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Solving Recurrences:
▶ Substitution method
▶ Recursion Trees
▶ (Master Method)

Maximum-Subarray Problem
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Recall Recursion trees
Example: T (1) = c and T (n) = 2T (n/2) + cn2

Qualified guess: T (n) = cn2∑log n
i=0

1
2i ≤ cn2 = Θ(n2)
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Recall Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn

Qualified guess: exist positive constants a, b so that
a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)
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Master method
Used to black-box solve recurrences of the form T (n) = aT (n/b) + f (n)

Theorem (Master Theorem)
Let a ≥ 1 and b > 1 be constants, let T (n) be defined on the nonnegative integers by
the recurrence

T (n) = aT (n/b) + f (n).

Then, T (n) has the following asymptotic bounds

▶ If f (n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a)

▶ If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)

▶ If f (n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if a · f (n/b) ≤ c · f (n) for
some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n))

Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn
▶ f (n) = O(n) and a = b = 2 so logb(a) = 1 and f (n) = Θ(nlogb(a)).
▶ By Master theorem, we have T (n) = Θ(n log n) :)
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MAXIMUM-SUBARRAY PROBLEM
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Maximum-subarray problem
“If we let A[i] = (price after day i) − (price after day i − 1) then if the maximum
subarray is A[i . . . j] then we should have bought just before day i and sold just after
day j.”

Definition
INPUT: An array A[1 . . . n] of numbers

OUTPUT: Indices i and j such that A[i . . . j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[i . . . j]

Examples: 1 -4 3 -4 output is i = j = 3 and the sum 3

-2 -4 3 -1 5 7 -7 -2 4 -3 2

output is i = 3 and j = 6 and the sum 14
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Maximum-subarray problem
More examples
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Divide-and-Conquer

-2 -4 3 -1 5 7 -7 -1
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Solution
Also find the maximum subarray that crosses the midpoint!
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Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low . . . mid ] and A[mid + 1 . . . high].

Conquer by finding maximum subarrays of A[low . . . mid ] and
A[mid + 1 . . . high].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

This strategy works because any subarray must either lie entirely on one
side of the midpoint or cross the midpoint
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Analysis
Assume that we can find
max-crossing-subarray in time Θ(n)

Divide takes constant time,i.e., Θ(1)
Conquer recursively solve two subproblems, each of size

n/2 ⇒ T (n/2)
Merge time dominated by find-max-crossing-subarray

⇒ Θ(n)
Recursion for the running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise
Hence, T (n) = Θ(n log n)
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Finding maximum subarray crossing midpoint

▶ Any subarray crossing the midpoint A[mid ] is made of two
subarrays A[i . . . mid ] and A[mid + 1, . . . , j] where low ≤ i ≤ mid
and mid < j ≤ high

▶ Find maximum subarrays of the form A[i . . . mid ] and
A[mid + 1 . . . j] and then combine them.

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1
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Crossing subarray

Running time?

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high
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Crossing subarray

Running time? Θ(n)

Space?

-2 -4 3 -1 5 7 -7 -1

low mid high
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Running time? Θ(n)

Space? Θ(n)
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MATRIX MULTIPLICATION

Lecture 5, 04.03.2025



Matrix Multiplication

Definition
Input: Two n × n (square) matrices, A = (aij) and B = (bij)

Output: n × n matrix C = (cij), where C = A · B

Example (n = 2):
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Matrix Multiplication

Definition
Input: Two n × n (square) matrices, A = (aij) and B = (bij)

Output: n × n matrix C = (cij), where C = A · B

Example (n = 2):(
c11 c12

c21 c22

)
=
(

a11 a12

a21 a22

)
·

(
b11 b12

b21 b22

)

where c11 = a11b11 + a12b21,
c12 = a11b12 + a12b22,
c21 = a21b11 + a22b21,
c22 = a21b12 + a22b22.
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Matrix Multiplication

Definition
Input: Two n × n (square) matrices, A = (aij) and B = (bij)

Output: n × n matrix C = (cij), where C = A · B

Example (n = 2): (
? ?
? ?

)
=
(

1 2
−1 3

)
·

(
3 −1
1 2

)
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Matrix Multiplication

Definition
Input: Two n × n (square) matrices, A = (aij) and B = (bij)

Output: n × n matrix C = (cij), where C = A · B

Example (n = 2): (
5 3
0 7

)
=
(

1 2
−1 3

)
·

(
3 −1
1 2

)
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How to multiply two matrices?


c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n
...

...
. . .

...

cn,1 cn,2 · · · cn,n

 =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

·


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n


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. . .
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
b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n



c1,1 = a1,1b1,1 + a1,2b2,1 + a1,3b3,1 + . . . , a1,nbn,1 =
n∑

k=1

a1kbk1
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How to multiply two matrices?


c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n
...

...
. . .

...

cn,1 cn,2 · · · cn,n

 =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

·


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n



c2,2 = a2,1b1,2 + a2,2b2,2 + a2,3b3,2 + . . . , a2,nbn,2 =
n∑

k=1

a2kbk2
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How to multiply two matrices?


c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n
...

...
. . .

...

cn,1 cn,2 · · · cn,n

 =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

·


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n



cij =
n∑

k=1
aikbkj
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Naive Algorithm
Well simply multiply the matrices...

Example: ? −?
? ?

 =
 1 2

−1 3

 ·

3 −1
1 2


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Naive Algorithm
Well simply multiply the matrices...

Example: 3 −?
? ?

 =
 1 2

−1 3

 ·

3 −1
1 2


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Naive Algorithm
Well simply multiply the matrices...

Example: 5 −?
? ?

 =
 1 2

−1 3

 ·

3 −1
1 2


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Naive Algorithm
Well simply multiply the matrices...

Example: 5 −1
? ?

 =
 1 2

−1 3

 ·

3 −1
1 2


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Naive Algorithm
Well simply multiply the matrices...

Example: 5 −3
? ?

 =
 1 2

−1 3

 ·

3 −1
1 2


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Naive Algorithm
Well simply multiply the matrices...

Example: 5 −3
0 7

 =
 1 2

−1 3

 ·

3 −1
1 2


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Naive Algorithm
Well simply multiply the matrices...

Running time?

Θ(n3)

Space? Θ(n2)
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Smart Algorithm: Divide-and-Conquer

= ×

C11 = A11B11 + A12B21 C12 = A11B12 + A12B22

C21 = A21B11 + A22B21 C22 = A21B12 + A22B22
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Smart Algorithm: Divide-and-Conquer
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Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 × n/2 matrices: so that(
C11 C12

C21 C22

)
=
(

A11 A12

A21 A22

)
·

(
B11 B12

B21 B22

)

Conquer: Since
C11 = A11 · B11 + A12 · B21
C12 = A11 · B12 + A12 · B22
C21 = A21 · B11 + A22 · B21
C22 = A21 · B12 + A22 · B22
we recursively solve 8 matrix multiplications that each
multiply two n/2 × n/2 matrices.

Combine: Make the additions to get C
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Pseudocode and Analysis
Let T (n) be the time to multiply
two n × n matrices.

Base case: n = 1. Perform one scalar multiplication: Θ(1)

Recursive case: n > 1.
▶ Dividing takes Θ(1) time if careful and Θ(n2) if simply copying
▶ Conquering makes 8 recursive calls, each multiplying n/2 × n/2

matrices ⇒ 8T (n/2)
▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
8T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(n3)
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Volker Strassen

STRASSEN’S ALGORITHM FOR
MATRIX MULTIPLICATION
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The Idea
Make less recursive calls

▶ Perform only 7 recursive multiplications of n/2 × n/2 matrices,
rather than 8

▶ Will cost several additions of n/2 × n/2 matrices, but just a
constant more

⇒ can still absorb the constant factor for matrix additions into the
Θ(n2) term

To obtain the recurrence

T (n) =
{

Θ(1) if n = 1
7T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(nlog2 7)
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Strassen’s method

Divide each of A, B, C into four n/2 × n/2 matrices: so that(
C11 C12

C21 C22

)
=
(

A11 A12

A21 A22

)
·

(
B11 B12

B21 B22

)

Conquer: Calculate recursively 7 matrix multiplications, each of two
n/2 × n/2 matrices:

M1 := (A11 + A22)(B11 + B22) M5 := (A11 + A12)B22

M2 := (A21 + A22)B11 M6 := (A21 − A11)(B11 + B12)
M3 := A11(B12 − B22) M7 := (A12 − A22)(B21 + B22)
M4 := A22(B21 − B11)

Combine: Let
C11 = M1 + M4 − M5 + M7 C12 = M3 + M5

C21 = M2 + M4 C22 = M1 − M2 + M3 + M6
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Analysis of Strassen’s Method

Base case: n = 1 ⇒ it takes time Θ(1)

Recursive case: n > 1
▶ Dividing takes time Θ(n2)

▶ Conquering makes 7 recursive calls, each multiplying n/2 × n/2
matrices ⇒ 7T (n/2)

▶ Combining takes time Θ(n2) time to add n/2 × n/2 matrices.

Recurrence is

T (n) =
{

Θ(1) if n = 1
7T (n/2) + Θ(n2) if n > 1

Master method ⇒ T (n) = Θ(nlog2 7)
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Notes about Strassen’s method

▶ First to beat Θ(n3) time

▶ Faster known today, method by Coppersmith and Winograd runs in
time O(n2.376) recently improved by Vassilevska Williams to
O(n2.3727).

▶ Big open problem how to multiply matrices in best way

▶ Naive method better for small instances because of hidden
constants
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Summary

▶ Divide-and-conquer simple but powerful algorithmic paradigm

▶ Merge-sort and maximum subarray both run in time Θ(n log n)

▶ Strassen’s algorithm for matrix multiplication in time Θ(nlog2 7)
where log2 7 ≈ 2.8.
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HEAPS AND HEAPSORT
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Heapsort

Algorithm worst-case running time in-place
Insertion Sort Θ(n2) YES

Merge Sort Θ(n log n) NO

Heapsort:

▶ O(n lg n) worst case – like merge sort
▶ Sorts in place – like insertion sort
▶ Combines the best of both algorithms

Uses a cool datastructure: heaps
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Data Structures = “Building Blocks”
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Data structures = dynamic sets of items

What kind of operations do we want to do?

▶ Modifying operations: insertion, deletion, . . .
▶ Query operations: search, maximum, minimum, . . .

Data structure containing numbers
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(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 3
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(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i ’s children is smaller or equal to i ’s key
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(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i ’s children is smaller or equal to i ’s key
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(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i ’s children is greater or equal to i ’s key
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(Binary) heap data structure
Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i ’s children is greater or equal to i ’s key
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Max-Heap ⇒ maximum element is the root
key

ℓ r
≤ ≥

≤ ℓ ≤ r

Min-Heap ⇒ minimum element is the root
key

ℓ r
≥ ≤

≥ ℓ ≥ r
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Height of a heap
Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root

= Θ(log n)

16

14 10

8 7 9 3

2 4 1
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How to store a heap/tree?

pointer to left and right children

Use that tree is almost complete to store it in array
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How to store a heap/tree?
pointer to left and right children

Use that tree is almost complete to store it in array
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BUILDING AND MANIPULATING HEAPS
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Maintaining the heap property

Max-Heapify is important for manipulating heaps:

Given an i such that the subtrees of i are heaps, it ensures that the
subtree rooted at i is a heap satisfy the heap property

⇒
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Max-Heapify(A, i , n)
Algorithm:
▶ Compare A[i], A[Left(i)], A[Right(i)]
▶ If necessary, swap A[i] with the largest of the two children to preserve heap

property
▶ Continue this process of comparing and swapping down the heap, until subtree

rooted at i is max-heap
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Pseudo-code and analysis

Running time?

Θ(height of i) = O(log n)

Space?

Θ(n)
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Building a heap

Given unordered array A of length n, Build-Max-Heap outputs a heap
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Analysis

What is the worst-case running time of Build-Max-Heap?

Simple bound: O(n) calls to Max-Heapify, each of which takes
O(lg n) time ⇒ O(n lg n) in total

Tighter analysis: Time to run Max-Heapify is linear in the height of
the node it’s run on. Hence, the time is bounded by

lg n∑
h=0

{# nodes of height h}O(h) = O
(

n
lg n∑
h=0

h
2h

)
,

which is O(n) since
∑∞

h=0
h
2h = 1/2

(1−1/2)2 = 2.
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