Algorithms: Divide-and-Conquer (Matrix

multiplication)
Alessandro Chiesa, Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 5, 04.03.2025

RECALL LAST LECTURE

Solving Recurrences:

> Substitution method

> Recursion Trees
» (Master Method)

Maximum-Subarray Problem

Lecture 5, 04.03.2025

Recall Recursion trees

Example: T(1) = c and T(n) =2T(n/2) + cn?

Lecture 5, 04.03.2025

Recall Recursion trees

Example: T(1) = c and T(n) =2T(n/2) + cn?

cn?

Lecture 5, 04.03.2025

Recall Recursion trees

Example: T(1) = c and T(n) =2T(n/2) + cn?

/Cn\

cn?/4 cn®/4

Lecture 5, 04.03.2025

Recall Recursion trees

Example: T(1) = c and T(n) =2T(n/2) + cn?

cn?
/ \
cn?/4 cn®/4
VAN VAN
cn?/16 cn?/16 cn?/16 cn?/16

Lecture 5, 04.03.2025

0
()
()
—
)
c
.9
n
—
>
O
(D)
o
“©
O
(D)
o

Example: T(1) = c and T(n) =2T(n/2) + cn?

T(1) T() TQ) TQ) TQ) TQ) TQ) TA) TQ) TQ) TQ) T(Q) TQ) TQ) TA) T(Q)

Lecture 5, 04.03.2025

0
()
()
—
)
c
.9
n
—
>
O
(D)
o
“©
O
()
o

Example: T(1) = c and T(n) =2T(n/2) + cn?

T(1) T() TQ) TQ) TQ) TQ) TQ) TA) TQ) TQ) TQ) T(Q) TQ) TQ) TA) T(Q)

log,(n)

Lecture 5, 04.03.2025

0
()
()
—
)
c
.9
n
—
>
O
(D)
o
“©
O
()
o

Example: T(1) = c and T(n) =2T(n/2) + cn?

T(1) T() TQ) TQ) TQ) TQ) TQ) TA) TQ) TQ) TQ) T(Q) TQ) TQ) TA) T(Q)

log,(n)

2'082(") =n

Lecture 5, 04.03.2025

0
(D)
()
—
)
c
.9
n
b
3
O
(V)
o
“©
O
)
o

Example: T(1) = c and T(n) =2T(n/2) + cn?

Vv

A

log,(n)

2'082(") =n

Lecture 5, 04.03.2025

Recall Recursion trees

Example: T(1) = c and T(n) =2T(n/2) + cn?

— i ™~

cn?/4 cn®/4 cn?/2 = cn?/2}
VAN VAN

cn?/16 cn?/16 cn?/16 cn?/16 cn? /4 = cn? /22

o) /N /N /NN

A

cn? = cn?/2°

[
[
[
[
[
[
[
[
[
(1) 7(

1
1
1
1
1
1
1
1
[
7(

1
1
1
1
1
1
1
1
I
(1) T() TQ) TQ) TQ) ch = Cn2/2|°g"

[R
[R
[R
[R
[T
[R
[R
[R
[R
1) 7)) TQ) T(

1
1
1
1
1
1
1
1
[
7(

I
I
I
I
I
I
I
I
|
(1) T(1) T(1) T(1) T(1) T(1) T(1)

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
I I
((

+ T(1) T() T(1) T(1) T(1)

2'082(") =n

Qualified guess: T(n) = cn® Y18 2 < cn® = ©(n?)

Lecture 5, 04.03.2025

Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

Lecture 5, 04.03.2025

Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn

Lecture 5, 04.03.2025

Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/Cn\

cn/3 c2n/3

Lecture 5, 04.03.2025

Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/////’ \\\\\
cn/3 c2n/3

VRN VRN
cn/9 c2n/9 c2n/9 c4n/9

Lecture 5, 04.03.2025

Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn

/ \

cn/3 c2n/3 - cn
VAN VAN

cn/9 c2n/9 c2n/9 c4n/9 — ¢n

- cn

Lecture 5, 04.03.2025

Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn

/ \

cn/3 c2n/3 - cn
VAN VAN

cn/9 c2n/9 c2n/9 c4n/9 — ¢n

T

leftmost branch peters
out after logs n levels

- cn

Lecture 5, 04.03.2025

Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ cn
cn/3 c2n/3 cn
VAN VRN
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels

Lecture 5, 04.03.2025

Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.

Lecture 5, 04.03.2025

Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.

» Each level contributes ~ cn

Lecture 5, 04.03.2025

Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.

> Each level contributes =~ cn
Qualified guess: exist positive constants a, b so that
a-nlogg(n) < T(n) < b-nlogy,, n= T(n)=0O(nlogn)

Lecture 5, 04.03.2025

Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Lecture 5, 04.03.2025

Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds

Lecture 5, 04.03.2025

Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds

> If f(n) = O(n'°% 2=<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)

Lecture 5, 04.03.2025

Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% 2=<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'"8b2), then T(n) = ©(n'°8s? log n)

Lecture 5, 04.03.2025

Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by

the recurrence
T(n) = aT(n/b) + f(n).

Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% 2=<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'"8b2), then T(n) = ©(n'°8s? log n)

> If f(n) = Q(n'°%b 2+€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Lecture 5, 04.03.2025

Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% 2=<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'°8>2), then T(n) = ©(n'°¢b 2 log n)

> If f(n) = Q(n'°%b 2+€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn
> f(n)=0(n) and a= b =2 so log,(a) = 1 and f(n) = O(n'°&:(2).

Lecture 5, 04.03.2025

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Let a>1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by

the recurrence
T(n) = aT(n/b) + f(n).

Then, T(n) has the following asymptotic bounds
If f(n) = O(n'°82=<) for some constant e > 0, then T(n) = ©(n'°¢s2)
If f(n) = ©(n'°8b2), then T(n) = ©(n'°%? log n)

If f(n) = Q(n'°8>3+€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) =c and T(n) =2T(n/2) + cn
f(n) = O(n) and a = b =2 so log,(a) = 1 and f(n) = O(n'°e:(2)).
By Master theorem, we have T(n) = ©(nlogn) :) y
A

I IMMEDIATELY
REGRET THIS
DECISION.

Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition
INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i...]

Lecture 5, 04.03.2025

Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition
INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i...]

Examples: | 1 | -4 | 3 | _4 |

Lecture 5, 04.03.2025

Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition
INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i...]

Examples: | 1 | -4 | 3 | -4 |output is i =j =3 and the sum 3

Lecture 5, 04.03.2025

Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition

INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i...]

Examples: | 1 | -4 | 3 | -4 |output is i =j =3 and the sum 3

[2f-4ls]afs|7]7]-2]4]3]2]

Lecture 5, 04.03.2025

Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition

INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i...]

Examples: | 1 | -4 | 3 | -4 |output is i =j =3 and the sum 3

[2f-als]afs|7]7]-2[4]3]2]

output is i = 3 and j = 6 and the sum 14

Lecture 5, 04.03.2025

Maximum-subarray problem

More examples
120

60l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Day | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Price 100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97
Change 13 -3 =25 20 -3 —-16 =23 /18 20 -7 12 -5 =22 15 -4 7
0l N\
" ANEA
9

Day |0 1 2 3 4

8 \\// \\ Price | 10 1 7 10 6
7 \ Change 1 —4 —4
6 T T T T T

0 1 2 3 4

Lecture 5, 04.03.2025

Divide-and-Conquer

Lecture 5, 04.03.2025

Divide-and-Conquer
-1 5 7 -7 -1]

k—Ab 7 71 -]

Lecture 5, 04.03.2025

Divide-and-Conquer

-1 5 7 -7 -1]
[-2 %—AIS 7 -7 -1
-2 -4*3 1] 5 7¢-7 1]

Lecture 5, 04.03.2025

Divide-and-Conquer

-1 5 7 -7 -1]
-2 %—Ab 7T 1)
-2 -4*3 1] _ 5 7¢-7 1]

-2 -4 3 -1 57 -7 -1|

Lecture 5, 04.03.2025

Divide-and-Conquer

-1 5 7 -7 -1]
-2 %—Ab 7T 1)
-2 -4*3 1] _ 5 7¢-7 1]

-2 -4 3 -1 57 -7 -1|

i

Lecture 5, 04.03.2025

Also find the maximum subarray that crosses the midpoint!

Lecture 5, 04.03.2025

Also find the maximum subarray that crosses the midpoint!

-2 -4 3 -1 5 7 -7 -]

2 -4 3 -1}<—JN45 7 -7 -1)

1 1
solve recursively solve recursively

1 1
Vv V¥

-2 -4 3 -1| . 5 7 -7 -1)
-2 4 3 15 7 -7 -1

N

Lecture 5, 04.03.2025

Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid + 1... high].

Conquer by finding maximum subarrays of A[low ... mid] and
A[mid 4+ 1... high].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

Lecture 5, 04.03.2025

Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid + 1... high].

Conquer by finding maximum subarrays of A[low ... mid] and
A[mid 4+ 1... high].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

This strategy works because any subarray must either lie entirely on one
side of the midpoint or cross the midpoint

Lecture 5, 04.03.2025

Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid +1... high].

Conquer by finding maximum subarrays of A[low ... mid] and
Almid + 1. .. high].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

FIND-MAXIMUM-SUBARRAY (A4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2|
(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (A, low, mid)
(right-low, right-high. right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high. right-sum)
else return (cross-low, cross-high. cross-sum)

Lecture 5, 04.03.2025

Analysis

Assume that we can find
max-crossing-subarray in time ©(n)

Lecture 5, 04.03.2025

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low

return (low, high, A[low]) // base case: only one element

else mid = |(low + high)/2]

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

(right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (4, mid + 1, high)

(I L'ol.‘) .

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return (low, ci high, ¢

Analysis

Assume that we can find
max-crossing-subarray in time ©(n)

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low

return (low, high, A[low]) // base case: only one element

else mid = |(low + high)/2]

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

(right-low right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (4, mid + 1, high)

(I h o h . .

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return (low, ci high, ¢

Divide takes constant time,i.e., ©(1)

Lecture 5, 04.03.2025

Analysis

Assume that we can find
max-crossing-subarray in time ©(n)

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low

return (low, high, A[low]) // base case: only one element

else mid = |(low + high)/2)

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

(right-low. right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (4, mid + 1, high)

(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)

if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)

elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)

else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size

n/2= T(n/2)

Lecture 5, 04.03.2025

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|

(left-low, left-high, left-sum) =
. FIND-MAXIMUM-SUBARRAY (4, low, mid)
Assume that we can find (right-low, right-high, right-sum) =
. . . FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

maXx-crossin g-SU ba rray n tl me e (n) (cross-low, cross-high, cross-sum) =

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum

return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum

return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2= T(n/2)

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY
= O(n)

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|

(left-low, left-high, left-sum) =
. FIND-MAXIMUM-SUBARRAY (4, low, mid)
Assume that we can find (right-low, right-high, right-sum) =
. . . FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

maXx-crossin g-SU ba rray n tl me e (n) (cross-low, cross-high, cross-sum) =

FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum

return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum

return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2= T(n/2)

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY

= O(n)
Recursion for the running time is
o(1) ifn=1,

Tn) = 2T(n/2) 4 ©(n) otherwise

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|

(left-low, left-high, left-sum) =
. FIND-MAXIMUM-SUBARRAY (4, low, mid)
Assume that we can find (right-low, right-high, right-sum) =
. . . FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

maXx-crossin g-SU ba rray n tl me e (n) (cross-low, cross-high, cross-sum) =

FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum

return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum

return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2= T(n/2)

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY

= O(n)
Recursion for the running time is
o(1) ifn=1,

T(n) =

H . T(n) = O(nl
2T(n/2) +©(n) otherwise ence, T (n) (nlogn)

Finding maximum subarray crossing midpoint

Lecture 5, 04.03.2025

Finding maximum subarray crossing midpoint

> Any subarray crossing the midpoint A[mid] is made of two
subarrays A[i ... mid] and Almid + 1,...,j] where low < i < mid
and mid < j < high

> Find maximum subarrays of the form A[i ... mid] and
Almid +1...j] and then combine them.

|2 4 3 -15 7 -7 -]

2 -4 3 1|5 7 -7 -1|

2 4 3 157 -7 -]

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray i — o
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray o =
;:;ni; mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray o =
;:;ni; mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i . . mid].

left-sum = —oo
. sum = 0
low mid for i = mid downto low

sum = sum + Ali]
if sum > left-sum

o 2 _4 5 left-sum = sum

max-left = i
L // Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j

Lect 5, 04.03.2025
o // Return the indices and the sum of the two subarrays.

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray i

low

sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum
max-lef

// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

high

mid

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray i — o
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
H H if sum > left-sum
Running time? lef s sum
max-left =i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0
for j = mid + 1 to high
Space? sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

Crossing subarray

low mid high

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]

Crossing subarray

. . if sum > left-sum
Running time? ©(n) lef s sum
max-left =i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0
for j = mid + 1 to high
Space? sum = sum + A[j]

if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]

Crossing subarray

. . if left-
Running time? ©(n) s s
max-left =i

// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0
for j = mid + 1 to high

Space? ©(n) sum = sum -+ ALj]

if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025

2
Q
>
=
-l
=
=
=
S
x
s
<
s

Matrix Multiplication

Definition
Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (¢;j), where C=A-B

Lecture 5, 04.03.2025

Matrix Multiplication

Definition

Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (¢;j), where C=A-B

Example (n = 2):
cn cz)| _ (an a2\ (bu
C1 2 a1 axn b1

c11 = anbi1 + anboy,
c12 = annbiz + annb2o,
C21 = ap1b11 + axnby,
Co2 = ax1b12 + anbzo.

where

Lecture 5, 04.03.2025

bio
by

Matrix Multiplication

Definition
Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (¢;j), where C=A-B

Example (n = 2):

Lecture 5, 04.03.2025

Matrix Multiplication

Definition
Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (¢;j), where C=A-B

o236

Example (n = 2):

Lecture 5, 04.03.2025

How to multiply two matrices?

Lecture 5, 04.03.2025

How to multiply two matrices?

1 c2 biy b2 - bia
G1 G2 ' Cn b1 bro - b,
Ch1 Cn2 - Cpn bn 1 bn,2 e bn n

))

n

al=aiibii+aipbi+aizbsi+...,810bn1 = E aikbi1
k=1

Lecture 5, 04.03.2025

How to multiply two matrices?

i1 G2 ' Cinp a1 a2 v ain bii bip - bip

))

@1 @2 v an| [@a @ o @ [ba bz o b

Ch1 Cn2 - Cpn an1l dn2 " ann bn,l bn,2 e bn,n
n
1 =axi1bi1+axobi+ax3bsi+ ... 820bp1 = E aok by
k=1

Lecture 5, 04.03.2025

How to multiply two matrices?

i1 G2 ' Cinp a1 a2 v ain bi1 b1

))

21 @d o an| [@a @ @] b b

Ch1 Cn2 - Cpn an1l dn2 " ann bn 1 bn,2

)

n

c2=ax1bip2+azobr2+ax3bs2+...,820bp2 = E ackbra
k=1

Lecture 5, 04.03.2025

How to multiply two matrices?

i1 G2 ' Cinp a1 a2 v ain bi1 bip -+ bip

21 @d an| |@a @ o @ b ka2 o b

Ch1 Cn2 - Cpn an1l dn2 " ann bn,l bn,2 e bn n

)

Lecture 5, 04.03.2025

Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

77 1 2 3 -1
? ? -1 3 1 2

Lecture 5, 04.03.2025

Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

77 1 2 3 -1
? ? -1 3 1 2

Lecture 5, 04.03.2025

Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

3 7 1 2 3 -1
? ? -1 3 1 2

Lecture 5, 04.03.2025

Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

5 7 1 2 3 -1
? ? -1 3 1 2

Lecture 5, 04.03.2025

Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

5 7 1 2 3 -1
? ? -1 3 1 2

Lecture 5, 04.03.2025

Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

5 -1 1 2 3 -1
? ? -1 3 1 2

Lecture 5, 04.03.2025

Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

5 3 1 2 3 -1
? ? -1 3 1 2

Lecture 5, 04.03.2025

Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)
let C be a new n X n matrix
fori = 1ton
for j = 1ton
Cij = 0
fork = 1ton
cij = cij + aix - byj
return C

P R R

Example:

Lecture 5, 04.03.2025

Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij=0
fork = 1ton

Cij = Cij + @ik - by;
return C

Running time?

Lecture 5, 04.03.2025

Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij=0
fork = 1ton

Cij = Cij + @ik - by;
return C

Running time? ©(n?) @

Lecture 5, 04.03.2025

Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)
let C be a new n X n matrix
fori = 1ton
for j = 1ton
Cij = 0
fork = 1ton
cij = cij + aix - byj
return C

Running time? ©(n?) @

Space?

Lecture 5, 04.03.2025

Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij=0
fork = 1ton

Cij = Cij + @ik - by;
return C

Running time? ©(n?) @

Space? ©(n?)

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

9]
9]

()
()

o
o

D)
D)

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

VS]

)

ololfolo
VS]

(@)
@)
>
>
vy)

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

VS]

()
>

OOtﬁ)O

@)

>

>
vy)

D)

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

VS]

)

O &0 O

()

()

>
vy)

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

()
>

o|o|o|oe
VS]

()
()
>
vy)

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

8]

(D)
NS

olololo
8]

D)
D)
3]

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

(D)
NS
vy]

OOtUJO

D)
D)
8]

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

8]

(D)
NS

O =0 O

D)
D)
3]

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

(D)
(o]

NS
[¢]

olololo
s]

D)
D)
8]

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

o

o
Cio A Bi1 B>

006 o

_]
C C A A B
Co1 C2 Azt A =]

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

[¢]
C A B B
2 o 614 (o 1L 2
_ [¢]
C. C. A A R,
21 =22 /21 /22 D22

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

O
C A . B
2 o 6'14 4 2
_ (e}
C C A R
21 22 /21 D22

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

O
C A °l B
2 006 (e} 2
_ O
C C A R
21 22 /21 D22

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

[e]
o
C A B. B.
“12 /A1l o M11 212
_ O O O [¢]
C. C. A A B,
21 22 M21 /122 D22

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

8]

(D)
>

OOtUJO

0
>
>
N
o]

D)

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

[(¢]
fa A ° R
Ci2 A1l 1 D12
_ O O O [¢]
Ia Ia A R
Co1 Co2 Azl Doo

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

[e)
fa A ° R
Ci2 A1l o D12
_ O O O (@)
Ia Ia A R
Co1 Co2 Azl D22

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

Lecture 5, 04.03.2025

Smart Algorithm: Divide-and-Conquer

Ci1 = A1 Bi1 + Ai2Bx Cio = A1 Bix + A12B

Co1 = AnBi1 + AnBx Coo = A Bio + A Boo

Lecture 5, 04.03.2025

Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 x n/2 matrices: so that

G1 CGo _ Aun A\ (Bu Bn
G G Ay Ax By1 Bo

Lecture 5, 04.03.2025

Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Cu Go) _ (An A\ [(Bu B
Ca An Ax By Bx
Conquer: Since

Ci1 = A1 - Bi1 + Az - By

Cio = A1 - Bio + Az - B

Co1 = Aoy - Bir + Az - By

Cop = Ay - Bio + Az - B

we recursively solve 8 matrix multiplications that each
multiply two n/2 x n/2 matrices.

Lecture 5, 04.03.2025

Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Cu Go) _ (An A\ [(Bu B
Ca An Ax By Bx
Conquer: Since

Ci1 = A1 - Bi1 + Az - By

Cio = A1 - Bio + Az - B

Co1 = Aoy - Bir + Az - By

Cop = Ay - Bio + Az - B

we recursively solve 8 matrix multiplications that each
multiply two n/2 x n/2 matrices.

Combine: Make the additions to get C

Lecture 5, 04.03.2025

REC-MAT-MULT(A, B.n)
. let C be anew n x n matrix
Pseudocode and Analysiszesss
else partition A, B, and C into /2 x n/2 submatrices
Ci1 = REC-MAT-MULT(Ay, By1,1/2) + REC-MAT-MULT (A2, B2y, 1/2)

. H Cy2 = REC-MAT-MULT (A4, B12.1n/2) + REC-MAT-MULT (A4,,. B;.n/2)
Let T(n) be the time to mU|th|y Cor = REC-MAT-MULT(As1. Bry.1/2) + REC-MAT-MULT (Ans. Bop.1/2)
tWO nxn matrices. mmf.:zc= REC-MAT-MULT (A3, Bi2.n/2) + REC-MAT-MULT (A, B2, 1/2)

Lecture 5, 04.03.2025

REC-MAT-MULT (A, B.n)
. let C be a new n x n matrix
Pseudocode and Analysiszess
else partition A, B, and C into /2 x n/2 submatrices
Ci1 = REC-MAT-MULT(Ay, By1,n/2) + REC-MAT-MULT (A2, By, 1/2)

H H Ci2 = REC-MAT-MULT (A4, B12.1/2) + REC-MAT-MULT (A,,. B2;.n/2)
Let T(n) be the time to mU|th|y Cor — REC-MAT-MULT(As1. Bry.1/2) + REC-MAT-MULT (Ass. Bop.1/2)
tWO nxn matrices. .-en.f.:zc= REC-MAT-MULT (A3y. Bi2.1/2) + REC-MAT-MULT (A, B2, 1n/2)

Base case: n = 1. Perform one scalar multiplication: ©(1)

Lecture 5, 04.03.2025

REC-MAT-MULT (4, B.n)
. let C be anew n x n matrix
Pseudocode and Analysiszeasss
else partition A, B, and C into /2 x n/2 submatrices
Cy; = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B21.n/2)

H H Cy2 = REC-MAT-MULT (A4, B12.1/2) + REC-MAT-MULT (A4,,. B2;.n/2)
Let T(n) be the time to mUlth'Y Cor — REC-MAT-MULT(As1. Bry.1/2) + REC-MAT-MULT (Ass. Bop.1/2)
tWO nxn matrices. ren.f.:zc= REC-MAT-MULT (A3, B12.1/2) + REC-MAT-MULT (A2, B2y, n/2)

Base case: n = 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.

> Dividing takes ©(1) time if careful and ©(n?) if simply copying

Lecture 5, 04.03.2025

REC-MAT-MULT (A, B.n)
let C be anew n x n matrix
ifn==

cn = an-bn

else partition A, B, and C into /2 x n/2 submatrices
Cy; = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B21.n/2)

H H Ci> = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
Let T(n) be the time to multiply Ca1 = REC-MAT-MULT(A1. By1.11/2) + REC-MAT-MULT (A2, Bay.1/2)
tWO nxn matrices. re(ugfz(;: REC-MAT-MULT (A3, By2.n/2) + REC-MAT-MULT (A2, Bys,n/2)

Base case: n= 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.
> Dividing takes ©(1) time if careful and ©(n?) if simply copying

» Conquering makes 8 recursive calls, each multiplying n/2 x n/2
matrices = 8T (n/2)

REC-MAT-MULT (A, B.n)
let C be anew n x n matrix
ifn==

cn = an-bn

else partition A, B, and C into /2 x n/2 submatrices
Cyy = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B2y.n/2)

. . Ci> = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
Let T(n) be the time to multiply Ca1 = REC-MAT-MULT(Aa1. By1.11/2) + REC-MAT-MULT (A2, Bay.1/2)
two n X n matrices. remf:ZC: REC-MAT-MULT (A3, B12.1/2) + REC-MAT-MULT (A2;, By, n/2)

Base case: n= 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.
> Dividing takes ©(1) time if careful and ©(n?) if simply copying

» Conquering makes 8 recursive calls, each multiplying n/2 x n/2
matrices = 8T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.

REC-MAT-MULT (A, B.n)
let C be anew n x n matrix
ifn==

cn = an-bn

else partition A, B, and C into /2 x n/2 submatrices
Cyy = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B2y.n/2)

. . Ci> = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
Let T(n) be the time to multiply Ca1 = REC-MAT-MULT(Az1. By1.11/2) + REC-MAT-MULT (A2, Bay.1/2)
tWO nxn matrices. remf:ZC: REC-MAT-MULT (A3, By2.n/2) + REC-MAT-MULT (A2, B3z, n/2)

Base case: n= 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.
> Dividing takes ©(1) time if careful and ©(n?) if simply copying

» Conquering makes 8 recursive calls, each multiplying n/2 x n/2
matrices = 8T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.
Recurrence is

O(1) ifn=1

T =\ e 7(n/2) + 0(2) ifn>1

REC-MAT-MULT (A, B.n)
let C be anew n x n matrix
ifn==

cn = an-bn

else partition A, B, and C into /2 x n/2 submatrices
Cyy = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B2y.n/2)

. . Ci> = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
Let T(n) be the time to multiply Ca1 = REC-MAT-MULT(Az1. By1.11/2) + REC-MAT-MULT (A2, Bay.1/2)
two n X n matrices. re(uf:Z(j: REC-MAT-MULT (A2, B12.1/2) + REC-MAT-MULT (A2;, By, n/2)

Base case: n= 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.
> Dividing takes ©(1) time if careful and ©(n?) if simply copying

» Conquering makes 8 recursive calls, each multiplying n/2 x n/2
matrices = 8T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.
Recurrence is

O(1) ifn=1

T =\ e 7(n/2) + 0(2) ifn>1

Master method = T(n) = ©(n%)

STRASSEN’S ALGORITHM FOR
MATRIX MULTIPLICATION

Lecture 5, 04.03.2025

The ldea

Make less recursive calls

> Perform only 7 recursive multiplications of n/2 x n/2 matrices,
rather than 8

Lecture 5, 04.03.2025

The Idea

Make less recursive calls

> Perform only 7 recursive multiplications of n/2 x n/2 matrices,
rather than 8

> Will cost several additions of n/2 x n/2 matrices, but just a
constant more

= can still absorb the constant factor for matrix additions into the
O(n?) term

Lecture 5, 04.03.2025

The Idea

Make less recursive calls

> Perform only 7 recursive multiplications of n/2 x n/2 matrices,
rather than 8

> Will cost several additions of n/2 x n/2 matrices, but just a
constant more

= can still absorb the constant factor for matrix additions into the
O(n?) term

To obtain the recurrence

_Je) ifn=1
Tim) = {7T(n/2) +0(n) ifn>1

Lecture 5, 04.03.2025

The Idea

Make less recursive calls

> Perform only 7 recursive multiplications of n/2 x n/2 matrices,
rather than 8

> Will cost several additions of n/2 x n/2 matrices, but just a
constant more

= can still absorb the constant factor for matrix additions into the
O(n?) term

To obtain the recurrence

_Je) ifn=1
Tim) = {7T(n/2) +0(n) ifn>1

Master method = T(n) = ©(n'°&:7)

Lecture 5, 04.03.2025

Strassen’s method

Divide each of A, B, C into four n/2 x n/2 matrices: so that

Cu Go) _ (Au A\ [(Bu B
C1 (o A Ax By Bx

Lecture 5, 04.03.2025

Strassen’s method

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Cu Go) _ (Au A\ [(Bu B
C1 G A Az Ba Ba

Conquer: Calculate recursively 7 matrix multiplications, each of two
n/2 x n/2 matrices:
My := (A1 + An)(Bi1 + Bx) Ms := (A1 + A12) B2
Mo := (A21 + Ax)Bn Ms := (A21 — A11)(B11 + Bi12)
M3 := A11(B12 — Bx) My := (A2 — A2)(Bo1 + Bx)
My := A22(Bo1 — Bu1)

Lecture 5, 04.03.2025

Strassen’s method

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Cu Go) _ (Au A\ [(Bu B
C1 G A Az Ba Ba

Conquer: Calculate recursively 7 matrix multiplications, each of two
n/2 x n/2 matrices:
My i= (A1 + An)(Bi1 + Bn) Ms = (A1 + A12)Bx

My = (Ag1 + Az)Bry Mg := (A21 — A11)(B11 + B12)
Ms := A1 (Bia — Bap) My = (A12 — A22)(B21 + B22)
My := Az (Bo1 — Bi1)

Combine: Let
Ci1=M +My—Ms+M; Cip=Ms+ Ms
Co1 = My + My Coo = My — My + M3 + Mg

Lecture 5, 04.03.2025

Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)
Recursive case: n>1

> Dividing takes time ©(n?)

Lecture 5, 04.03.2025

Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)
Recursive case: n>1
> Dividing takes time ©(n?)

> Conquering makes 7 recursive calls, each multiplying n/2 x n/2
matrices = 7T (n/2)

Lecture 5, 04.03.2025

Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)
Recursive case: n>1
> Dividing takes time ©(n?)

> Conquering makes 7 recursive calls, each multiplying n/2 x n/2
matrices = 7T (n/2)

> Combining takes time ©(n?) time to add n/2 x n/2 matrices.

Lecture 5, 04.03.2025

Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)

Recursive case: n>1
> Dividing takes time ©(n?)

> Conquering makes 7 recursive calls, each multiplying n/2 x n/2
matrices = 7T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.

Recurrence is

o) ifn=1
Tin) = {7T(n/2) +o(m) ifn>1

Lecture 5, 04.03.2025

Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)

Recursive case: n>1
> Dividing takes time ©(n?)

> Conquering makes 7 recursive calls, each multiplying n/2 x n/2
matrices = 7T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.

Recurrence is

o) ifn=1
Tin) = {7T(n/2) +o(m) ifn>1

Master method = T(n) = ©(n'°&:7)

Lecture 5, 04.03.2025

Notes about Strassen’s method

> First to beat ©(n%) time

> Faster known today, method by Coppersmith and Winograd runs in
time O(n?37%) recently improved by Vassilevska Williams to
O(n?3727).

> Big open problem how to multiply matrices in best way

> Naive method better for small instances because of hidden
constants

Lecture 5, 04.03.2025

» Divide-and-conquer simple but powerful algorithmic paradigm

Lecture 5, 04.03.2025

» Divide-and-conquer simple but powerful algorithmic paradigm

> Merge-sort and maximum subarray both run in time ©(nlog n)

Lecture 5, 04.03.2025

» Divide-and-conquer simple but powerful algorithmic paradigm
> Merge-sort and maximum subarray both run in time ©(nlog n)

> Strassen’s algorithm for matrix multiplication in time ©(n'°&:7)
where log, 7 ~ 2.8.

Lecture 5, 04.03.2025

Algorithm worst-case running time in-place
Insertion Sort o(n?) YES

Merge Sort O(nlogn) NO

Heapsort:

Lecture 5, 04.03.2025

Algorithm worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlogn) NO
Heapsort:

» O(nlg n) worst case — like merge sort

Lecture 5, 04.03.2025

Algorithm worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlogn) NO
Heapsort:

» O(nlg n) worst case — like merge sort
> Sorts in place — like insertion sort

Lecture 5, 04.03.2025

Algorithm worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlogn) NO
Heapsort:

» O(nlg n) worst case — like merge sort
> Sorts in place — like insertion sort
» Combines the best of both algorithms

Lecture 5, 04.03.2025

Algorithm worst-case running time in-place

Insertion Sort o(n?) YES
Merge Sort O(nlog n) NO
Heapsort:

» O(nlg n) worst case — like merge sort
» Sorts in place — like insertion sort
» Combines the best of both algorithms

Uses a cool datastructure: heaps

Lecture 5, 04.03.2025

Data Structures = “Building Blocks”

Lecture 5, 04.03.2025

Data Structures = “Building Blocks”

Algorithm

Lecture 5, 04.03.2025

Data Structures = “Building Blocks”

Algorithm

Algorithm

Lecture 5, 04.03.2025

Data structure containing numbers

What kind of operations do we want to do?

Data structure containing numbers

What kind of operations do we want to do?

» Modifying operations: insertion, deletion, ...

» Query operations: search, maximum, minimum, ...

Data structure containing numbers

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 3

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 4

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 5

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 6

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 7

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 8

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 9

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 10

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i's children is greater or equal to i's key

Lecture 5, 04.03.2025

(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i's children is greater or equal to i's key

Lecture 5, 04.03.2025

Max-Heap = maximum element is the root

E A

Min-Heap = minimum element is the root

E A

Lecture 5, 04.03.2025

Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

Lecture 5, 04.03.2025

Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

@ Height = 1

Lecture 5, 04.03.2025

Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

@ Height = 2

Lecture 5, 04.03.2025

Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

@ @ Height = 0

Lecture 5, 04.03.2025

Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root

@ @ Height = 3

Lecture 5, 04.03.2025

Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root = ©(log n)

@ @ Height = 3

Lecture 5, 04.03.2025

How to store a heap/tree?

Lecture 5, 04.03.2025

How to store a heap/tree?

pointer to left and right children

Lecture 5, 04.03.2025

How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

Lecture 5, 04.03.2025

How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

Al8] A[9] A[L0]

Lecture 5, 04.03.2025

How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) =777
RiGHT(i) =777

PARENT(i) =777

Al8] A[9] A[L0]

Lecture 5, 04.03.2025

How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) = 2i
RiGHT(i) =777

PARENT(i) =777

Al8] A[9] A[L0]

Lecture 5, 04.03.2025

How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) = 2i
RIGHT(/) = 2i + 1

PARENT(i) =777

Al8] A[9] A[L0]

Lecture 5, 04.03.2025

How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) = 2i
RIGHT(/) = 2i + 1
PARENT(i) = [i/2]

Al8] A[9] A[L0]

Lecture 5, 04.03.2025

BUILDING AND MANIPULATING HEAPS

Lecture 5, 04.03.2025

Maintaining the heap property

MAX-HEAPIFY is important for manipulating heaps:

Given an j such that the subtrees of i are heaps, it ensures that the
subtree rooted at i is a heap satisfy the heap property

Lecture 5, 04.03.2025

MAX-HEAPIFY(A, i, n)
Algorithm:
> Compare A[i], A[LEFT(i)], A[RIGHT(i)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property

> Continue this process of comparing and swapping down the heap, until subtree
rooted at i is max-heap

Al A[9] A[l0]

Lecture 5, 04.03.2025

MAX-HEAPIFY(A, i, n)
Algorithm:
> Compare A[i], A[LEFT(i)], A[RIGHT(i)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property

> Continue this process of comparing and swapping down the heap, until subtree
rooted at i is max-heap

Al A[9] A[l0]

Lecture 5, 04.03.2025

MAX-HEAPIFY(A, i, n)
Algorithm:
> Compare A[i], A[LEFT(i)], A[RIGHT(i)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property

> Continue this process of comparing and swapping down the heap, until subtree
rooted at i is max-heap

Al A[9] A[l0]

Lecture 5, 04.03.2025

MAX-HEAPIFY(A, i, n)
Algorithm:
> Compare A[i], A[LEFT(i)], A[RIGHT(i)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property

> Continue this process of comparing and swapping down the heap, until subtree
rooted at i is max-heap

Al A[9] A[l0]

Lecture 5, 04.03.2025

MAX-HEAPIFY(A, i, n)
Algorithm:
> Compare A[i], A[LEFT(i)], A[RIGHT(i)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property

> Continue this process of comparing and swapping down the heap, until subtree
rooted at i is max-heap

ORORO. @
Al A[9] A[l0]

Lecture 5, 04.03.2025

: MAX-HEAPIFY (A4, i,n)
Pseudo-code and analysis I = Lerr(i)
r = RIGHT(i)

if | <nand A[l] > Ali]
largest = 1

else largest = i

if r < n and A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Al8] A[9] A[10]

Lecture 5, 04.03.2025

: MAX-HEAPIFY (A4, i,n)
Pseudo-code and analysis I = Lerr(i)
r = RIGHT(i)

if | <nand A[l] > Ali]
largest = 1

else largest = i

if r < n and A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Al8] A[9] A[10]

Lecture 5, 04.03.2025

: MAX-HEAPIFY (A4, i,n)
Pseudo-code and analysis I = Lerr(i)
r = RIGHT(i)

if | <nand A[l] > Ali]
largest = 1

else largest = i

if r < n and A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Al8] A[9] A[10]

Lecture 5, 04.03.2025

: MAX-HEAPIFY (A4, i,n)
Pseudo-code and analysis I = Lerr(i)
r = RIGHT(i)

if | <nand A[l] > Ali]
largest = 1

else largest = i

if r < n and A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Al8] A[9] A[10]

Lecture 5, 04.03.2025

: MAX-HEAPIFY (A4, i,n)
Pseudo-code and analysis I = Lerr(i)
r = RIGHT(i)

if /| <nand A[l] > Ali]
largest =1

else largest = i

if r < n and A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

A[8] Al9] A[10] S

Lecture 5, 04.03.2025

MAX-HEAPIFY (A4, i,n)
| = LEFT(i)

r = RIGHT(i)

if | < nand A[l] > Ali]
largest = [

else largest = i

if » < nand A[r] > Allargest]
largest = r

if largest # i

Space? exchange A[i] with A[largest]

MAX-HEAPIFY (A, largest, n)

Running time?

AlB] Al9] Al10]

MAX-HEAPIFY (A4, i,n)
| = LEFT(i)

r = RIGHT(i)
if | < nand A[l] > Ali]
largest = [
O(height of /) = O(log n) ‘else largest = i
if » < nand A[r] > Allargest]
largest = r
if largest # i
Space? exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Running time?

AlB] Al9] Al10]

MAX-HEAPIFY (A4, i,n)
| = LEFT(i)

r = RIGHT(i)
if | <nand A[l] > Ali]
largest = [
O(height of /) = O(log n) ‘else largest = i
if » < nand A[r] > Allargest]
largest = r
if largest # i
Space? ©O(n) exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Running time?

AlB] Al9] Al10]

— BUILD-MAX-HEAP(A4,n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

|4|1|3|2|16|9|10|14|8|7|

Al8] Al9] A[10]

Lecture 5, 04.03.2025

— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9] A[10]

Lecture 5, 04.03.2025

— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9] A[10]

Lecture 5, 04.03.2025

— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9] A[10]

Lecture 5, 04.03.2025

— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9] A[10]

Lecture 5, 04.03.2025

— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9] A[10]

Lecture 5, 04.03.2025

— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9] A[10]

Lecture 5, 04.03.2025

— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9] A[10]

Lecture 5, 04.03.2025

— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9] A[10]

Lecture 5, 04.03.2025

— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9] A[10]

Lecture 5, 04.03.2025

— BUILD-MAX-HEAP(A, n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

Al8] Al9] A[10]

Lecture 5, 04.03.2025

: BUILD-MAX-HEAP(A4,n)
Ana|ySIS fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

What is the worst-case running time of BUILD-MAX-HEAP?

Lecture 5, 04.03.2025

: BUILD-MAX-HEAP(A4,n)
Ana|ySIS fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

What is the worst-case running time of BUILD-MAX-HEAP?

Simple bound: O(n) calls to MAX-HEAPIFY, each of which takes
O(lg n) time = O(nlgn) in total

Lecture 5, 04.03.2025

BUILD-MAX-HEAP(A,n)
fori = |n/2] downto 1

MAX-HEAPIFY (A,i,n)

What is the worst-case running time of BUILD-MAX-HEAP?
Simple bound: O(n) calls to MAX-HEAPIFY, each of which takes
O(lg n) time = O(nlg n) in total

Tighter analysis: Time to run MAX-HEAPIFY is linear in the height of
the node it's run on. Hence, the time is bounded by

lg n Ign h
Z{# nodes of height h}-O(h) =0 <n Z 2h> ,
h=0 h=0

which is O(n) since 332 £ = % =2.

