[i], A[\text{LEFT}(i)], A[\text{RIGHT}(i)]$
- ▶ If necessary, swap $A[i]$ with the largest of the two children to preserve heap property
- ▶ Continue this process of comparing and swapping down the heap, until subtree rooted at i is max-heap



Pseudo-code and analysis

MAX-HEAPIFY(A, i, n)

$l = \text{LEFT}(i)$

$r = \text{RIGHT}(i)$

if $l \leq n$ and $A[l] > A[i]$
 $largest = l$

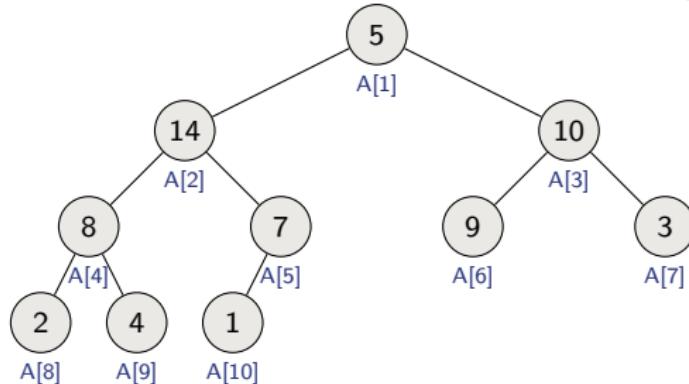
else $largest = i$

if $r \leq n$ and $A[r] > A[largest]$
 $largest = r$

if $largest \neq i$

 exchange $A[i]$ with $A[largest]$

MAX-HEAPIFY($A, largest, n$)



Pseudo-code and analysis

MAX-HEAPIFY(A, i, n)

$l = \text{LEFT}(i)$

$r = \text{RIGHT}(i)$

if $l \leq n$ and $A[l] > A[i]$
 $largest = l$

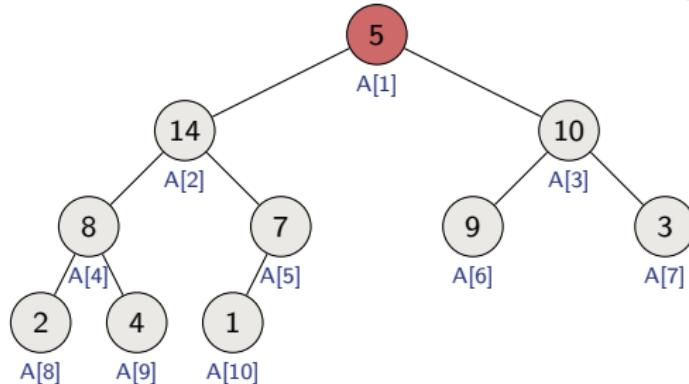
else $largest = i$

if $r \leq n$ and $A[r] > A[largest]$
 $largest = r$

if $largest \neq i$

 exchange $A[i]$ with $A[largest]$

MAX-HEAPIFY($A, largest, n$)



Pseudo-code and analysis

MAX-HEAPIFY(A, i, n)

$l = \text{LEFT}(i)$

$r = \text{RIGHT}(i)$

if $l \leq n$ and $A[l] > A[i]$
 $largest = l$

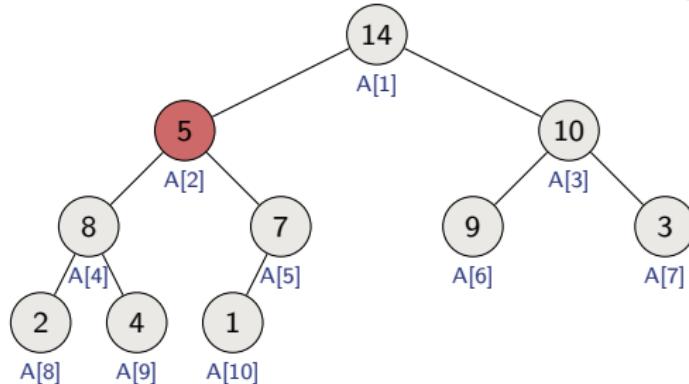
else $largest = i$

if $r \leq n$ and $A[r] > A[largest]$
 $largest = r$

if $largest \neq i$

 exchange $A[i]$ with $A[largest]$

MAX-HEAPIFY($A, largest, n$)



Pseudo-code and analysis

MAX-HEAPIFY(A, i, n)

$l = \text{LEFT}(i)$

$r = \text{RIGHT}(i)$

if $l \leq n$ and $A[l] > A[i]$
 $largest = l$

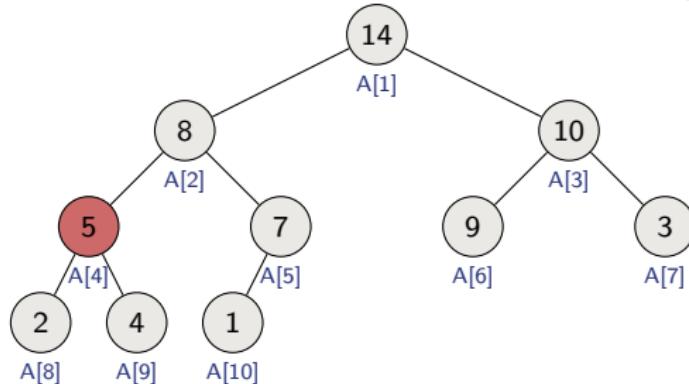
else $largest = i$

if $r \leq n$ and $A[r] > A[largest]$
 $largest = r$

if $largest \neq i$

 exchange $A[i]$ with $A[largest]$

MAX-HEAPIFY($A, largest, n$)



Pseudo-code and analysis

MAX-HEAPIFY(A, i, n)

$l = \text{LEFT}(i)$

$r = \text{RIGHT}(i)$

if $l \leq n$ and $A[l] > A[i]$
 $largest = l$

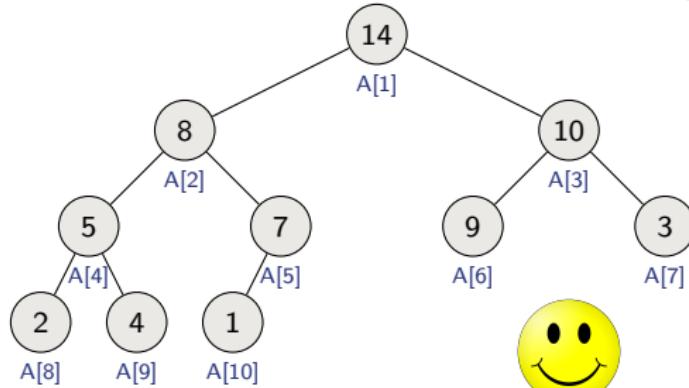
else $largest = i$

if $r \leq n$ and $A[r] > A[largest]$
 $largest = r$

if $largest \neq i$

 exchange $A[i]$ with $A[largest]$

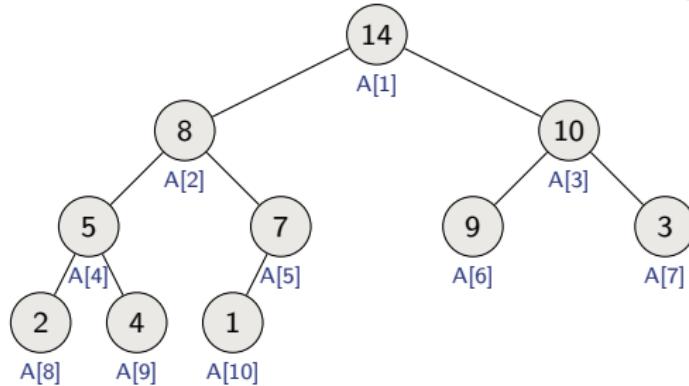
MAX-HEAPIFY($A, largest, n$)



Pseudo-code and analysis

Running time?

Space?



MAX-HEAPIFY(A, i, n)

$l = \text{LEFT}(i)$

$r = \text{RIGHT}(i)$

if $l \leq n$ and $A[l] > A[i]$
 $largest = l$

else $largest = i$

if $r \leq n$ and $A[r] > A[largest]$
 $largest = r$

if $largest \neq i$

 exchange $A[i]$ with $A[largest]$

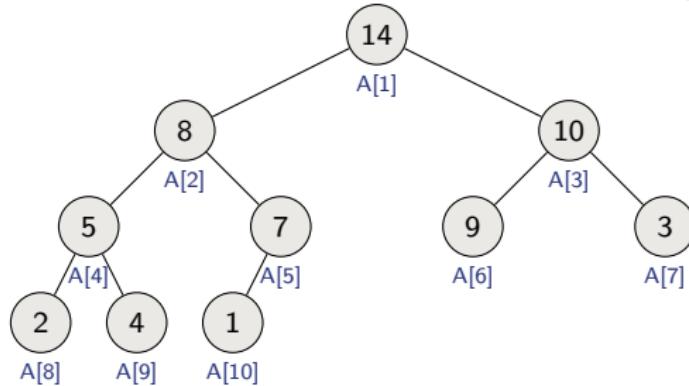
MAX-HEAPIFY($A, largest, n$)

Pseudo-code and analysis

Running time?

$$\Theta(\text{height of } i) = O(\log n)$$

Space?



MAX-HEAPIFY(A, i, n)

$l = \text{LEFT}(i)$

$r = \text{RIGHT}(i)$

if $l \leq n$ and $A[l] > A[i]$
 $largest = l$

else $largest = i$

if $r \leq n$ and $A[r] > A[largest]$
 $largest = r$

if $largest \neq i$

exchange $A[i]$ with $A[largest]$

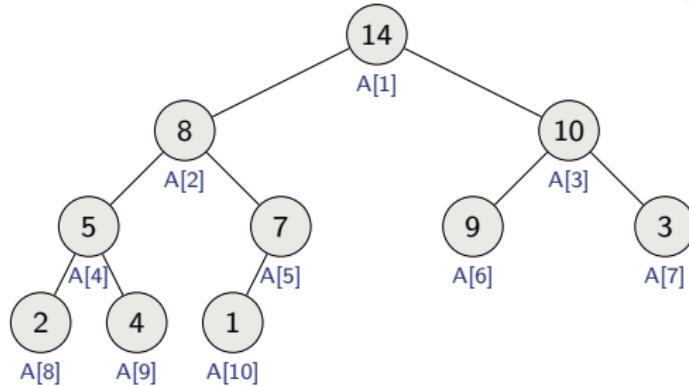
MAX-HEAPIFY($A, largest, n$)

Pseudo-code and analysis

Running time?

$$\Theta(\text{height of } i) = O(\log n)$$

Space? $\Theta(n)$



MAX-HEAPIFY(A, i, n)

$l = \text{LEFT}(i)$

$r = \text{RIGHT}(i)$

if $l \leq n$ and $A[l] > A[i]$
 $largest = l$

else $largest = i$

if $r \leq n$ and $A[r] > A[largest]$
 $largest = r$

if $largest \neq i$

 exchange $A[i]$ with $A[largest]$

MAX-HEAPIFY($A, largest, n$)

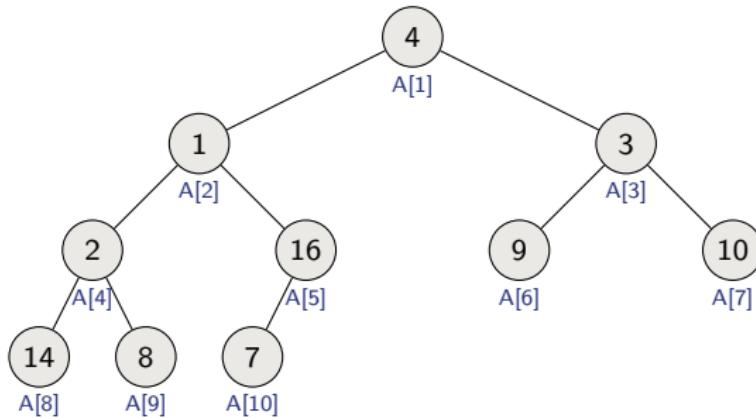
Building a heap

BUILD-MAX-HEAP(A, n)

```
for  $i = \lfloor n/2 \rfloor$  downto 1  
    MAX-HEAPIFY( $A, i, n$ )
```

Given unordered array A of length n , BUILD-MAX-HEAP outputs a heap

4	1	3	2	16	9	10	14	8	7
---	---	---	---	----	---	----	----	---	---



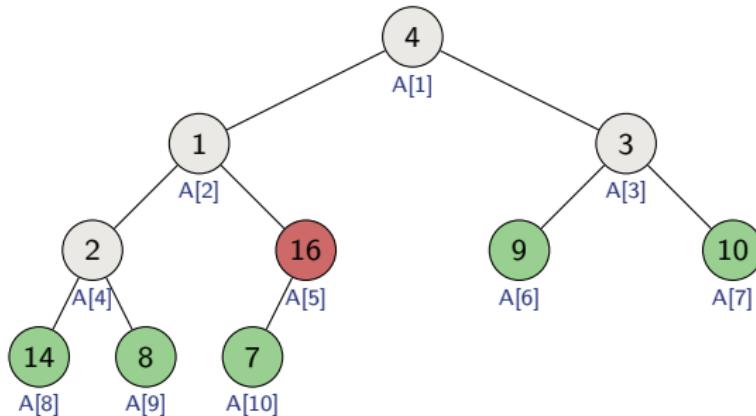
Building a heap

BUILD-MAX-HEAP(A, n)

```
for  $i = \lfloor n/2 \rfloor$  downto 1  
    MAX-HEAPIFY( $A, i, n$ )
```

Given unordered array A of length n , BUILD-MAX-HEAP outputs a heap

4	1	3	2	16	9	10	14	8	7
---	---	---	---	----	---	----	----	---	---



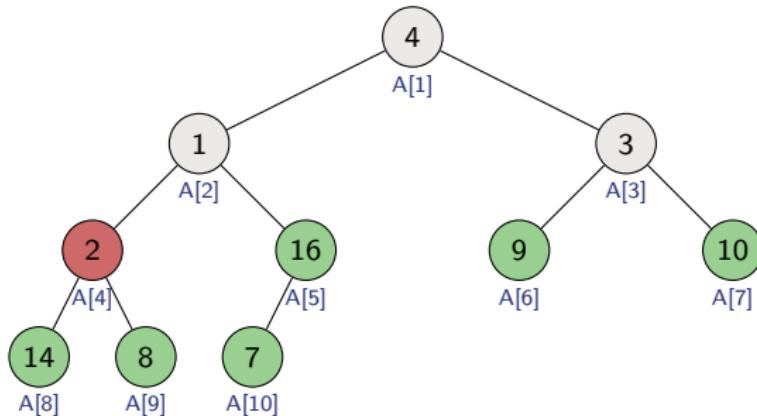
Building a heap

BUILD-MAX-HEAP(A, n)

```
for  $i = \lfloor n/2 \rfloor$  downto 1  
    MAX-HEAPIFY( $A, i, n$ )
```

Given unordered array A of length n , BUILD-MAX-HEAP outputs a heap

4	1	3	2	16	9	10	14	8	7
---	---	---	---	----	---	----	----	---	---



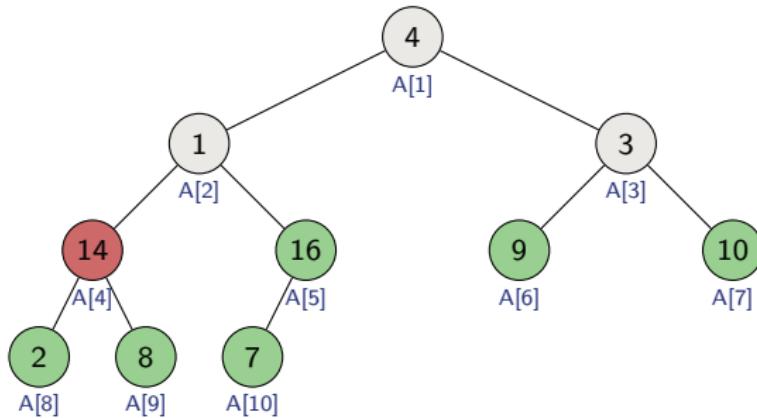
Building a heap

BUILD-MAX-HEAP(A, n)

```
for  $i = \lfloor n/2 \rfloor$  downto 1  
    MAX-HEAPIFY( $A, i, n$ )
```

Given unordered array A of length n , BUILD-MAX-HEAP outputs a heap

4	1	3	14	16	9	10	2	8	7
---	---	---	----	----	---	----	---	---	---



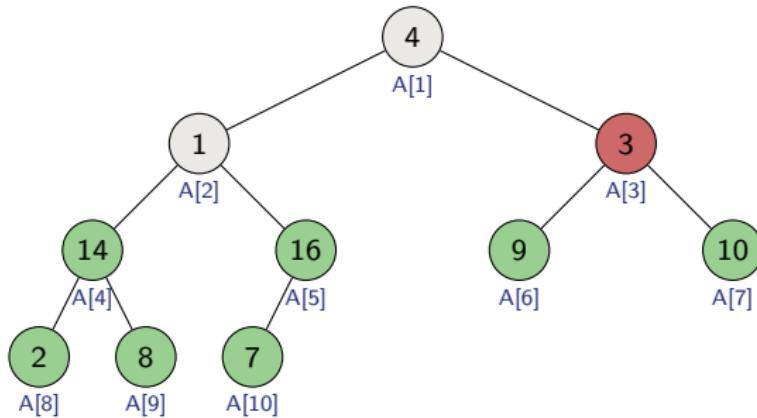
Building a heap

BUILD-MAX-HEAP(A, n)

```
for  $i = \lfloor n/2 \rfloor$  downto 1  
    MAX-HEAPIFY( $A, i, n$ )
```

Given unordered array A of length n , BUILD-MAX-HEAP outputs a heap

4	1	3	14	16	9	10	2	8	7
---	---	---	----	----	---	----	---	---	---



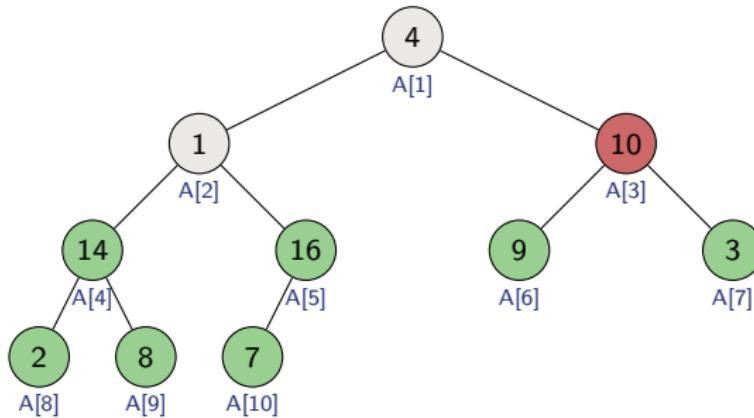
Building a heap

BUILD-MAX-HEAP(A, n)

```
for  $i = \lfloor n/2 \rfloor$  downto 1  
    MAX-HEAPIFY( $A, i, n$ )
```

Given unordered array A of length n , BUILD-MAX-HEAP outputs a heap

4	1	10	14	16	9	3	2	8	7
---	---	----	----	----	---	---	---	---	---



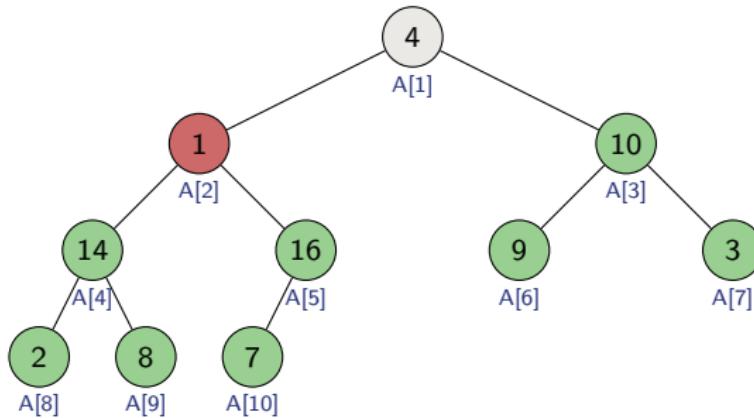
Building a heap

BUILD-MAX-HEAP(A, n)

```
for  $i = \lfloor n/2 \rfloor$  downto 1  
    MAX-HEAPIFY( $A, i, n$ )
```

Given unordered array A of length n , BUILD-MAX-HEAP outputs a heap

4	1	10	14	16	9	3	2	8	7
---	---	----	----	----	---	---	---	---	---



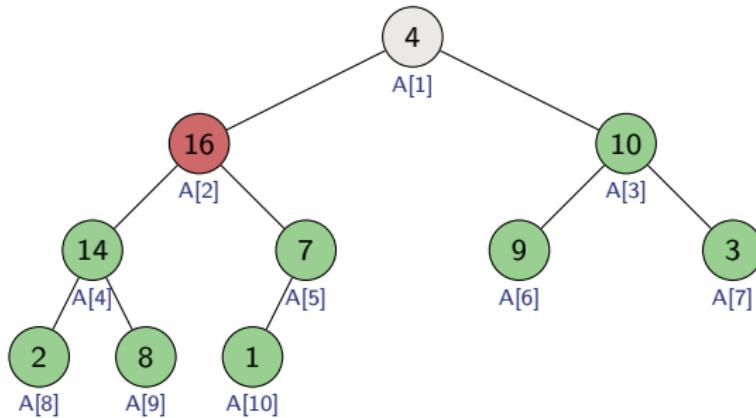
Building a heap

BUILD-MAX-HEAP(A, n)

```
for  $i = \lfloor n/2 \rfloor$  downto 1  
    MAX-HEAPIFY( $A, i, n$ )
```

Given unordered array A of length n , BUILD-MAX-HEAP outputs a heap

4	16	10	14	7	9	3	2	8	1
---	----	----	----	---	---	---	---	---	---



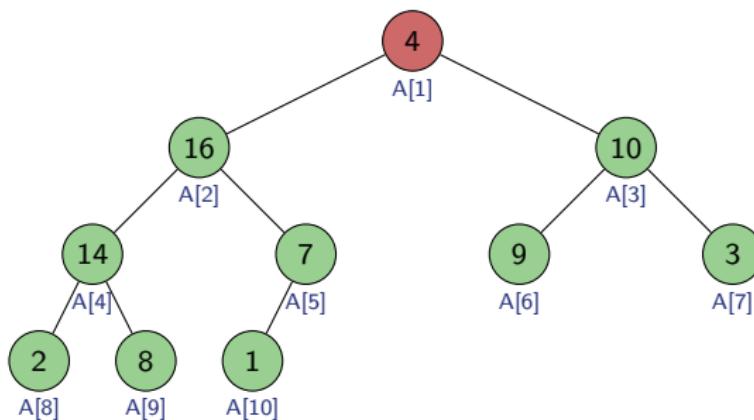
Building a heap

BUILD-MAX-HEAP(A, n)

```
for  $i = \lfloor n/2 \rfloor$  downto 1  
    MAX-HEAPIFY( $A, i, n$ )
```

Given unordered array A of length n , BUILD-MAX-HEAP outputs a heap

4	16	10	14	7	9	3	2	8	1
---	----	----	----	---	---	---	---	---	---



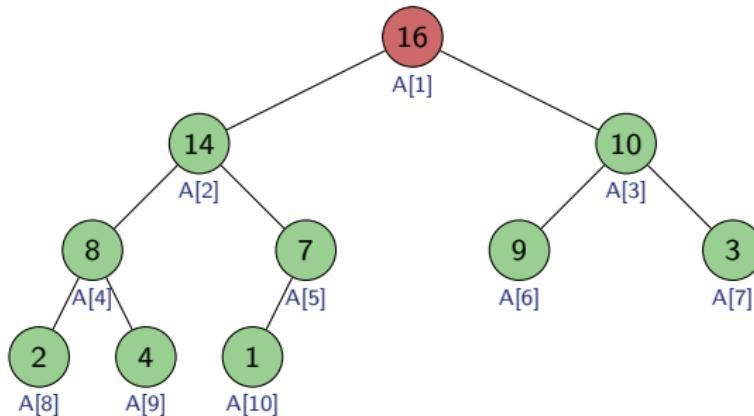
Building a heap

BUILD-MAX-HEAP(A, n)

```
for  $i = \lfloor n/2 \rfloor$  downto 1  
    MAX-HEAPIFY( $A, i, n$ )
```

Given unordered array A of length n , BUILD-MAX-HEAP outputs a heap

16	14	10	8	7	9	3	2	4	1
----	----	----	---	---	---	---	---	---	---



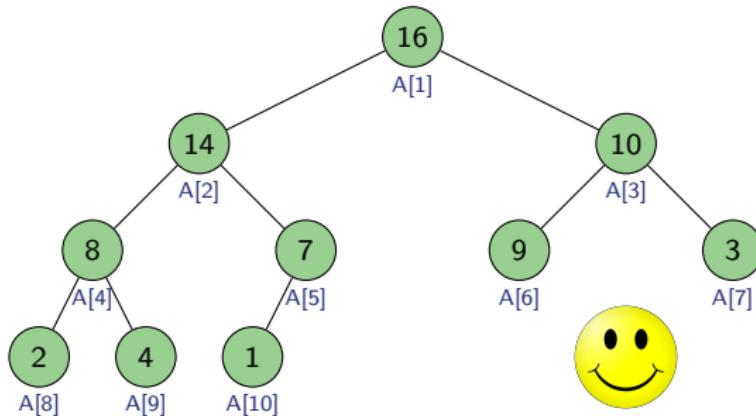
Building a heap

BUILD-MAX-HEAP(A, n)

```
for  $i = \lfloor n/2 \rfloor$  downto 1  
    MAX-HEAPIFY( $A, i, n$ )
```

Given unordered array A of length n , BUILD-MAX-HEAP outputs a heap

16	14	10	8	7	9	3	2	4	1
----	----	----	---	---	---	---	---	---	---



Analysis

BUILD-MAX-HEAP(A, n)

for $i = \lfloor n/2 \rfloor$ **downto** 1

MAX-HEAPIFY(A, i, n)

What is the worst-case running time of BUILD-MAX-HEAP?

Analysis

BUILD-MAX-HEAP(A, n)

for $i = \lfloor n/2 \rfloor$ **downto** 1

MAX-HEAPIFY(A, i, n)

What is the worst-case running time of BUILD-MAX-HEAP?

Simple bound: $O(n)$ calls to MAX-HEAPIFY, each of which takes $O(\lg n)$ time $\Rightarrow O(n \lg n)$ in total

Analysis

BUILD-MAX-HEAP(A, n)

for $i = \lfloor n/2 \rfloor$ **downto** 1

MAX-HEAPIFY(A, i, n)

What is the worst-case running time of BUILD-MAX-HEAP?

Simple bound: $O(n)$ calls to MAX-HEAPIFY, each of which takes $O(\lg n)$ time $\Rightarrow O(n \lg n)$ in total

Tighter analysis: Time to run MAX-HEAPIFY is linear in the height of the node it's run on. Hence, the time is bounded by

$$\sum_{h=0}^{\lg n} \{\# \text{ nodes of height } h\} O(h) = O\left(n \sum_{h=0}^{\lg n} \frac{h}{2^h}\right),$$

which is $O(n)$ since $\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$.

HEAPSORT

The heapsort algorithm

- ▶ Builds a max-heap from the array
- ▶ Starting with the root (the maximum element), the algorithm places the maximum element into the correct place in the array by swapping it with the element in the last position in the array
- ▶ “Discard” this last node (knowing that it is in its correct place) by decreasing the heap size, and calling MAX-HEAPIFY on the new (possibly incorrectly-placed) root
- ▶ Repeat this “discarding” process until only one node (the smallest element) remains, and therefore is in the correct place in the array

Example

HEAPSORT(A, n)

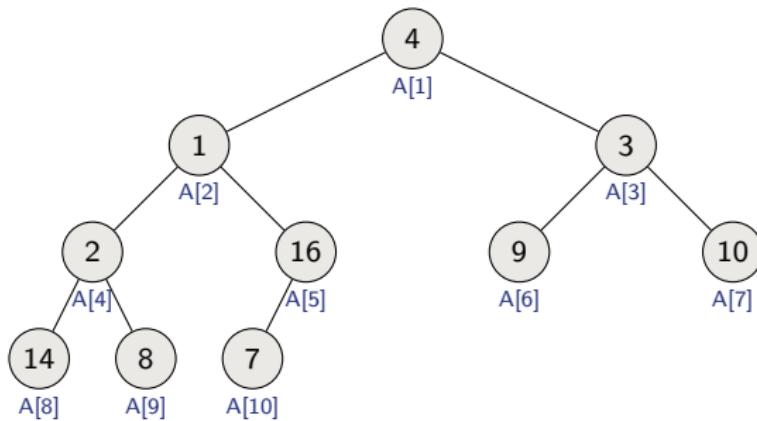
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

4	1	3	2	16	9	10	14	8	7
---	---	---	---	----	---	----	----	---	---



Example

HEAPSORT(A, n)

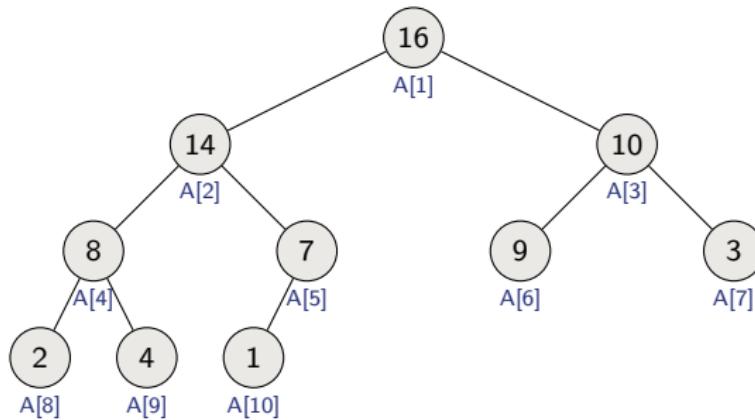
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

16	14	10	8	7	9	3	2	4	1
----	----	----	---	---	---	---	---	---	---



Example

HEAPSORT(A, n)

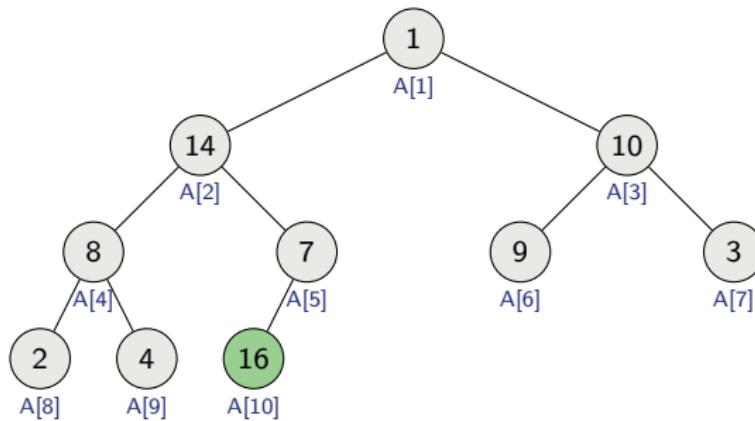
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

1	14	10	8	7	9	3	2	4	16
---	----	----	---	---	---	---	---	---	----



Example

HEAPSORT(A, n)

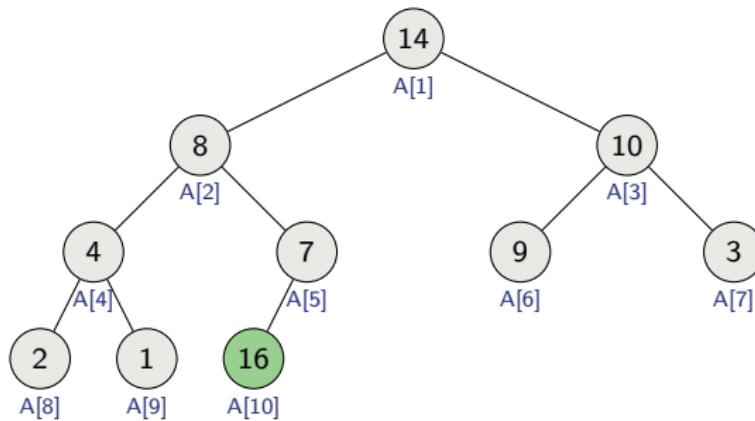
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

14	8	10	4	7	9	3	2	1	16
----	---	----	---	---	---	---	---	---	----



Example

HEAPSORT(A, n)

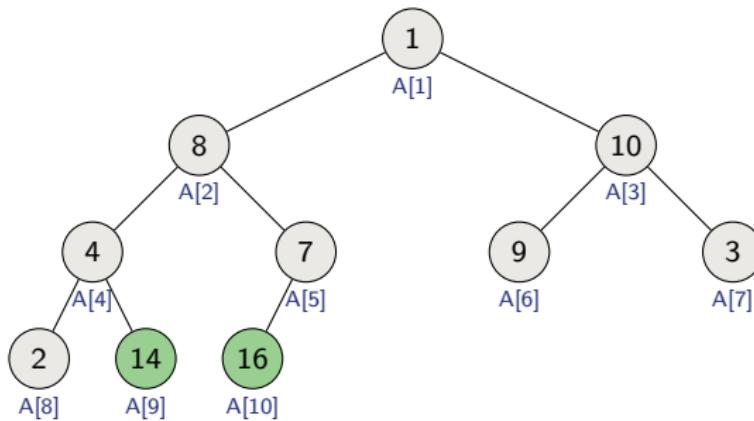
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

1	8	10	4	7	9	3	2	14	16
---	---	----	---	---	---	---	---	----	----



Example

HEAPSORT(A, n)

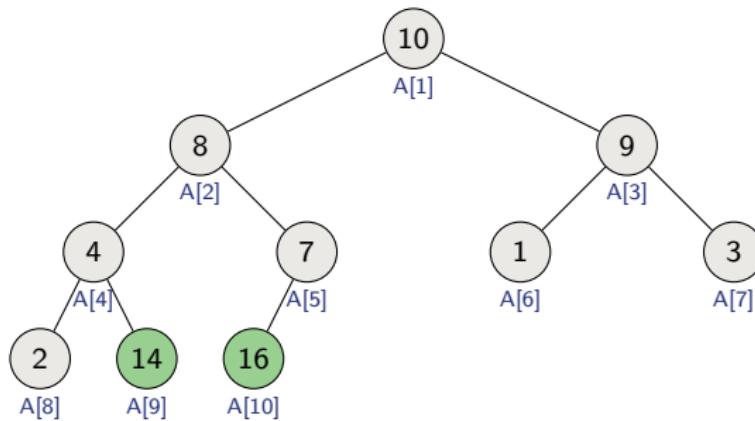
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

10	8	9	4	7	1	3	2	14	16
----	---	---	---	---	---	---	---	----	----



Example

HEAPSORT(A, n)

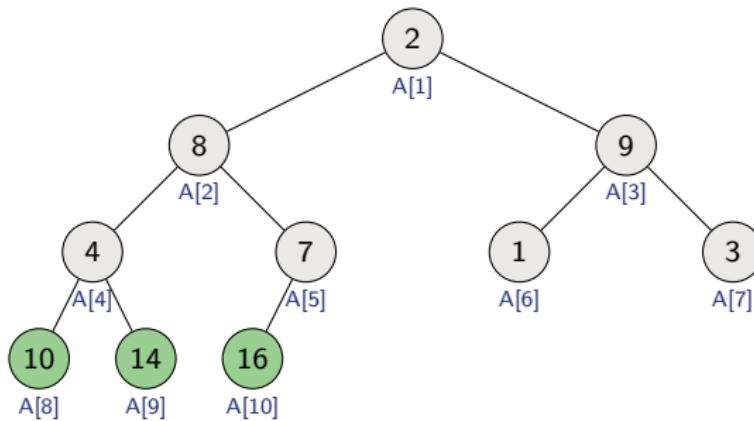
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

2	8	9	4	7	1	3	10	14	16
---	---	---	---	---	---	---	----	----	----



Example

HEAPSORT(A, n)

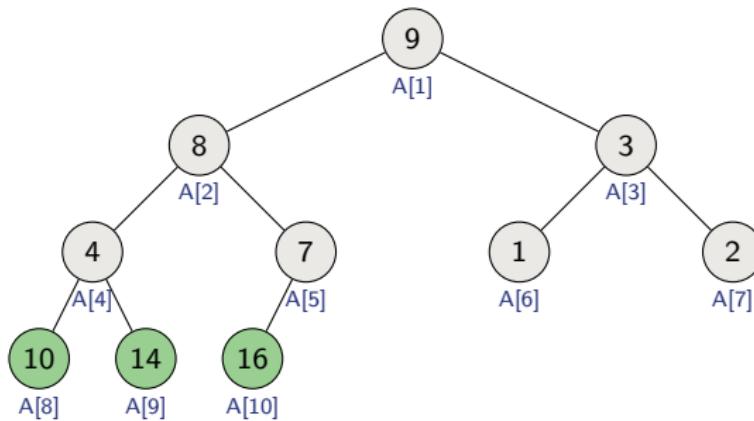
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

9	8	3	4	7	1	2	10	14	16
---	---	---	---	---	---	---	----	----	----



Example

HEAPSORT(A, n)

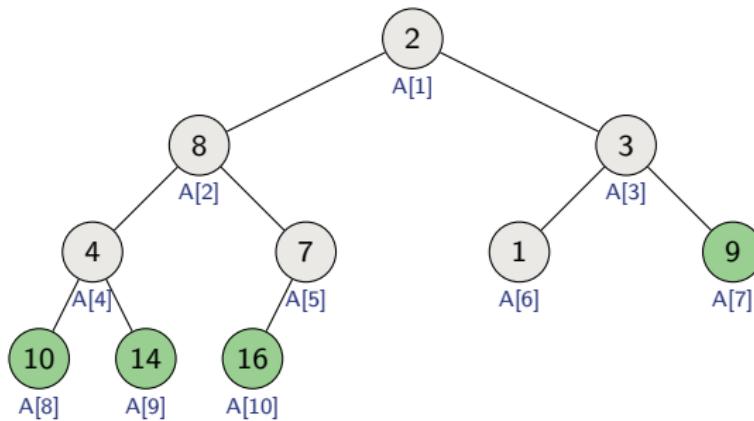
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

2	8	3	4	7	1	9	10	14	16
---	---	---	---	---	---	---	----	----	----



Example

HEAPSORT(A, n)

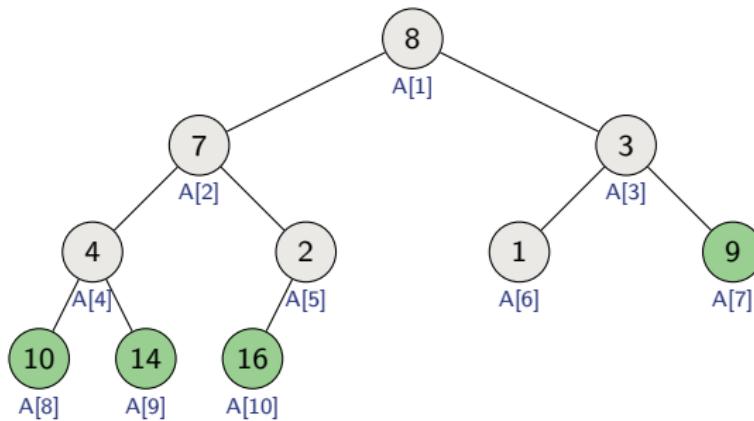
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

8	7	3	4	2	1	9	10	14	16
---	---	---	---	---	---	---	----	----	----



Example

HEAPSORT(A, n)

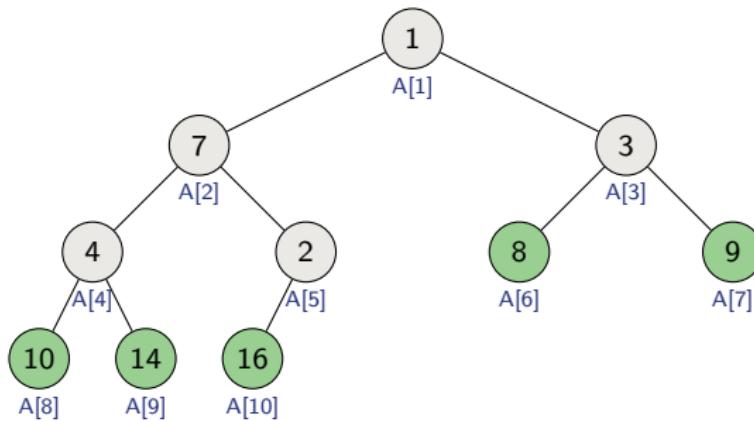
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

1	7	3	4	2	8	9	10	14	16
---	---	---	---	---	---	---	----	----	----



Example

HEAPSORT(A, n)

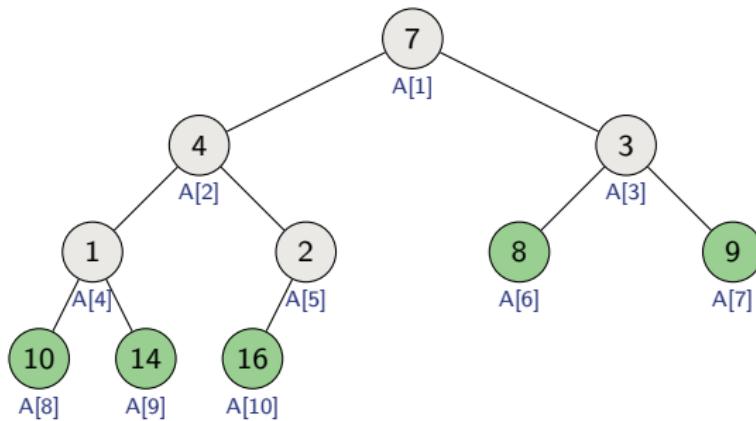
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

7	4	3	1	2	8	9	10	14	16
---	---	---	---	---	---	---	----	----	----



Example

HEAPSORT(A, n)

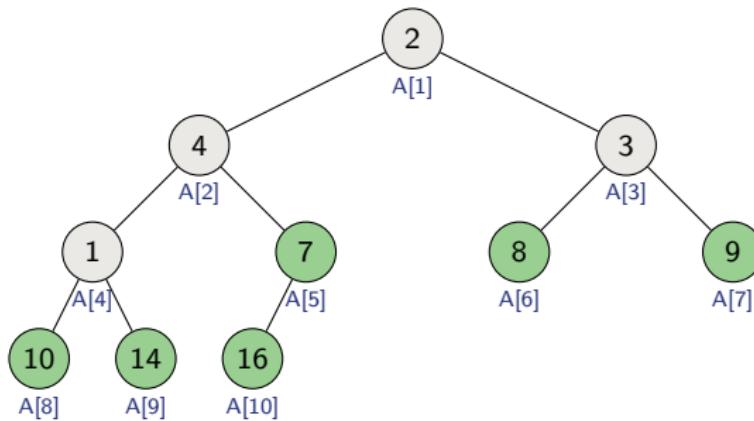
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

2	4	3	1	7	8	9	10	14	16
---	---	---	---	---	---	---	----	----	----



Example

HEAPSORT(A, n)

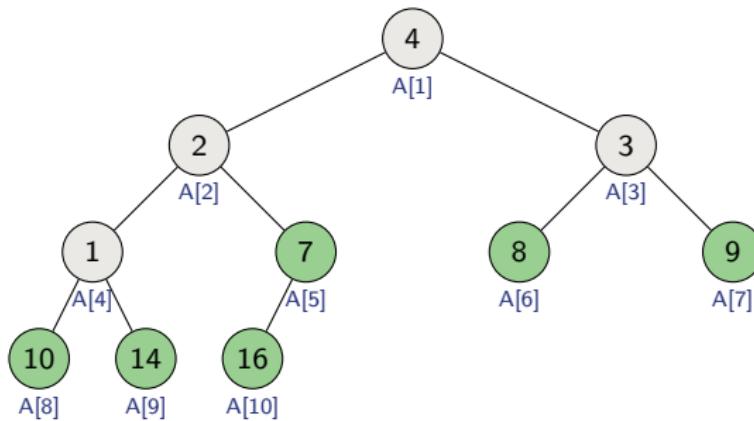
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

4	2	3	1	7	8	9	10	14	16
---	---	---	---	---	---	---	----	----	----



Example

HEAPSORT(A, n)

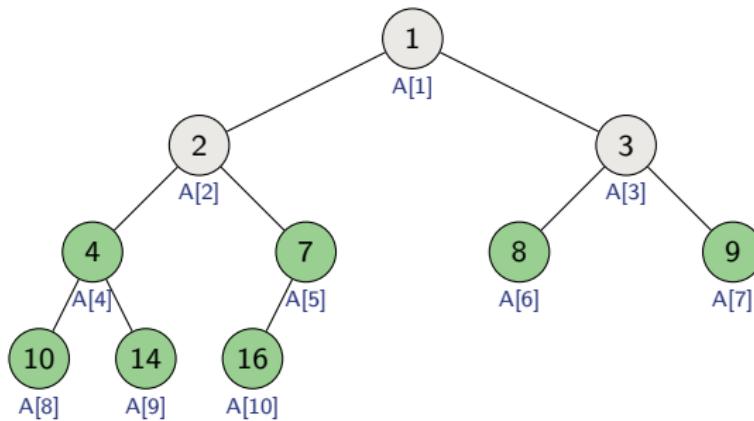
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

1	2	3	4	7	8	9	10	14	16
---	---	---	---	---	---	---	----	----	----



Example

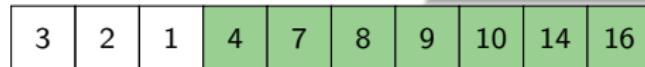
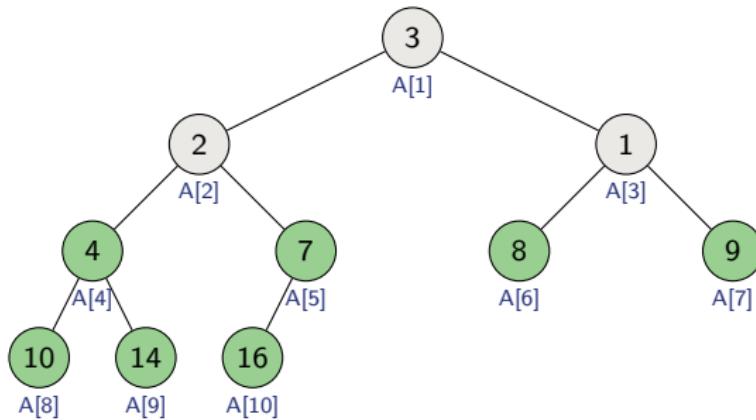
HEAPSORT(A, n)

BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)



Example

HEAPSORT(A, n)

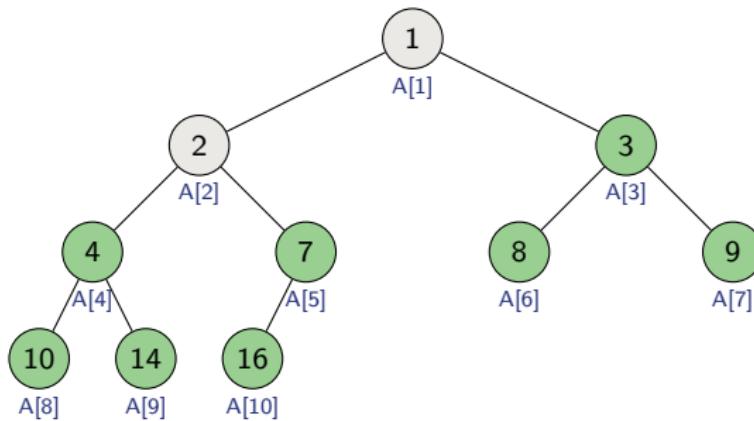
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

1	2	3	4	7	8	9	10	14	16
---	---	---	---	---	---	---	----	----	----



Example

HEAPSORT(A, n)

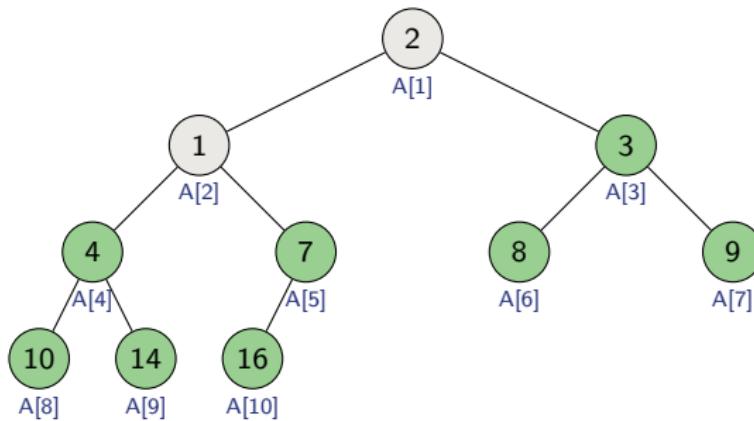
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

2	1	3	4	7	8	9	10	14	16
---	---	---	---	---	---	---	----	----	----



Example

HEAPSORT(A, n)

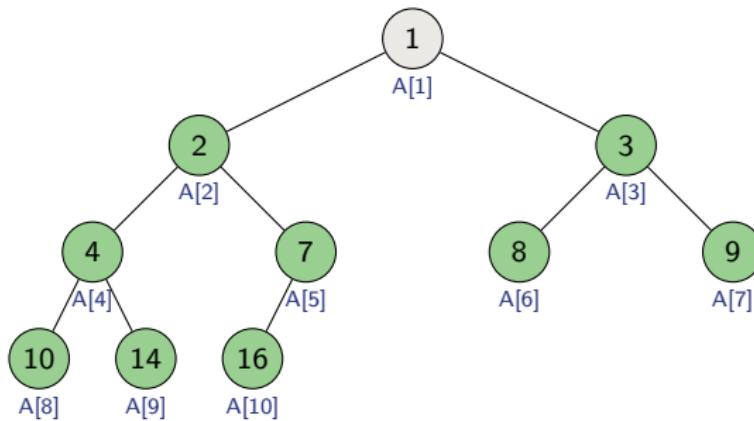
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

1	2	3	4	7	8	9	10	14	16
---	---	---	---	---	---	---	----	----	----



Example

HEAPSORT(A, n)

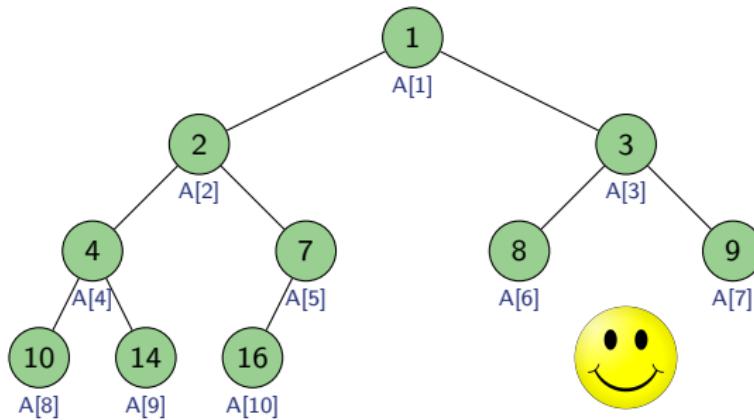
BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

1	2	3	4	7	8	9	10	14	16
---	---	---	---	---	---	---	----	----	----



Analysis of Heapsort

HEAPSORT(A, n)

BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

Analysis of Heapsort

HEAPSORT(A, n)

BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

- BUILD-MAX-HEAP: $O(n)$

Analysis of Heapsort

HEAPSORT(A, n)

BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

- ▶ BUILD-MAX-HEAP: $O(n)$
- ▶ **for** loop: $n - 1$ times

Analysis of Heapsort

HEAPSORT(A, n)

BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

- ▶ BUILD-MAX-HEAP: $O(n)$
- ▶ **for** loop: $n - 1$ times
- ▶ exchange elements: $O(1)$

Analysis of Heapsort

HEAPSORT(A, n)

BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

- ▶ BUILD-MAX-HEAP: $O(n)$
- ▶ **for** loop: $n - 1$ times
- ▶ exchange elements: $O(1)$
- ▶ MAX-HEAPIFY: $O(\lg n)$

Analysis of Heapsort

HEAPSORT(A, n)

BUILD-MAX-HEAP(A, n)

for $i = n$ **downto** 2

exchange $A[1]$ with $A[i]$

MAX-HEAPIFY($A, 1, i - 1$)

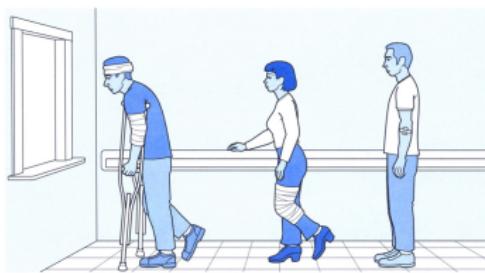
- ▶ BUILD-MAX-HEAP: $O(n)$
- ▶ **for** loop: $n - 1$ times
- ▶ exchange elements: $O(1)$
- ▶ MAX-HEAPIFY: $O(\lg n)$

Total time: $O(n \lg n)$

Summary

- ▶ Heapsort runs in time $O(n \log n)$ and is in-place
- ▶ Great algorithm but a well-implemented quicksort usually beats it in practice
- ▶ Heaps are nice, next lecture we will see how to use them for priority queues and we will also start with other data structures

HEAP IMPLEMENTATION OF PRIORITY QUEUE



Priority Queue

- ▶ Maintains a dynamic set S of elements
- ▶ Each set element has a **key** — an associated value that regulates its importance

Priority Queue

- ▶ Maintains a dynamic set S of elements
- ▶ Each set element has a **key** — an associated value that regulates its importance

What kind of operations do we want to do?

$\text{INSERT}(S, x)$: inserts element x into S

Priority Queue

- ▶ Maintains a dynamic set S of elements
- ▶ Each set element has a **key** — an associated value that regulates its importance

What kind of operations do we want to do?

$\text{INSERT}(S, x)$: inserts element x into S

$\text{MAXIMUM}(S)$: returns element of S with largest key

Priority Queue

- ▶ Maintains a dynamic set S of elements
- ▶ Each set element has a **key** — an associated value that regulates its importance

What kind of operations do we want to do?

$\text{INSERT}(S, x)$: inserts element x into S

$\text{MAXIMUM}(S)$: returns element of S with largest key

$\text{EXTRACT-MAX}(S)$: removes and returns element of S with largest key

Priority Queue

- ▶ Maintains a dynamic set S of elements
- ▶ Each set element has a **key** — an associated value that regulates its importance

What kind of operations do we want to do?

$\text{INSERT}(S, x)$: inserts element x into S

$\text{MAXIMUM}(S)$: returns element of S with largest key

$\text{EXTRACT-MAX}(S)$: removes and returns element of S with largest key

$\text{INCREASE-KEY}(S, x, k)$: increases value of element x 's key to k ;
assume $k \geq x$'s current key value

Priority Queue

- ▶ Maintains a dynamic set S of elements
- ▶ Each set element has a **key** — an associated value that regulates its importance

What kind of operations do we want to do?

$\text{INSERT}(S, x)$: inserts element x into S

$\text{MAXIMUM}(S)$: returns element of S with largest key

$\text{EXTRACT-MAX}(S)$: removes and returns element of S with largest key

$\text{INCREASE-KEY}(S, x, k)$: increases value of element x 's key to k ;
assume $k \geq x$'s current key value

Example max-priority queue application: schedule jobs on shared computer

Priority Queue

- ▶ Maintains a dynamic set S of elements
- ▶ Each set element has a **key** — an associated value that regulates its importance

What kind of operations do we want to do?

$\text{INSERT}(S, x)$: inserts element x into S

$\text{MAXIMUM}(S)$: returns element of S with largest key

$\text{EXTRACT-MAX}(S)$: removes and returns element of S with largest key

$\text{INCREASE-KEY}(S, x, k)$: increases value of element x 's key to k ;
assume $k \geq x$'s current key value

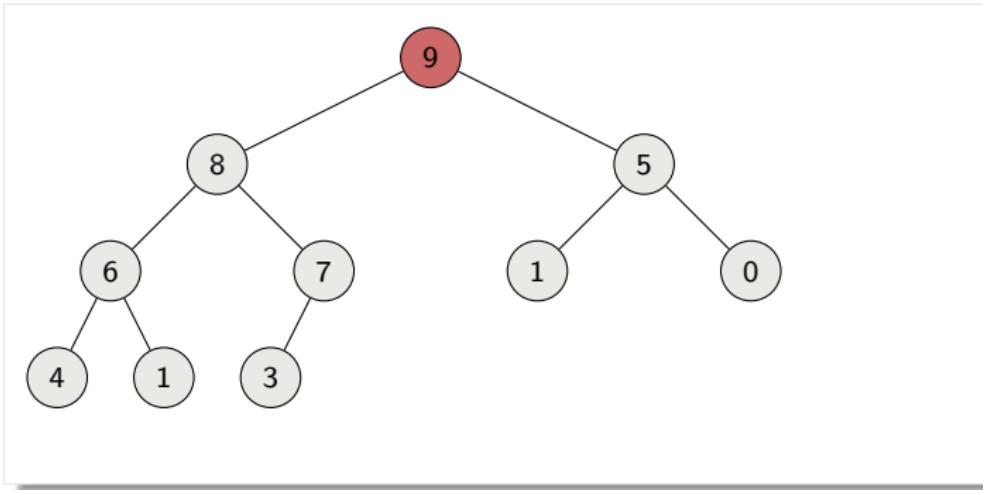
Example max-priority queue application: schedule jobs on shared computer

Heaps efficiently implement priority queues

Finding maximum element

```
HEAP-MAXIMUM( $A$ )
  return  $A[1]$ 
```

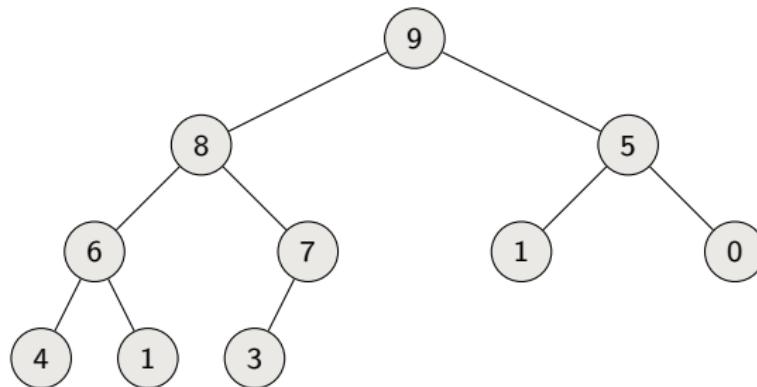
Simply return the root in time $\Theta(1)$



Extracting maximum element

HEAP-EXTRACT-MAX(A, n)

```
if  $n < 1$ 
    error "heap underflow"
 $max = A[1]$ 
 $A[1] = A[n]$ 
 $n = n - 1$ 
MAX-HEAPIFY( $A, 1, n$ )
return  $max$ 
```

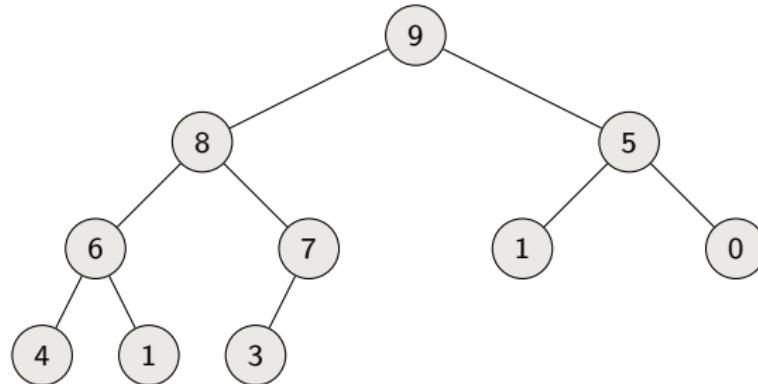


Extracting maximum element

1. Make sure heap is not empty

HEAP-EXTRACT-MAX(A, n)

```
if  $n < 1$ 
    error "heap underflow"
max =  $A[1]$ 
 $A[1] = A[n]$ 
 $n = n - 1$ 
MAX-HEAPIFY( $A, 1, n$ )
return max
```



Extracting maximum element

1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)

HEAP-EXTRACT-MAX(A, n)

if $n < 1$

error "heap underflow"

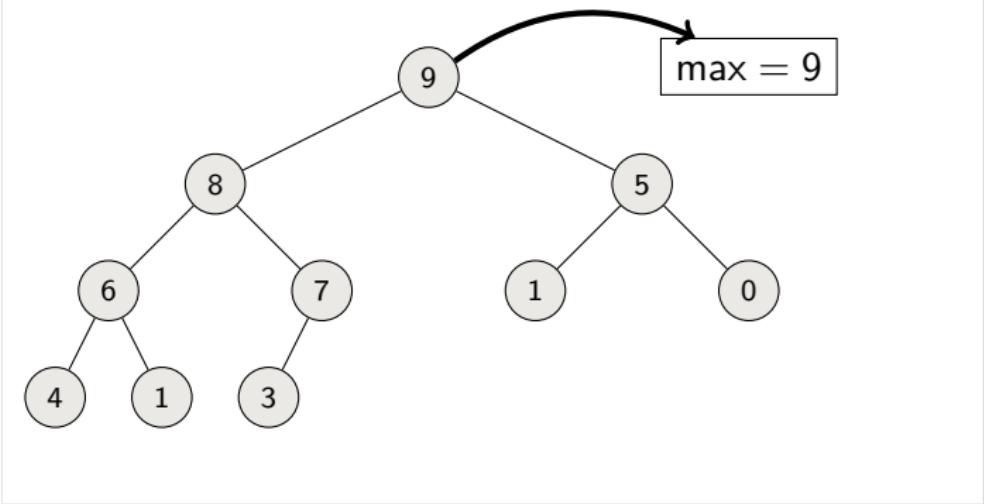
$max = A[1]$

$A[1] = A[n]$

$n = n - 1$

MAX-HEAPIFY($A, 1, n$)

return max



Extracting maximum element

1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root

HEAP-EXTRACT-MAX(A, n)

if $n < 1$

error "heap underflow"

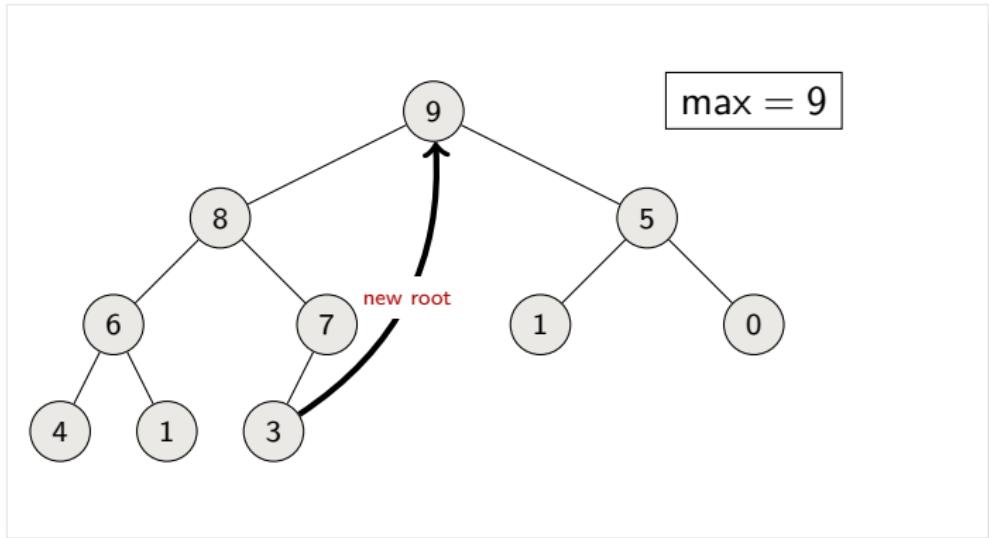
$max = A[1]$

$A[1] = A[n]$

$n = n - 1$

 MAX-HEAPIFY($A, 1, n$)

return max



Extracting maximum element

1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root

HEAP-EXTRACT-MAX(A, n)

if $n < 1$

error "heap underflow"

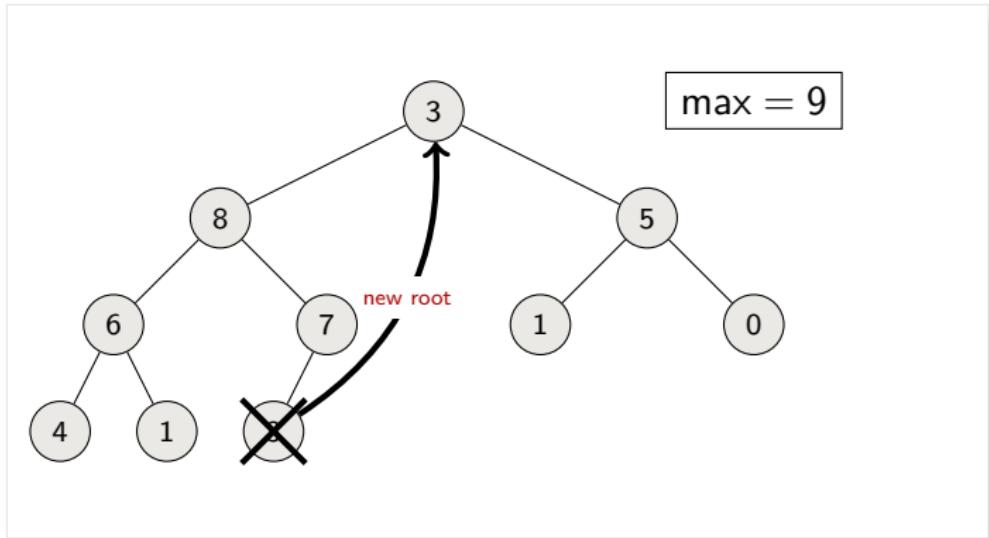
$max = A[1]$

$A[1] = A[n]$

$n = n - 1$

 MAX-HEAPIFY($A, 1, n$)

return max



Extracting maximum element

1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node

HEAP-EXTRACT-MAX(A, n)

if $n < 1$

error "heap underflow"

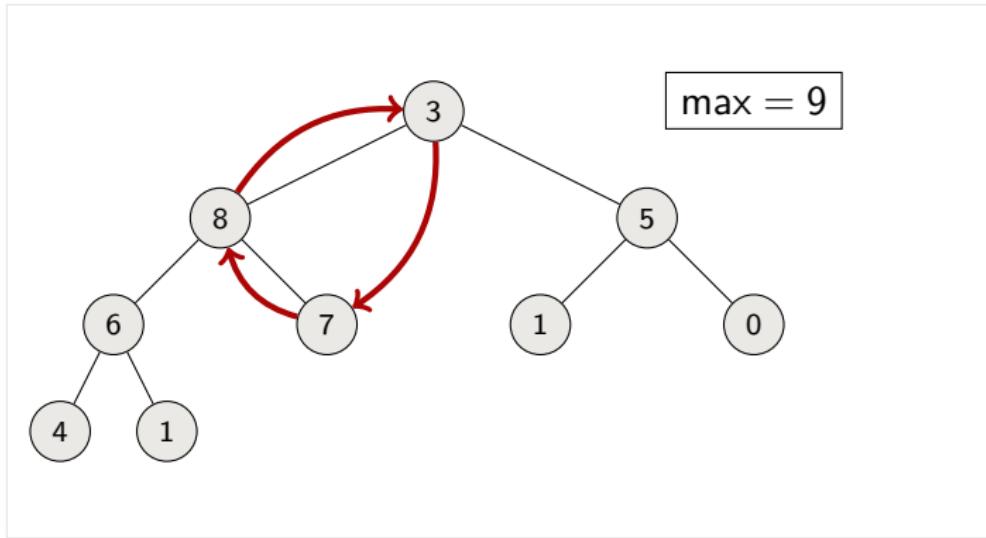
$max = A[1]$

$A[1] = A[n]$

$n = n - 1$

MAX-HEAPIFY($A, 1, n$)

return max



Extracting maximum element

1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node

HEAP-EXTRACT-MAX(A, n)

if $n < 1$

error "heap underflow"

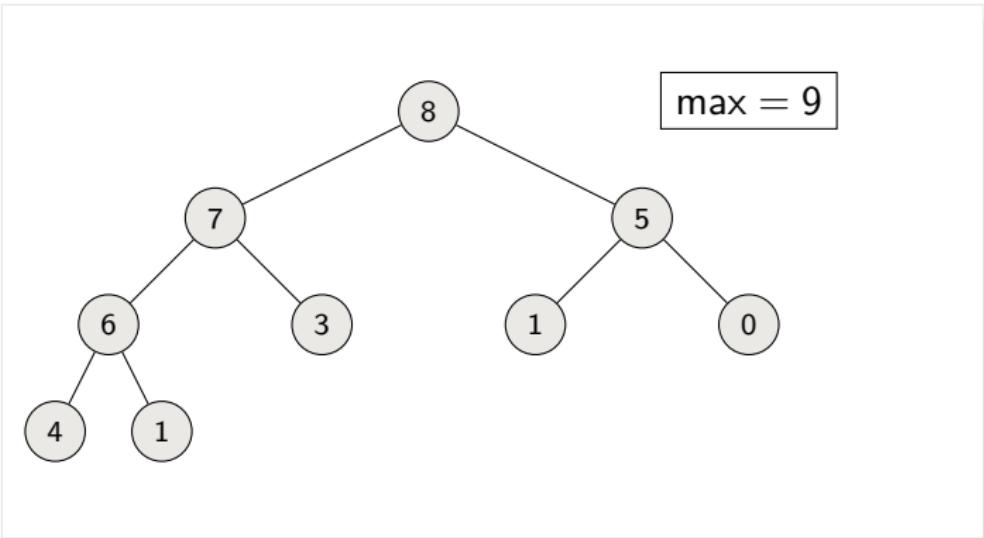
$max = A[1]$

$A[1] = A[n]$

$n = n - 1$

MAX-HEAPIFY($A, 1, n$)

return max



Extracting maximum element

1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node
5. Return the copy of the maximum element

HEAP-EXTRACT-MAX(A, n)

if $n < 1$

error "heap underflow"

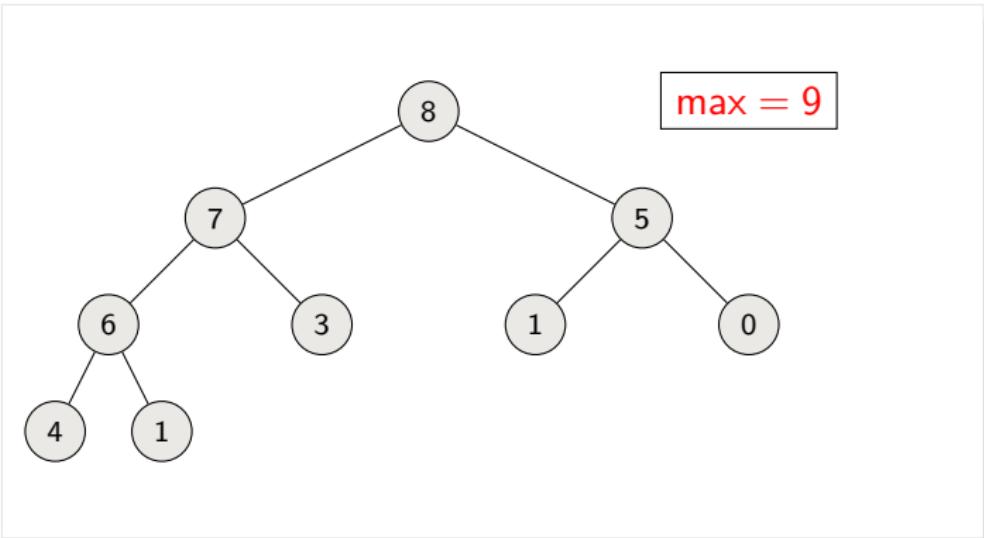
$max = A[1]$

$A[1] = A[n]$

$n = n - 1$

MAX-HEAPIFY($A, 1, n$)

return max



Extracting maximum element

1. Make sure heap is not empty
2. Make a copy of the maximum element (the root)
3. Make the last node in the tree the new root
4. Re-heapify the heap, with one fewer node
5. Return the copy of the maximum element

HEAP-EXTRACT-MAX(A, n)

if $n < 1$

error "heap underflow"

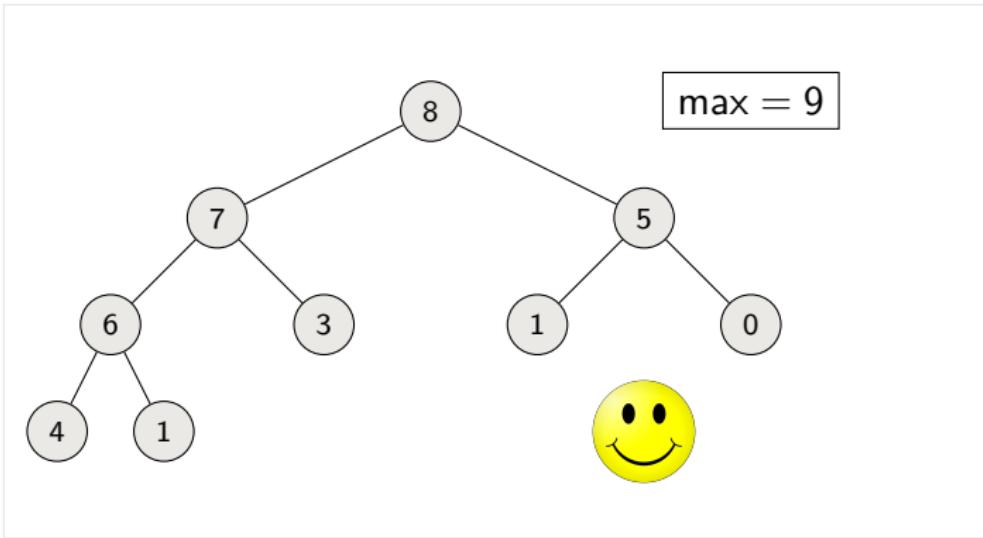
$max = A[1]$

$A[1] = A[n]$

$n = n - 1$

MAX-HEAPIFY($A, 1, n$)

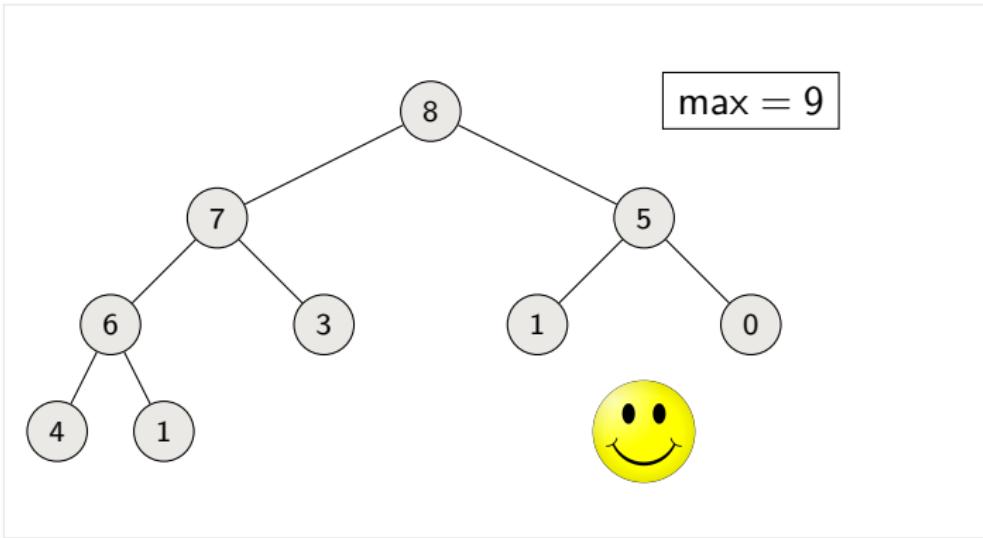
return max



Extracting maximum element

Analysis:

```
HEAP-EXTRACT-MAX( $A, n$ )
  if  $n < 1$ 
    error "heap underflow"
   $max = A[1]$ 
   $A[1] = A[n]$ 
   $n = n - 1$ 
  MAX-HEAPIFY( $A, 1, n$ )
  return  $max$ 
```

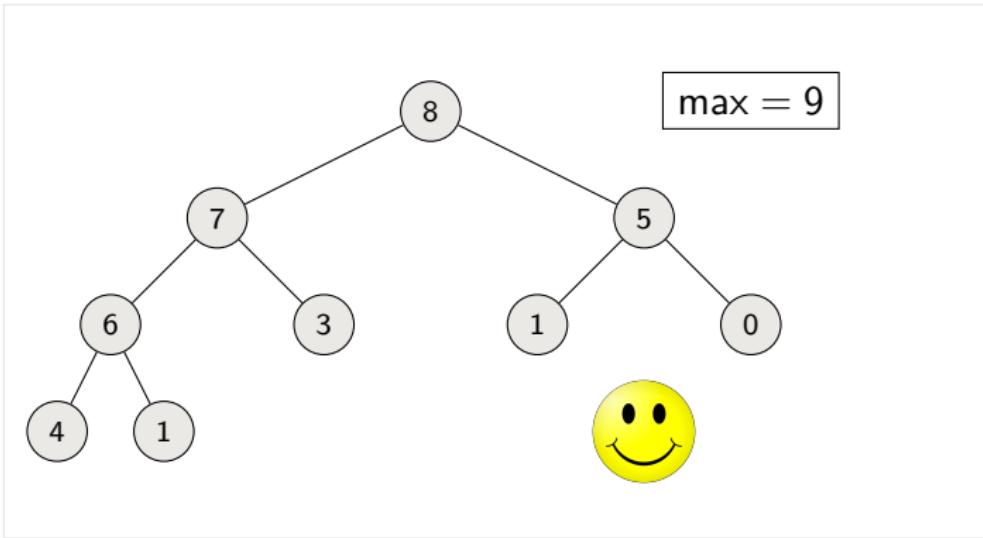


Extracting maximum element

Analysis: Constant-time assignments plus time for MAX-HEAPIFY

HEAP-EXTRACT-MAX(A, n)

```
if  $n < 1$ 
  error "heap underflow"
 $max = A[1]$ 
 $A[1] = A[n]$ 
 $n = n - 1$ 
MAX-HEAPIFY( $A, 1, n$ )
return  $max$ 
```



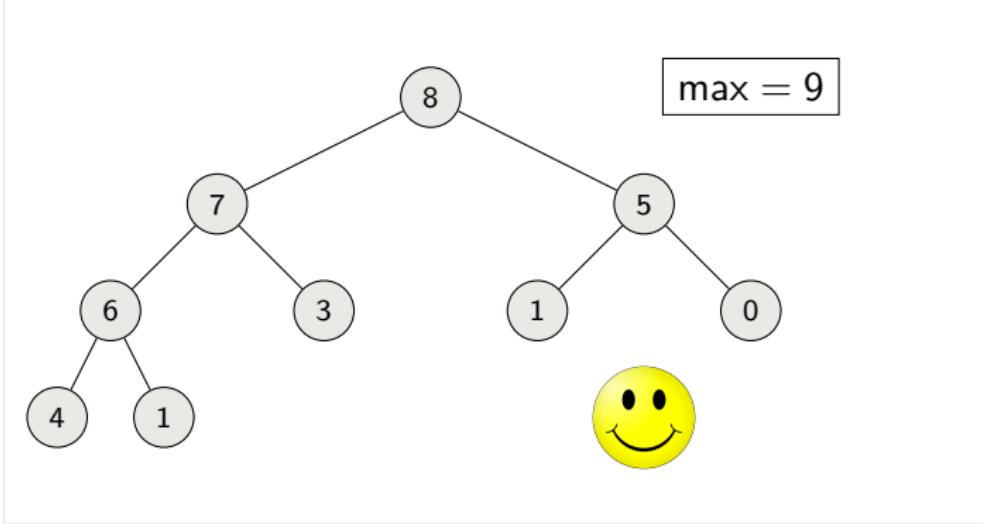
Extracting maximum element

Analysis: Constant-time assignments plus time for MAX-HEAPIFY

Hence, it runs in time $O(\lg n)$

HEAP-EXTRACT-MAX(A, n)

```
if  $n < 1$ 
  error "heap underflow"
 $max = A[1]$ 
 $A[1] = A[n]$ 
 $n = n - 1$ 
MAX-HEAPIFY( $A, 1, n$ )
return  $max$ 
```



Increasing key value

Given a heap A , index i , and new value key

HEAP-INCREASE-KEY(A, i, key)

if $key < A[i]$

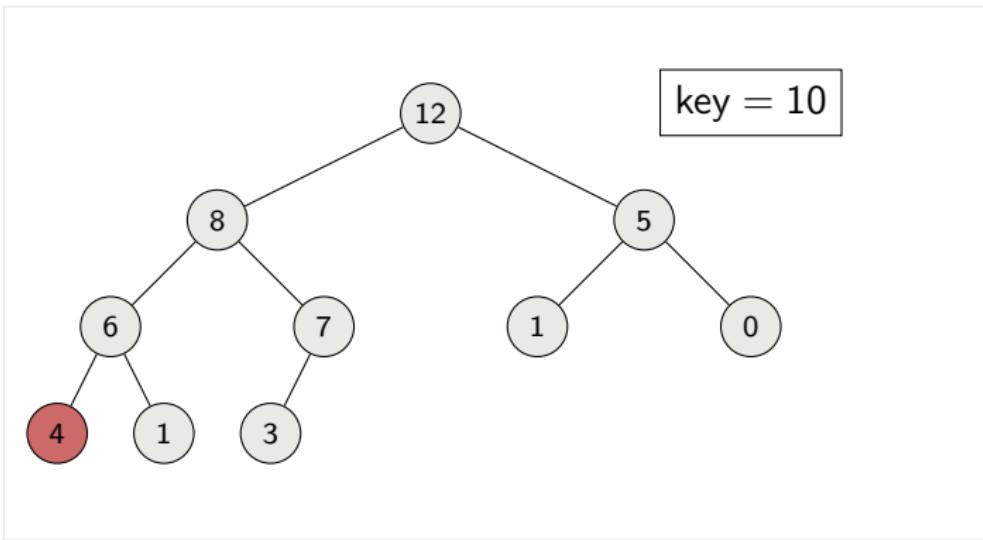
error “new key is smaller than current key”

$A[i] = key$

while $i > 1$ and $A[\text{PARENT}(i)] < A[i]$

exchange $A[i]$ with $A[\text{PARENT}(i)]$

$i = \text{PARENT}(i)$



Increasing key value

Given a heap A , index i , and new value key

1. Make sure $key \geq A[i]$

HEAP-INCREASE-KEY(A, i, key)

if $key < A[i]$

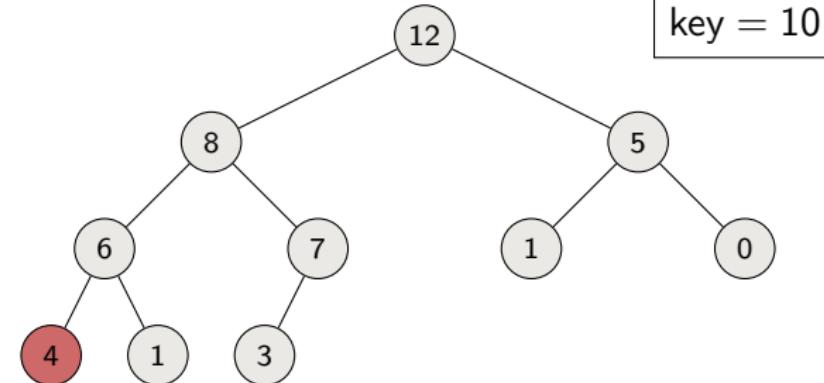
error “new key is smaller than current key”

$A[i] = key$

while $i > 1$ and $A[\text{PARENT}(i)] < A[i]$

exchange $A[i]$ with $A[\text{PARENT}(i)]$

$i = \text{PARENT}(i)$



Increasing key value

Given a heap A , index i , and new value key

1. Make sure $key \geq A[i]$
2. Update $A[i]$'s value to key

HEAP-INCREASE-KEY(A, i, key)

if $key < A[i]$

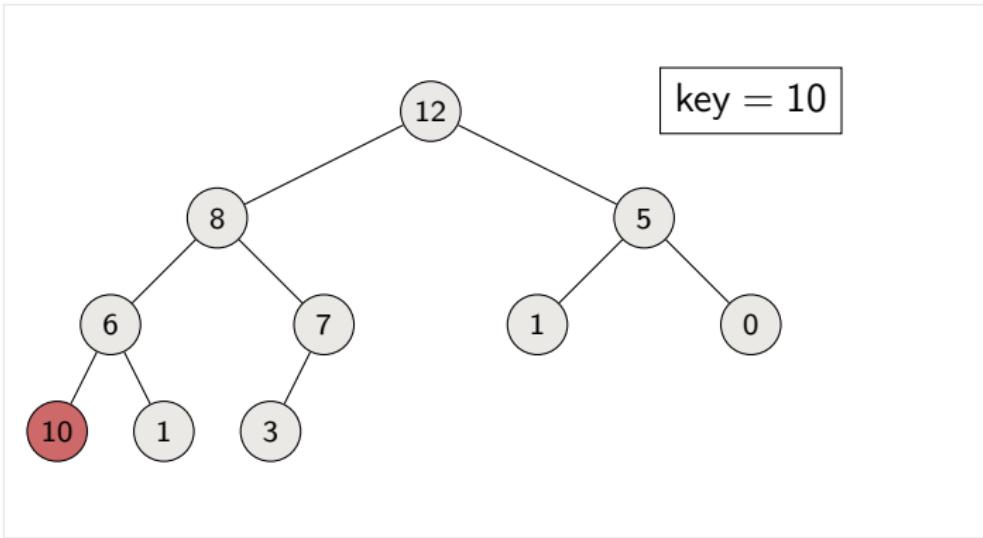
error "new key is smaller than current key"

$A[i] = key$

while $i > 1$ and $A[\text{PARENT}(i)] < A[i]$

exchange $A[i]$ with $A[\text{PARENT}(i)]$

$i = \text{PARENT}(i)$



Increasing key value

Given a heap A , index i , and new value key

1. Make sure $key \geq A[i]$
2. Update $A[i]$'s value to key
3. Traverse the tree upward comparing new key to the parent and swapping keys if necessary, until the new key is smaller than the parent's key

HEAP-INCREASE-KEY(A, i, key)

if $key < A[i]$

error "new key is smaller than current key"

$A[i] = key$

while $i > 1$ and $A[\text{PARENT}(i)] < A[i]$

exchange $A[i]$ with $A[\text{PARENT}(i)]$

$i = \text{PARENT}(i)$



Increasing key value

Given a heap A , index i , and new value key

1. Make sure $key \geq A[i]$
2. Update $A[i]$'s value to key
3. Traverse the tree upward comparing new key to the parent and swapping keys if necessary, until the new key is smaller than the parent's key

HEAP-INCREASE-KEY(A, i, key)

if $key < A[i]$

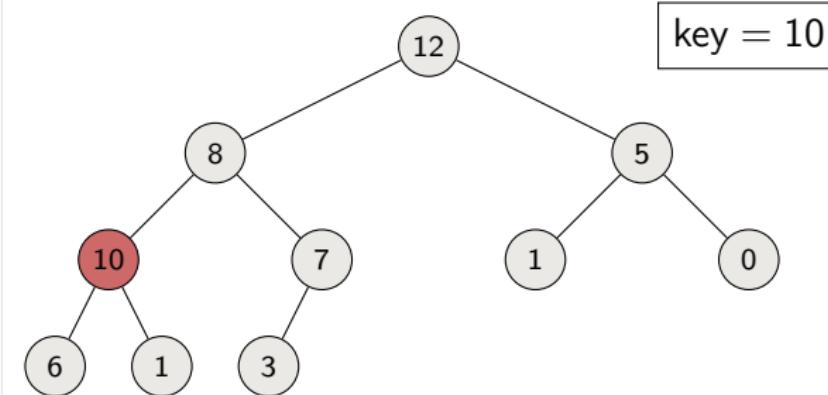
error "new key is smaller than current key"

$A[i] = key$

while $i > 1$ and $A[\text{PARENT}(i)] < A[i]$

exchange $A[i]$ with $A[\text{PARENT}(i)]$

$i = \text{PARENT}(i)$



Increasing key value

Given a heap A , index i , and new value key

1. Make sure $key \geq A[i]$
2. Update $A[i]$'s value to key
3. Traverse the tree upward comparing new key to the parent and swapping keys if necessary, until the new key is smaller than the parent's key

HEAP-INCREASE-KEY(A, i, key)

if $key < A[i]$

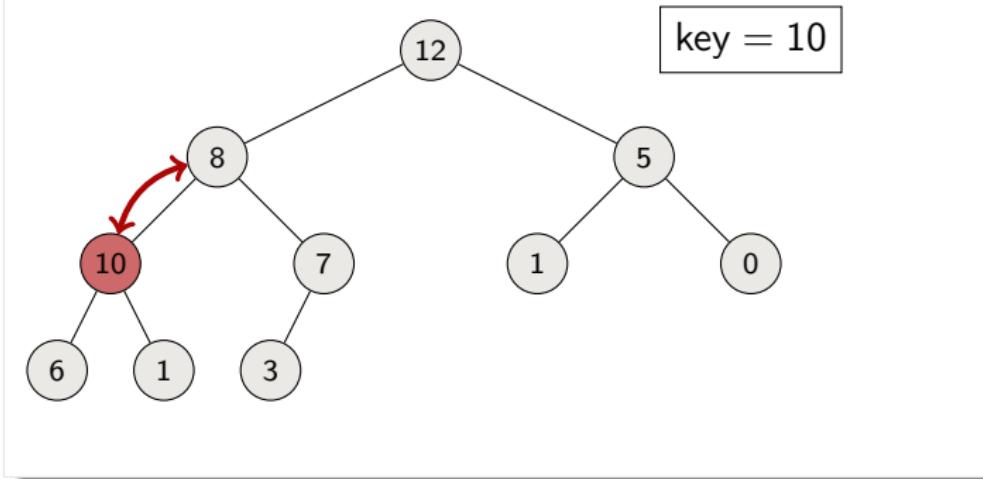
error "new key is smaller than current key"

$A[i] = key$

while $i > 1$ and $A[\text{PARENT}(i)] < A[i]$

exchange $A[i]$ with $A[\text{PARENT}(i)]$

$i = \text{PARENT}(i)$



Increasing key value

Given a heap A , index i , and new value key

1. Make sure $key \geq A[i]$
2. Update $A[i]$'s value to key
3. Traverse the tree upward comparing new key to the parent and swapping keys if necessary, until the new key is smaller than the parent's key

HEAP-INCREASE-KEY(A, i, key)

if $key < A[i]$

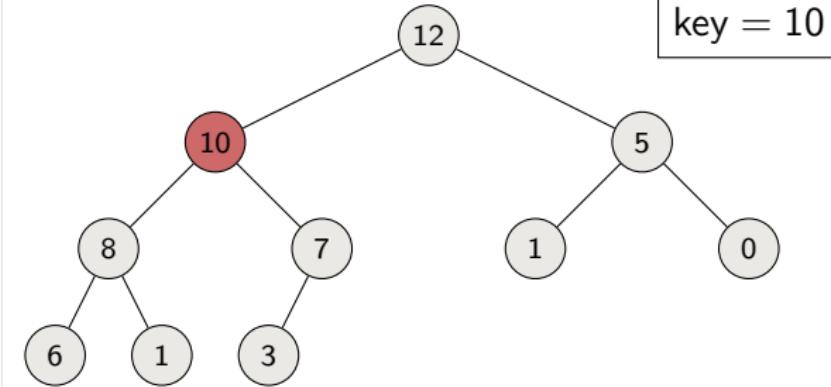
error "new key is smaller than current key"

$A[i] = key$

while $i > 1$ and $A[\text{PARENT}(i)] < A[i]$

exchange $A[i]$ with $A[\text{PARENT}(i)]$

$i = \text{PARENT}(i)$



Increasing key value

Given a heap A , index i , and new value key

1. Make sure $key \geq A[i]$
2. Update $A[i]$'s value to key
3. Traverse the tree upward comparing new key to the parent and swapping keys if necessary, until the new key is smaller than the parent's key

HEAP-INCREASE-KEY(A, i, key)

if $key < A[i]$

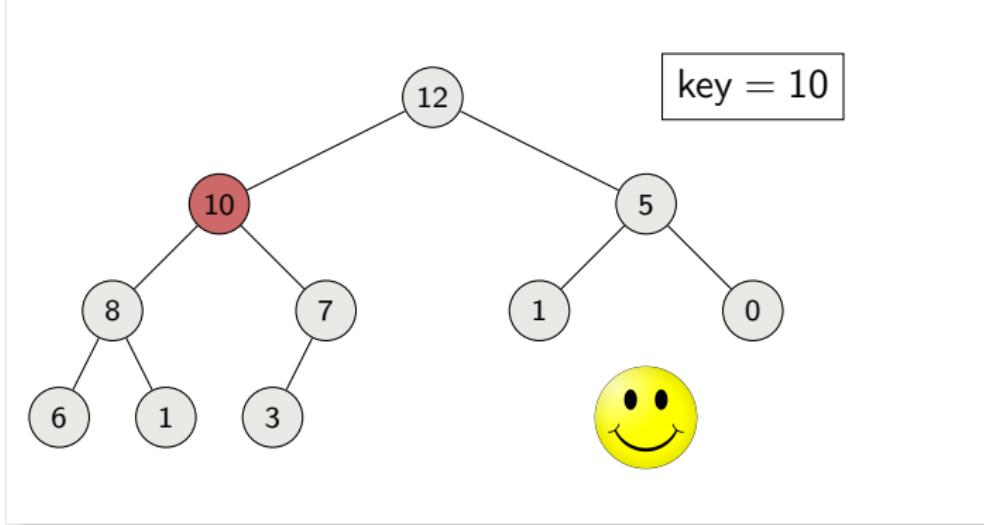
error "new key is smaller than current key"

$A[i] = key$

while $i > 1$ and $A[\text{PARENT}(i)] < A[i]$

exchange $A[i]$ with $A[\text{PARENT}(i)]$

$i = \text{PARENT}(i)$



Increasing key value

Analysis:

HEAP-INCREASE-KEY(A, i, key)

if $key < A[i]$

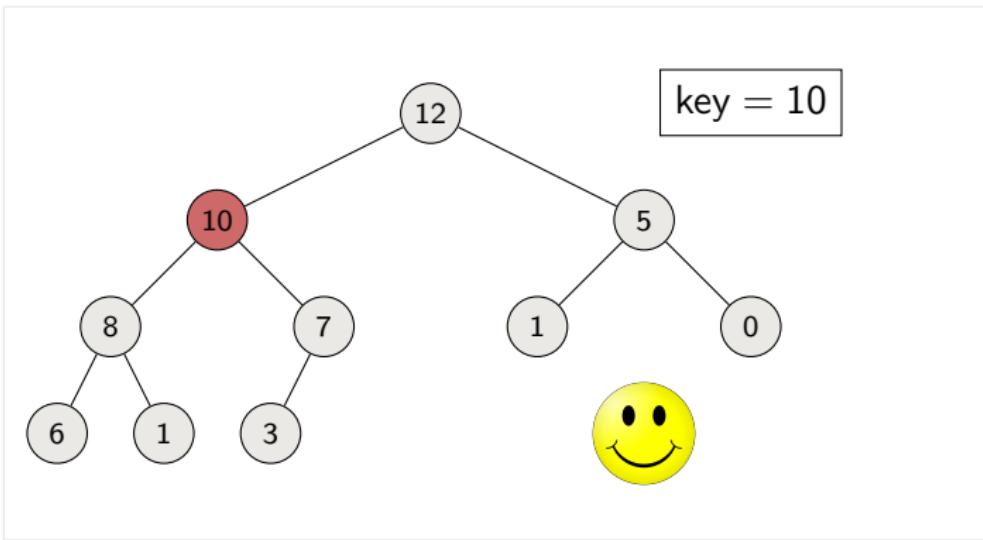
error "new key is smaller than current key"

$A[i] = key$

while $i > 1$ and $A[\text{PARENT}(i)] < A[i]$

exchange $A[i]$ with $A[\text{PARENT}(i)]$

$i = \text{PARENT}(i)$



Increasing key value

Analysis:

Upward path from node i has length $O(\lg n)$ in an n -element heap

HEAP-INCREASE-KEY(A, i, key)

if $key < A[i]$

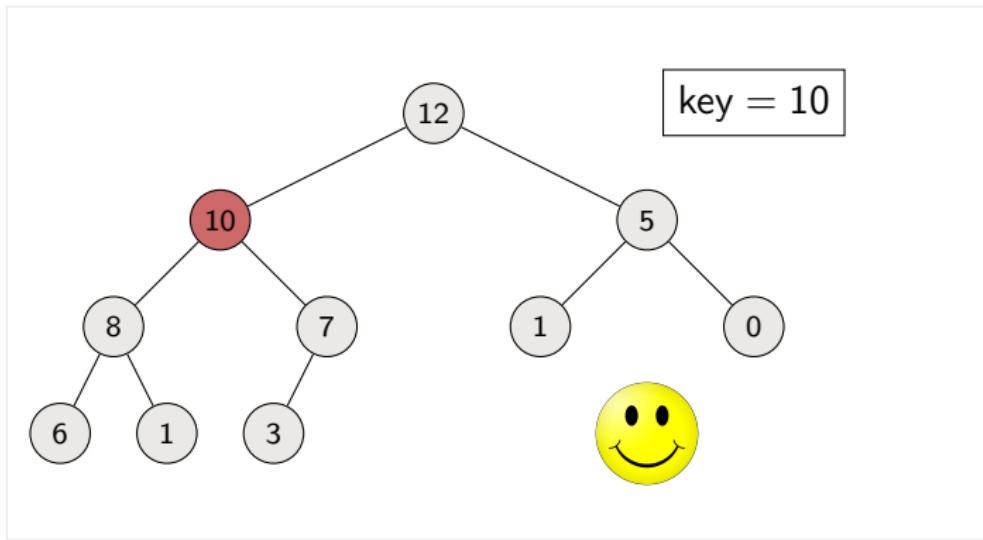
error “new key is smaller than current key”

$A[i] = key$

while $i > 1$ and $A[\text{PARENT}(i)] < A[i]$

exchange $A[i]$ with $A[\text{PARENT}(i)]$

$i = \text{PARENT}(i)$



Increasing key value

Analysis:

Upward path from node i has length $O(\lg n)$ in an n -element heap

Hence, it runs in time $O(\lg n)$

HEAP-INCREASE-KEY(A, i, key)

if $key < A[i]$

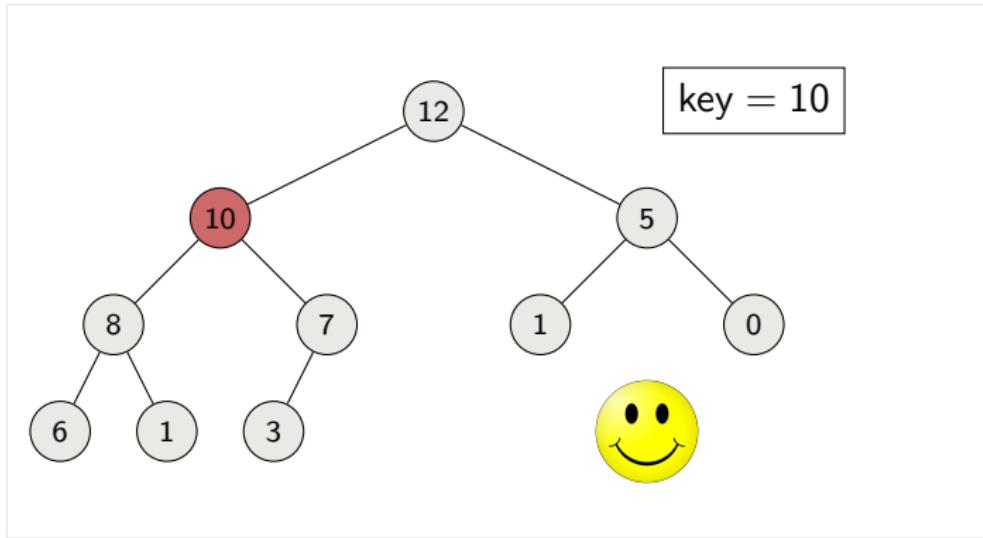
error "new key is smaller than current key"

$A[i] = key$

while $i > 1$ and $A[\text{PARENT}(i)] < A[i]$

exchange $A[i]$ with $A[\text{PARENT}(i)]$

$i = \text{PARENT}(i)$



Inserting into the heap

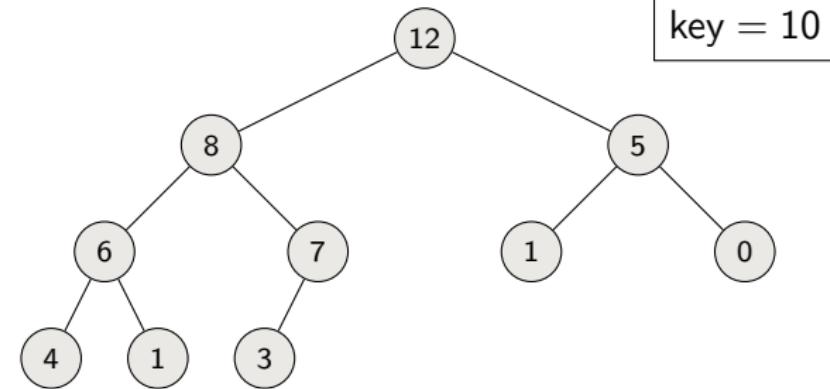
Given a new *key* to insert into heap

MAX-HEAP-INSERT(A, key, n)

$n = n + 1$

$A[n] = -\infty$

HEAP-INCREASE-KEY(A, n, key)



Inserting into the heap

Given a new *key* to insert into heap

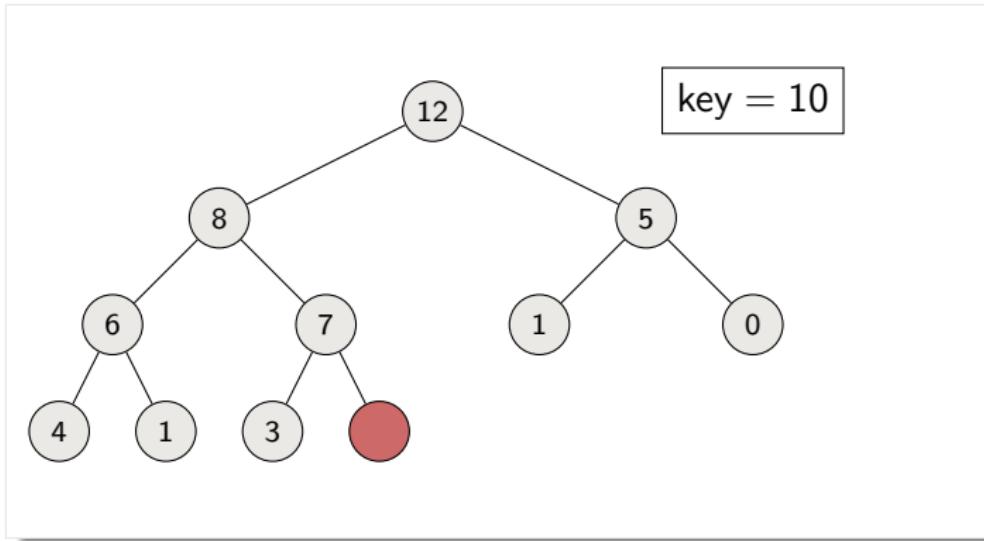
1. Increment the heap size

MAX-HEAP-INSERT(A, key, n)

$n = n + 1$

$A[n] = -\infty$

HEAP-INCREASE-KEY(A, n, key)



Inserting into the heap

Given a new key to insert into heap

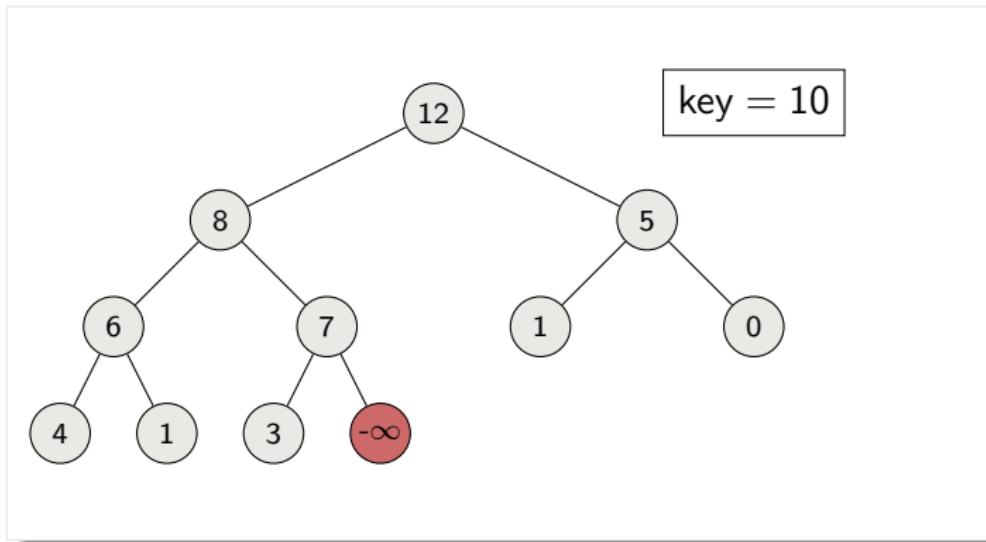
1. Increment the heap size
2. Insert a new node in the last position in the heap, with key $-\infty$

MAX-HEAP-INSERT(A, key, n)

$n = n + 1$

$A[n] = -\infty$

HEAP-INCREASE-KEY(A, n, key)



Inserting into the heap

Given a new *key* to insert into heap

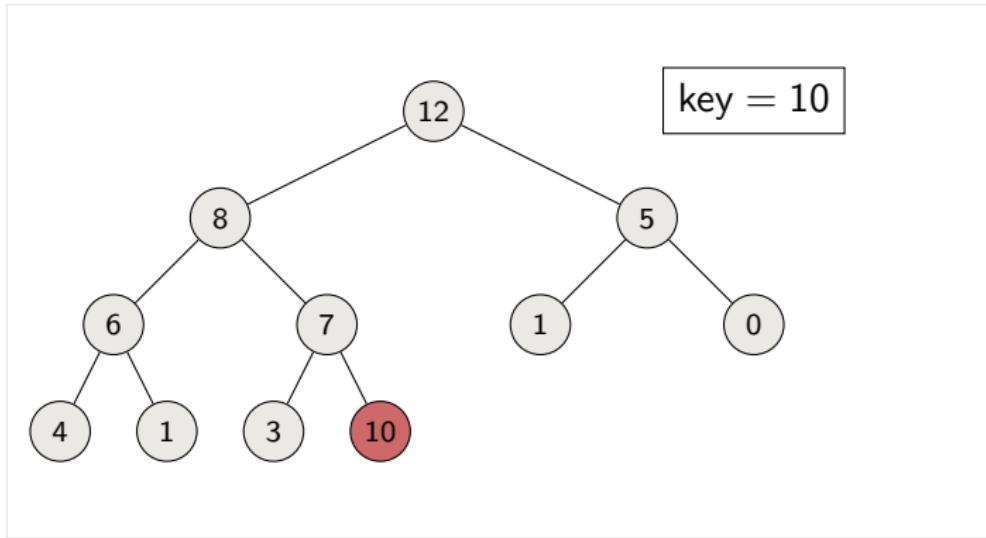
1. Increment the heap size
2. Insert a new node in the last position in the heap, with key $-\infty$
3. Increase the $-\infty$ value to *key* using HEAP-INCREASE-KEY

MAX-HEAP-INSERT(A, key, n)

$$n = n + 1$$

$$A[n] = -\infty$$

HEAP-INCREASE-KEY(A, n, key)



Inserting into the heap

Given a new key to insert into heap

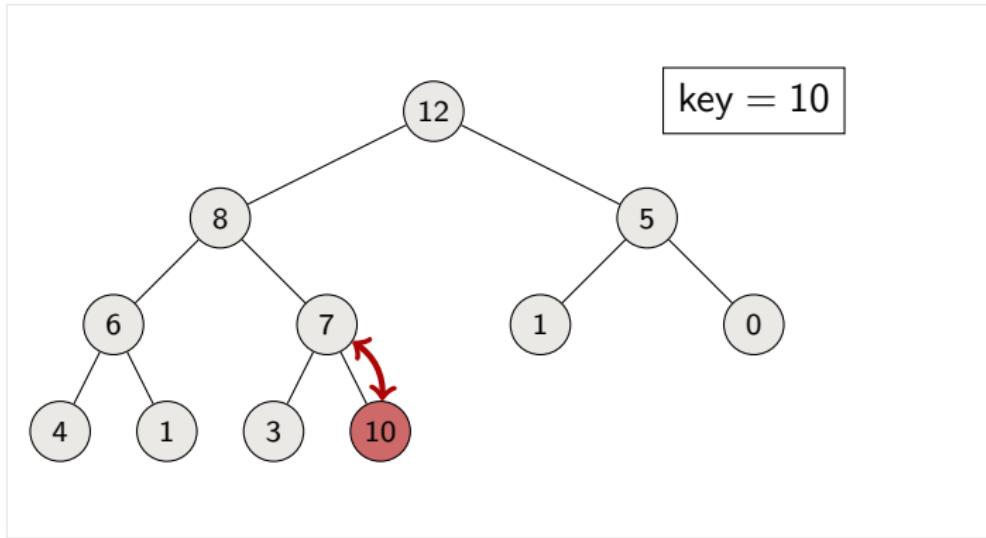
1. Increment the heap size
2. Insert a new node in the last position in the heap, with key $-\infty$
3. Increase the $-\infty$ value to key using HEAP-INCREASE-KEY

MAX-HEAP-INSERT(A, key, n)

$$n = n + 1$$

$$A[n] = -\infty$$

HEAP-INCREASE-KEY(A, n, key)



Inserting into the heap

Given a new *key* to insert into heap

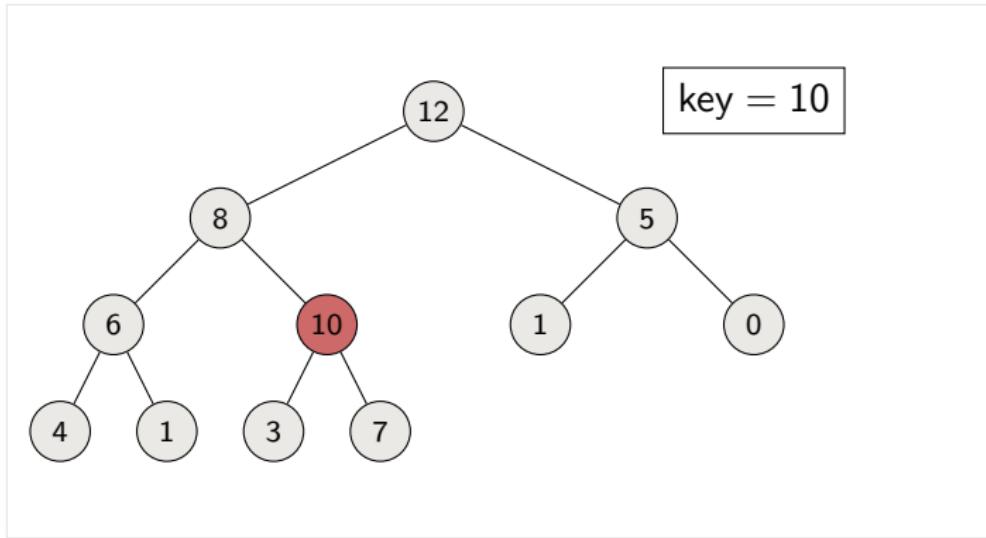
1. Increment the heap size
2. Insert a new node in the last position in the heap, with key $-\infty$
3. Increase the $-\infty$ value to *key* using HEAP-INCREASE-KEY

MAX-HEAP-INSERT(A, key, n)

$$n = n + 1$$

$$A[n] = -\infty$$

HEAP-INCREASE-KEY(A, n, key)



Inserting into the heap

Given a new *key* to insert into heap

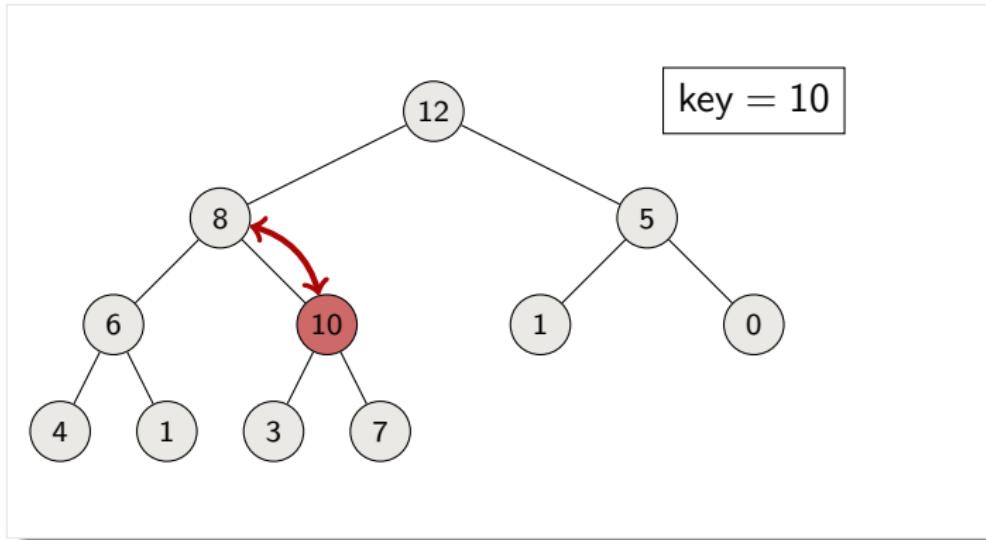
1. Increment the heap size
2. Insert a new node in the last position in the heap, with key $-\infty$
3. Increase the $-\infty$ value to *key* using HEAP-INCREASE-KEY

MAX-HEAP-INSERT(A, key, n)

$$n = n + 1$$

$$A[n] = -\infty$$

HEAP-INCREASE-KEY(A, n, key)



Inserting into the heap

Given a new *key* to insert into heap

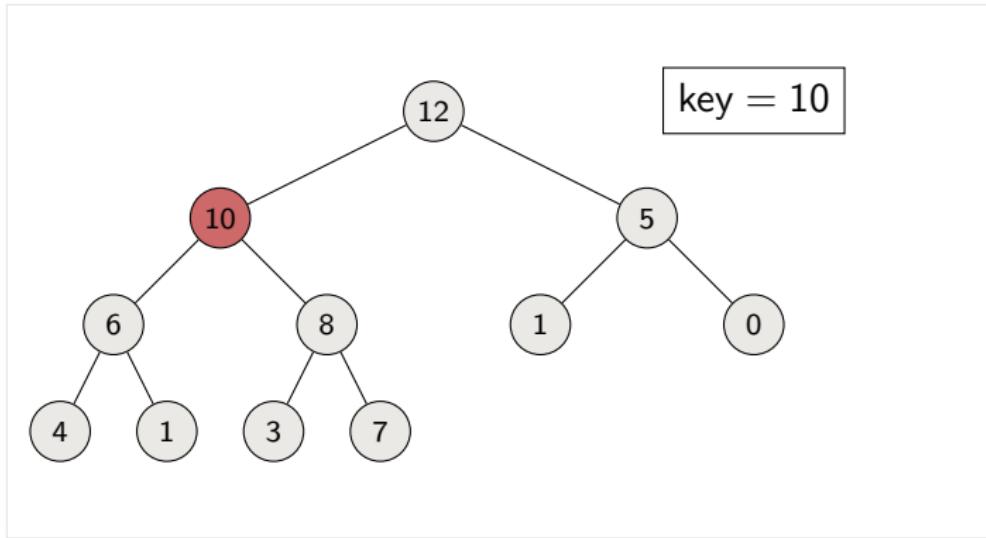
1. Increment the heap size
2. Insert a new node in the last position in the heap, with key $-\infty$
3. Increase the $-\infty$ value to *key* using HEAP-INCREASE-KEY

MAX-HEAP-INSERT(A, key, n)

$$n = n + 1$$

$$A[n] = -\infty$$

HEAP-INCREASE-KEY(A, n, key)



Inserting into the heap

Given a new *key* to insert into heap

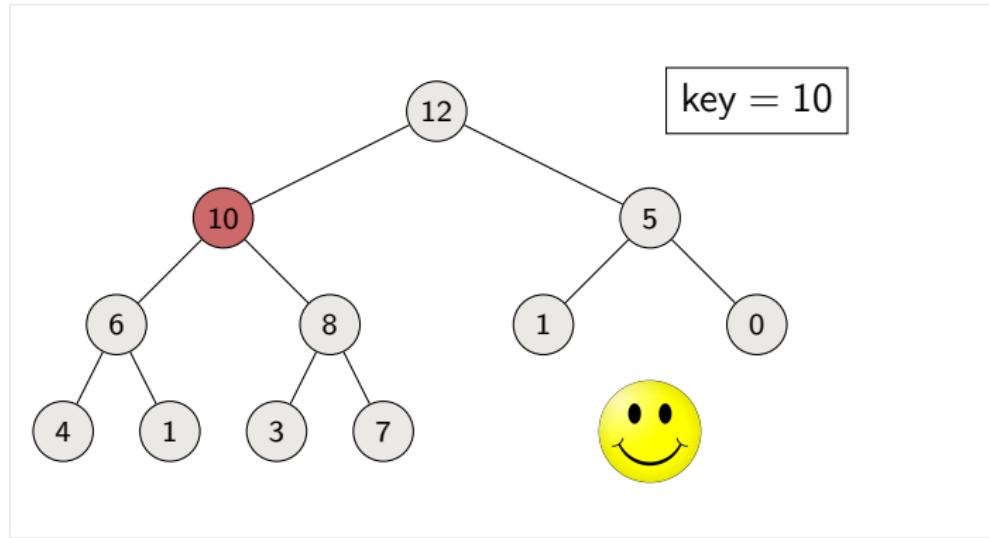
1. Increment the heap size
2. Insert a new node in the last position in the heap, with key $-\infty$
3. Increase the $-\infty$ value to *key* using HEAP-INCREASE-KEY

MAX-HEAP-INSERT(A, key, n)

$$n = n + 1$$

$$A[n] = -\infty$$

HEAP-INCREASE-KEY(A, n, key)



Inserting into the heap

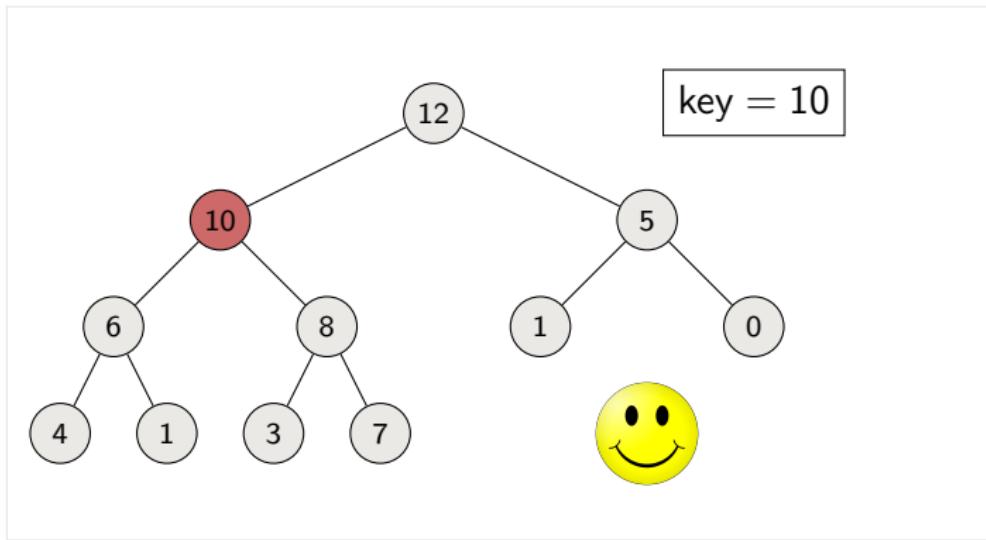
Analysis:

MAX-HEAP-INSERT(A, key, n)

$n = n + 1$

$A[n] = -\infty$

HEAP-INCREASE-KEY(A, n, key)



Inserting into the heap

Analysis: Constant time assignments

+

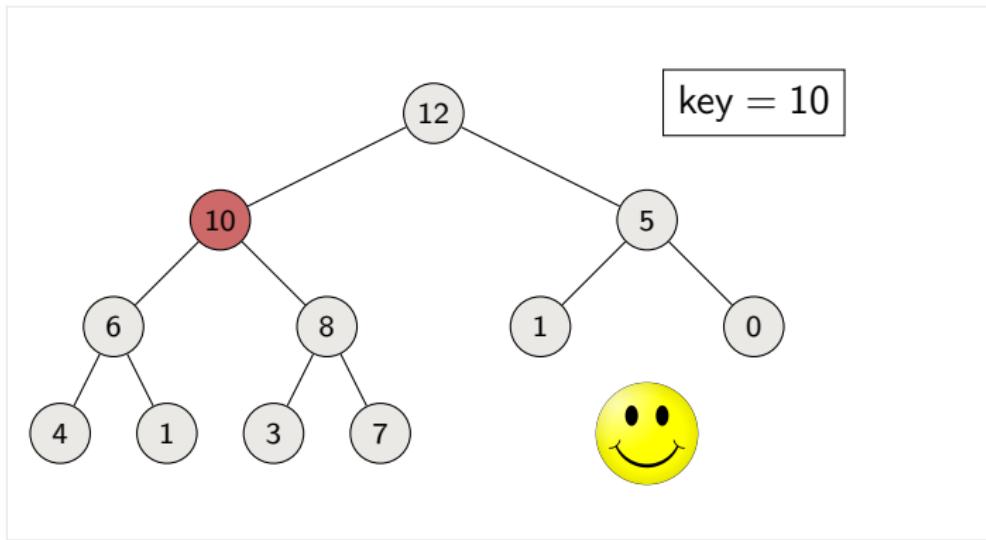
Time for HEAP-INCREASE-KEY

MAX-HEAP-INSERT(A, key, n)

$n = n + 1$

$A[n] = -\infty$

HEAP-INCREASE-KEY(A, n, key)



Inserting into the heap

Analysis: Constant time assignments

+

Time for HEAP-INCREASE-KEY

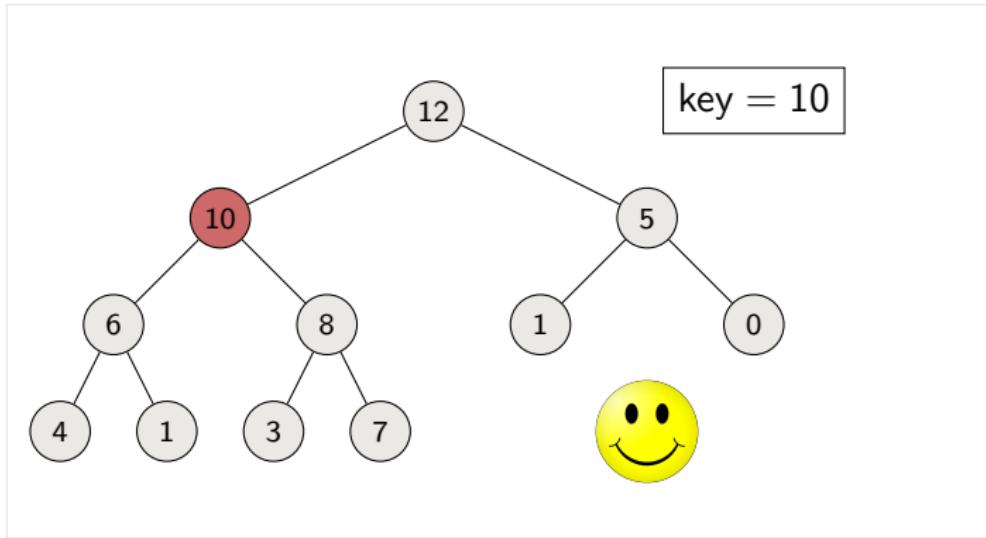
MAX-HEAP-INSERT(A, key, n)

$n = n + 1$

$A[n] = -\infty$

HEAP-INCREASE-KEY(A, n, key)

Hence, it runs in time $O(\lg n)$



Summary

- ▶ Heapsort runs in time $O(n \log n)$ and is in-place
- ▶ Great algorithm but a well-implemented quicksort usually beats it in practice

Summary

- ▶ Heapsort runs in time $O(n \log n)$ and is in-place
- ▶ Great algorithm but a well-implemented quicksort usually beats it in practice
- ▶ Heaps efficiently implement priority queues

Summary

- ▶ Heapsort runs in time $O(n \log n)$ and is in-place
- ▶ Great algorithm but a well-implemented quicksort usually beats it in practice
- ▶ Heaps efficiently implement priority queues

INSERT(S, x):

Summary

- ▶ Heapsort runs in time $O(n \log n)$ and is in-place
- ▶ Great algorithm but a well-implemented quicksort usually beats it in practice
- ▶ Heaps efficiently implement priority queues
 $\text{INSERT}(S, x)$: $O(\lg n)$

Summary

- ▶ Heapsort runs in time $O(n \log n)$ and is in-place
- ▶ Great algorithm but a well-implemented quicksort usually beats it in practice
- ▶ Heaps efficiently implement priority queues
 - INSERT(S, x): $O(\lg n)$
 - MAXIMUM(S):

Summary

- ▶ Heapsort runs in time $O(n \log n)$ and is in-place
- ▶ Great algorithm but a well-implemented quicksort usually beats it in practice
- ▶ Heaps efficiently implement priority queues
 - $\text{INSERT}(S, x)$: $O(\lg n)$
 - $\text{MAXIMUM}(S)$: $O(1)$

Summary

- ▶ Heapsort runs in time $O(n \log n)$ and is in-place
- ▶ Great algorithm but a well-implemented quicksort usually beats it in practice
- ▶ Heaps efficiently implement priority queues
 - INSERT(S, x): $O(\lg n)$
 - MAXIMUM(S): $O(1)$
 - EXTRACT-MAX(S):

Summary

- ▶ Heapsort runs in time $O(n \log n)$ and is in-place
- ▶ Great algorithm but a well-implemented quicksort usually beats it in practice
- ▶ Heaps efficiently implement priority queues
 - $\text{INSERT}(S, x)$: $O(\lg n)$
 - $\text{MAXIMUM}(S)$: $O(1)$
 - $\text{EXTRACT-MAX}(S)$: $O(\lg n)$

Summary

- ▶ Heapsort runs in time $O(n \log n)$ and is in-place
- ▶ Great algorithm but a well-implemented quicksort usually beats it in practice

- ▶ Heaps efficiently implement priority queues

$\text{INSERT}(S, x)$: $O(\lg n)$

$\text{MAXIMUM}(S)$: $O(1)$

$\text{EXTRACT-MAX}(S)$: $O(\lg n)$

$\text{INCREASE-KEY}(S, x, k)$:

Summary

- ▶ Heapsort runs in time $O(n \log n)$ and is in-place
- ▶ Great algorithm but a well-implemented quicksort usually beats it in practice
- ▶ Heaps efficiently implement priority queues
 - $\text{INSERT}(S, x)$: $O(\lg n)$
 - $\text{MAXIMUM}(S)$: $O(1)$
 - $\text{EXTRACT-MAX}(S)$: $O(\lg n)$
 - $\text{INCREASE-KEY}(S, x, k)$: $O(\lg n)$
- ▶ Min-priority queues are implemented with min-heaps similarly