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RECALL LAST LECTURE

Solving Recurrences:

> Substitution method

> Recursion Trees
» (Master Method)

Maximum-Subarray Problem
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Recall Recursion trees

Example: T(1) = c and T(n) =2T(n/2) + cn?

Lecture 5, 04.03.2025



Recall Recursion trees

Example: T(1) = c and T(n) =2T(n/2) + cn?

cn?
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Recall Recursion trees

Example: T(1) = c and T(n) =2T(n/2) + cn?
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Recall Recursion trees

Example: T(1) = c and T(n) =2T(n/2) + cn?
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Example: T(1) = c and T(n) =2T(n/2) + cn?

T(1) T() TQ) TQ) TQ) TQ) TQ) TA) TQ) TQ) TQ) T(Q) TQ) TQ) TA) T(Q)
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Example: T(1) = c and T(n) =2T(n/2) + cn?

T(1) T() TQ) TQ) TQ) TQ) TQ) TA) TQ) TQ) TQ) T(Q) TQ) TQ) TA) T(Q)

log,(n)
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Example: T(1) = c and T(n) =2T(n/2) + cn?

T(1) T() TQ) TQ) TQ) TQ) TQ) TA) TQ) TQ) TQ) T(Q) TQ) TQ) TA) T(Q)

log,(n)

2'082(") =n
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Example: T(1) = c and T(n) =2T(n/2) + cn?
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log,(n)

2'082(") =n
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Recall Recursion trees

Example: T(1) = c and T(n) =2T(n/2) + cn?
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Qualified guess: T(n) = cn® Y18 2 < cn® = ©(n?)
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Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn
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Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn
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Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/Cn\

cn/3 c2n/3
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Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/////’ \\\\\
cn/3 c2n/3

VRN VRN
cn/9 c2n/9 c2n/9 c4n/9
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Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn
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cn/9 c2n/9 c2n/9 c4n/9 — ¢n
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Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn

/ \

cn/3 c2n/3 - cn
VAN VAN

cn/9 c2n/9 c2n/9 c4n/9 — ¢n

T

leftmost branch peters
out after logs n levels

- cn
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Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ cn
cn/3 c2n/3 cn
VAN VRN
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels
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Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.
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Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.

» Each level contributes ~ cn
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Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

cn cn
cn/3 c2n/3 cn
VRN 7N
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logs n levels out after logz; n levels

> There are logs n full levels and after logs,, n levels the problem size
is down to 1.

> Each level contributes =~ cn
Qualified guess: exist positive constants a, b so that
a-nlogg(n) < T(n) < b-nlogy,, n= T(n)=0O(nlogn)
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds

> If f(n) = O(n'°% 2=<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% 2=<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'"8b2), then T(n) = ©(n'°8s? log n)
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by

the recurrence
T(n) = aT(n/b) + f(n).

Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% 2=<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'"8b2), then T(n) = ©(n'°8s? log n)

> If f(n) = Q(n'°%b 2+€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))
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Master method

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Theorem (Master Theorem)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
> If f(n) = O(n'°% 2=<) for some constant ¢ > 0, then T(n) = ©(n'°8s2)
> If f(n) = ©(n'°8>2), then T(n) = ©(n'°¢b 2 log n)

> If f(n) = Q(n'°%b 2+€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) = c and T(n) =2T(n/2) + cn
> f(n)=0(n) and a= b =2 so log,(a) = 1 and f(n) = O(n'°&:(2).
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Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Let a>1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by

the recurrence
T(n) = aT(n/b) + f(n).

Then, T(n) has the following asymptotic bounds
If f(n) = O(n'°82=<) for some constant e > 0, then T(n) = ©(n'°¢s2)
If f(n) = ©(n'°8b2), then T(n) = ©(n'°%? log n)

If f(n) = Q(n'°8>3+€) for some constant € > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) =c and T(n) =2T(n/2) + cn
f(n) = O(n) and a = b =2 so log,(a) = 1 and f(n) = O(n'°e:(2)).
By Master theorem, we have T(n) = ©(nlogn) :) y
A
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Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition
INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i... ]
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Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition
INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i... ]

Examples: | 1 | -4 | 3 | _4 |
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Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition
INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i... ]

Examples: | 1 | -4 | 3 | -4 |output is i =j =3 and the sum 3
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Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition

INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i... ]

Examples: | 1 | -4 | 3 | -4 |output is i =j =3 and the sum 3

[2f-4ls]afs|7]7]-2]4]3]2]
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Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day "

Definition

INPUT: An array A[1...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i... ]

Examples: | 1 | -4 | 3 | -4 |output is i =j =3 and the sum 3

[2f-als]afs|7]7]-2[4]3]2]

output is i = 3 and j = 6 and the sum 14
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Maximum-subarray problem

More examples
120

60l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Day | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Price 100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97
Change 13 -3 =25 20 -3 —-16 =23 /18 20 -7 12 -5 =22 15 -4 7
0l N\
" ANEA
9

Day |0 1 2 3 4

8 \\// \\ Price | 10 1 7 10 6
7 \ Change 1 —4 —4
6 T T T T T

0 1 2 3 4
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Divide-and-Conquer
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Divide-and-Conquer
-1 5 7 -7 -1]

k—Ab 7 71 -]

Lecture 5, 04.03.2025



Divide-and-Conquer

-1 5 7 -7 -1]
[-2 %—AIS 7 -7 -1
-2 -4*3 1] 5 7¢-7 1]
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Divide-and-Conquer

-1 5 7 -7 -1]
-2 %—Ab 7T 1)
-2 -4*3 1] _ 5 7¢-7 1]

-2 -4 3 -1 57 -7 -1|
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Divide-and-Conquer

-1 5 7 -7 -1]
-2 %—Ab 7T 1)
-2 -4*3 1] _ 5 7¢-7 1]

-2 -4 3 -1 57 -7 -1|

i
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Also find the maximum subarray that crosses the midpoint!
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Also find the maximum subarray that crosses the midpoint!

-2 -4 3 -1 5 7 -7 -]

2 -4 3 -1}<—JN45 7 -7 -1)

1 1
solve recursively solve recursively

1 1
Vv V¥

-2 -4 3 -1| . 5 7 -7 -1)
-2 4 3 15 7 -7 -1

N
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Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid + 1... high].

Conquer by finding maximum subarrays of A[low ... mid] and
A[mid 4+ 1... high].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three
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Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid + 1... high].

Conquer by finding maximum subarrays of A[low ... mid] and
A[mid 4+ 1... high].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

This strategy works because any subarray must either lie entirely on one
side of the midpoint or cross the midpoint
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Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid +1... high].

Conquer by finding maximum subarrays of A[low ... mid] and
Almid + 1. .. high].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

FIND-MAXIMUM-SUBARRAY (A4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2|
(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (A, low, mid)
(right-low, right-high. right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high. right-sum)
else return (cross-low, cross-high. cross-sum)
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Analysis

Assume that we can find
max-crossing-subarray in time ©(n)

Lecture 5, 04.03.2025

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low

return (low, high, A[low]) // base case: only one element

else mid = |(low + high)/2]

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

(right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (4, mid + 1, high)

( I L'ol.‘ ) .

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return ( low, ci high, ¢




Analysis

Assume that we can find
max-crossing-subarray in time ©(n)

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low

return (low, high, A[low]) // base case: only one element

else mid = |(low + high)/2]

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

(right-low right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (4, mid + 1, high)

( I h o h . .

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return ( low, ci high, ¢

Divide takes constant time,i.e., ©(1)

Lecture 5, 04.03.2025



Analysis

Assume that we can find
max-crossing-subarray in time ©(n)

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low

return (low, high, A[low]) // base case: only one element

else mid = |(low + high)/2)

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

(right-low. right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (4, mid + 1, high)

(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)

if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)

elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)

else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size

n/2= T(n/2)
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FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|

(left-low, left-high, left-sum) =
. FIND-MAXIMUM-SUBARRAY (4, low, mid)
Assume that we can find (right-low, right-high, right-sum) =
. . . FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

maXx-crossin g-SU ba rray n tl me e ( n) (cross-low, cross-high, cross-sum) =

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum

return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum

return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2= T(n/2)

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY
= O(n)



FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|

(left-low, left-high, left-sum) =
. FIND-MAXIMUM-SUBARRAY (4, low, mid)
Assume that we can find (right-low, right-high, right-sum) =
. . . FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

maXx-crossin g-SU ba rray n tl me e ( n) (cross-low, cross-high, cross-sum) =

FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum

return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum

return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2= T(n/2)

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY

= O(n)
Recursion for the running time is
o(1) ifn=1,

Tn) = 2T(n/2) 4 ©(n) otherwise



FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|

(left-low, left-high, left-sum) =
. FIND-MAXIMUM-SUBARRAY (4, low, mid)
Assume that we can find (right-low, right-high, right-sum) =
. . . FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

maXx-crossin g-SU ba rray n tl me e ( n) (cross-low, cross-high, cross-sum) =

FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum

return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum

return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2= T(n/2)

Merge time dominated by FIND-MAX-CROSSING-SUBARRAY

= O(n)
Recursion for the running time is
o(1) ifn=1,

T(n) =

H . T(n) = O(nl
2T(n/2) +©(n) otherwise ence, T (n) (nlogn)



Finding maximum subarray crossing midpoint

Lecture 5, 04.03.2025



Finding maximum subarray crossing midpoint

> Any subarray crossing the midpoint A[mid] is made of two
subarrays A[i ... mid] and Almid + 1,...,j] where low < i < mid
and mid < j < high

> Find maximum subarrays of the form A[i ... mid] and
Almid +1...j] and then combine them.

|2 4 3 -15 7 -7 -]

2 -4 3 1|5 7 -7 -1|

2 4 3 157 -7 -]
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray i — o
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray o =
;:;ni; mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray o =
;:;ni; mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i . . mid].

left-sum = —oo
. sum = 0
low mid for i = mid downto low

sum = sum + Ali]
if sum > left-sum

o 2 _4 5 left-sum = sum

max-left = i
L // Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j

Lect 5, 04.03.2025
o // Return the indices and the sum of the two subarrays.



FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray i

low

sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum
max-lef

// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

high

mid
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].

Crossing subarray i — o
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
sum = sum + Ali]
H H if sum > left-sum
Running time? lef s sum
max-left =i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0
for j = mid + 1 to high
Space? sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

Crossing subarray

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]

Crossing subarray

. . if sum > left-sum
Running time? ©(n) lef s sum
max-left =i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0
for j = mid + 1 to high
Space? sum = sum + A[j]

if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low

sum = sum + Ali]

Crossing subarray

. . if left-
Running time? ©(n) s s
max-left =i

// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
sum = 0
for j = mid + 1 to high

Space? ©(n) sum = sum -+ ALj]

if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

low mid high

Lecture 5, 04.03.2025
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Matrix Multiplication

Definition
Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (¢;j), where C=A-B
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Matrix Multiplication

Definition

Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (¢;j), where C=A-B

Example (n = 2):
cn cz)| _ (an a2\ (bu
C1 2 a1 axn b1

c11 = anbi1 + anboy,
c12 = annbiz + annb2o,
C21 = ap1b11 + axnby,
Co2 = ax1b12 + anbzo.

where

Lecture 5, 04.03.2025

bio
by



Matrix Multiplication

Definition
Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (¢;j), where C=A-B

Example (n = 2):
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Matrix Multiplication

Definition
Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (¢;j), where C=A-B

o236

Example (n = 2):
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How to multiply two matrices?
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How to multiply two matrices?

1 c2 biy b2 - bia
G1 G2 ' Cn b1 bro - b,
Ch1 Cn2 - Cpn bn 1 bn,2 e bn n

) )

n

al=aiibii+aipbi+aizbsi+...,810bn1 = E aikbi1
k=1
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How to multiply two matrices?

i1 G2 ' Cinp a1 a2 v ain bii bip - bip

) )

@1 @2 v an| [@a @ o @ [ba bz o b

Ch1 Cn2 - Cpn an1l dn2 " ann bn,l bn,2 e bn,n
n
1 =axi1bi1+axobi+ax3bsi+ ... 820bp1 = E aok by
k=1
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How to multiply two matrices?

i1 G2 ' Cinp a1 a2 v ain bi1 b1

) )

21 @d o an| [@a @ @] b b

Ch1 Cn2 - Cpn an1l dn2 " ann bn 1 bn,2

)

n

c2=ax1bip2+azobr2+ax3bs2+...,820bp2 = E ackbra
k=1
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How to multiply two matrices?

i1 G2 ' Cinp a1 a2 v ain bi1 bip -+ bip

21 @d  an| |@a @ o @ b ka2 o b

Ch1 Cn2 - Cpn an1l dn2 " ann bn,l bn,2 e bn n

)
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

77 1 2 3 -1
? ? -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

77 1 2 3 -1
? ? -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

3 7 1 2 3 -1
? ? -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

5 7 1 2 3 -1
? ? -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

5 7 1 2 3 -1
? ? -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

5 -1 1 2 3 -1
? ? -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij = 0
fork = 1ton
Cij = Cij +a,~k-bkj
return C
Example:

5 3 1 2 3 -1
? ? -1 3 1 2
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)
let C be a new n X n matrix
fori = 1ton
for j = 1ton
Cij = 0
fork = 1ton
cij = cij + aix - byj
return C

P R R

Example:
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij=0
fork = 1ton

Cij = Cij + @ik - by;
return C

Running time?
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij=0
fork = 1ton

Cij = Cij + @ik - by;
return C

Running time? ©(n?) @
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)
let C be a new n X n matrix
fori = 1ton
for j = 1ton
Cij = 0
fork = 1ton
cij = cij + aix - byj
return C

Running time? ©(n?) @

Space?
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (4, B, n)

let C be a new n X n matrix
fori = 1ton

for j = 1ton
Cij=0
fork = 1ton

Cij = Cij + @ik - by;
return C

Running time? ©(n?) @

Space? ©(n?)
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer

9]
9]

()
()

o
o

D)
D)

Lecture 5, 04.03.2025



Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer

o

o
Cio A Bi1 B>

006 o

_ ]
C C A A B
Co1 C2 Azt A =]
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Smart Algorithm: Divide-and-Conquer

[¢]
C A B B
2 o 614 (o 1L 2
_ [¢]
C. C. A A R,
21 =22 /21 /22 D22
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer

O
C A °l B
2 006 (e} 2
_ O
C C A R
21 22 /21 D22
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Smart Algorithm: Divide-and-Conquer

[e]
o
C A B. B.
“12 /A1l o M11 212
_ O O O [¢]
C. C. A A B,
21 22 M21 /122 D22
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer

[(¢]
fa A ° R
Ci2 A1l 1 D12
_ O O O [¢]
Ia Ia A R
Co1 Co2 Azl Doo
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Smart Algorithm: Divide-and-Conquer

[e)
fa A ° R
Ci2 A1l o D12
_ O O O (@)
Ia Ia A R
Co1 Co2 Azl D22
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Smart Algorithm: Divide-and-Conquer
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Smart Algorithm: Divide-and-Conquer

Ci1 = A1 Bi1 + Ai2Bx Cio = A1 Bix + A12B

Co1 = AnBi1 + AnBx Coo = A Bio + A Boo
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Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 x n/2 matrices: so that

G1 CGo _ Aun A\ (Bu Bn
G G Ay Ax By1 Bo
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Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Cu Go) _ (An A\ [(Bu B
Ca An Ax By Bx
Conquer: Since

Ci1 = A1 - Bi1 + Az - By

Cio = A1 - Bio + Az - B

Co1 = Aoy - Bir + Az - By

Cop = Ay - Bio + Az - B

we recursively solve 8 matrix multiplications that each
multiply two n/2 x n/2 matrices.
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Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Cu Go) _ (An A\ [(Bu B
Ca An Ax By Bx
Conquer: Since

Ci1 = A1 - Bi1 + Az - By

Cio = A1 - Bio + Az - B

Co1 = Aoy - Bir + Az - By

Cop = Ay - Bio + Az - B

we recursively solve 8 matrix multiplications that each
multiply two n/2 x n/2 matrices.

Combine: Make the additions to get C
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REC-MAT-MULT(A, B.n)
. let C be anew n x n matrix
Pseudocode and Analysiszesss
else partition A, B, and C into /2 x n/2 submatrices
Ci1 = REC-MAT-MULT(Ay, By1,1/2) + REC-MAT-MULT (A2, B2y, 1/2)

. H Cy2 = REC-MAT-MULT (A4, B12.1n/2) + REC-MAT-MULT (A4,,. B;.n/2)
Let T(n) be the time to mU|th|y Cor = REC-MAT-MULT(As1. Bry.1/2) + REC-MAT-MULT (Ans. Bop.1/2)
tWO nxn matrices. mmf.:zc= REC-MAT-MULT (A3, Bi2.n/2) + REC-MAT-MULT (A, B2, 1/2)
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REC-MAT-MULT (A, B.n)
. let C be a new n x n matrix
Pseudocode and Analysiszess
else partition A, B, and C into /2 x n/2 submatrices
Ci1 = REC-MAT-MULT(Ay, By1,n/2) + REC-MAT-MULT (A2, By, 1/2)

H H Ci2 = REC-MAT-MULT (A4, B12.1/2) + REC-MAT-MULT (A,,. B2;.n/2)
Let T(n) be the time to mU|th|y Cor — REC-MAT-MULT(As1. Bry.1/2) + REC-MAT-MULT (Ass. Bop.1/2)
tWO nxn matrices. .-en.f.:zc= REC-MAT-MULT (A3y. Bi2.1/2) + REC-MAT-MULT (A, B2, 1n/2)

Base case: n = 1. Perform one scalar multiplication: ©(1)

Lecture 5, 04.03.2025



REC-MAT-MULT (4, B.n)
. let C be anew n x n matrix
Pseudocode and Analysiszeasss
else partition A, B, and C into /2 x n/2 submatrices
Cy; = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B21.n/2)

H H Cy2 = REC-MAT-MULT (A4, B12.1/2) + REC-MAT-MULT (A4,,. B2;.n/2)
Let T(n) be the time to mUlth'Y Cor — REC-MAT-MULT(As1. Bry.1/2) + REC-MAT-MULT (Ass. Bop.1/2)
tWO nxn matrices. ren.f.:zc= REC-MAT-MULT (A3, B12.1/2) + REC-MAT-MULT (A2, B2y, n/2)

Base case: n = 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.

> Dividing takes ©(1) time if careful and ©(n?) if simply copying

Lecture 5, 04.03.2025



REC-MAT-MULT (A, B.n)
let C be anew n x n matrix
ifn==

cn = an-bn

else partition A, B, and C into /2 x n/2 submatrices
Cy; = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B21.n/2)

H H Ci> = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
Let T(n) be the time to multiply Ca1 = REC-MAT-MULT(A1. By1.11/2) + REC-MAT-MULT (A2, Bay.1/2)
tWO nxn matrices. re(ugfz(;: REC-MAT-MULT (A3, By2.n/2) + REC-MAT-MULT (A2, Bys,n/2)

Base case: n= 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.
> Dividing takes ©(1) time if careful and ©(n?) if simply copying

» Conquering makes 8 recursive calls, each multiplying n/2 x n/2
matrices = 8T (n/2)
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Base case: n= 1. Perform one scalar multiplication: ©(1)
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» Conquering makes 8 recursive calls, each multiplying n/2 x n/2
matrices = 8T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.



REC-MAT-MULT (A, B.n)
let C be anew n x n matrix
ifn==

cn = an-bn

else partition A, B, and C into /2 x n/2 submatrices
Cyy = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B2y.n/2)

. . Ci> = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
Let T(n) be the time to multiply Ca1 = REC-MAT-MULT(Az1. By1.11/2) + REC-MAT-MULT (A2, Bay.1/2)
tWO nxn matrices. remf:ZC: REC-MAT-MULT (A3, By2.n/2) + REC-MAT-MULT (A2, B3z, n/2)

Base case: n= 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.
> Dividing takes ©(1) time if careful and ©(n?) if simply copying
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matrices = 8T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.
Recurrence is

O(1) ifn=1

T =\ e 7(n/2) + 0(2) ifn>1



REC-MAT-MULT (A, B.n)
let C be anew n x n matrix
ifn==

cn = an-bn

else partition A, B, and C into /2 x n/2 submatrices
Cyy = REC-MAT-MULT(Ayy, By1.n/2) + REC-MAT-MULT (A5, B2y.n/2)

. . Ci> = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
Let T(n) be the time to multiply Ca1 = REC-MAT-MULT(Az1. By1.11/2) + REC-MAT-MULT (A2, Bay.1/2)
two n X n matrices. re(uf:Z(j: REC-MAT-MULT (A2, B12.1/2) + REC-MAT-MULT (A2;, By, n/2)

Base case: n= 1. Perform one scalar multiplication: ©(1)
Recursive case: n > 1.
> Dividing takes ©(1) time if careful and ©(n?) if simply copying

» Conquering makes 8 recursive calls, each multiplying n/2 x n/2
matrices = 8T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.
Recurrence is

O(1) ifn=1

T =\ e 7(n/2) + 0(2) ifn>1

Master method = T(n) = ©(n%)



STRASSEN’S ALGORITHM FOR
MATRIX MULTIPLICATION

Lecture 5, 04.03.2025



The ldea

Make less recursive calls

> Perform only 7 recursive multiplications of n/2 x n/2 matrices,
rather than 8
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> Will cost several additions of n/2 x n/2 matrices, but just a
constant more

= can still absorb the constant factor for matrix additions into the
O(n?) term
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The Idea

Make less recursive calls

> Perform only 7 recursive multiplications of n/2 x n/2 matrices,
rather than 8

> Will cost several additions of n/2 x n/2 matrices, but just a
constant more

= can still absorb the constant factor for matrix additions into the
O(n?) term

To obtain the recurrence

_Je) ifn=1
Tim) = {7T(n/2) +0(n) ifn>1

Master method = T(n) = ©(n'°&:7)
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Strassen’s method

Divide each of A, B, C into four n/2 x n/2 matrices: so that

Cu Go) _ (Au A\ [(Bu B
C1 (o A Ax By Bx
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Strassen’s method

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Cu Go) _ (Au A\ [(Bu B
C1 G A Az Ba Ba

Conquer: Calculate recursively 7 matrix multiplications, each of two
n/2 x n/2 matrices:
My := (A1 + An)(Bi1 + Bx)  Ms := (A1 + A12) B2
Mo := (A21 + Ax)Bn Ms := (A21 — A11)(B11 + Bi12)
M3 := A11(B12 — Bx) My := (A2 — A2)(Bo1 + Bx)
My := A22(Bo1 — Bu1)
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Strassen’s method

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Cu Go) _ (Au A\ [(Bu B
C1 G A Az Ba Ba

Conquer: Calculate recursively 7 matrix multiplications, each of two
n/2 x n/2 matrices:
My i= (A1 + An)(Bi1 + Bn)  Ms = (A1 + A12)Bx

My = (Ag1 + Az)Bry Mg := (A21 — A11)(B11 + B12)
Ms := A1 (Bia — Bap) My = (A12 — A22)(B21 + B22)
My := Az (Bo1 — Bi1)

Combine: Let
Ci1=M +My—Ms+M; Cip=Ms+ Ms
Co1 = My + My Coo = My — My + M3 + Mg
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Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)
Recursive case: n>1

> Dividing takes time ©(n?)
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Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)

Recursive case: n>1
> Dividing takes time ©(n?)

> Conquering makes 7 recursive calls, each multiplying n/2 x n/2
matrices = 7T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.

Recurrence is

o) ifn=1
Tin) = {7T(n/2) +o(m) ifn>1
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Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)

Recursive case: n>1
> Dividing takes time ©(n?)

> Conquering makes 7 recursive calls, each multiplying n/2 x n/2
matrices = 7T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.

Recurrence is

o) ifn=1
Tin) = {7T(n/2) +o(m) ifn>1

Master method = T(n) = ©(n'°&:7)
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Notes about Strassen’s method

> First to beat ©(n%) time

> Faster known today, method by Coppersmith and Winograd runs in
time O(n?37%) recently improved by Vassilevska Williams to
O(n?3727).

> Big open problem how to multiply matrices in best way

> Naive method better for small instances because of hidden
constants
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» Divide-and-conquer simple but powerful algorithmic paradigm
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» Divide-and-conquer simple but powerful algorithmic paradigm

> Merge-sort and maximum subarray both run in time ©(nlog n)
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» Divide-and-conquer simple but powerful algorithmic paradigm
> Merge-sort and maximum subarray both run in time ©(nlog n)

> Strassen’s algorithm for matrix multiplication in time ©(n'°&:7)
where log, 7 ~ 2.8.
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Algorithm  worst-case running time in-place
Insertion Sort o(n?) YES

Merge Sort O(nlogn) NO

Heapsort:
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Algorithm  worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlogn) NO
Heapsort:

» O(nlg n) worst case — like merge sort
> Sorts in place — like insertion sort
» Combines the best of both algorithms
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Algorithm  worst-case running time in-place

Insertion Sort o(n?) YES
Merge Sort O(nlog n) NO
Heapsort:

» O(nlg n) worst case — like merge sort
» Sorts in place — like insertion sort
» Combines the best of both algorithms

Uses a cool datastructure: heaps

Lecture 5, 04.03.2025



Data Structures = “Building Blocks”
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Data Structures = “Building Blocks”

Algorithm
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Data Structures = “Building Blocks”

Algorithm

Algorithm
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Data structure containing numbers



What kind of operations do we want to do?

Data structure containing numbers



What kind of operations do we want to do?

» Modifying operations: insertion, deletion, ...

» Query operations: search, maximum, minimum, ...

Data structure containing numbers



(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 3
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 4
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 5
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 6
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 7
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 8
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 9
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Heap of size 10
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i's children is greater or equal to i's key
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i's children is greater or equal to i's key
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Max-Heap = maximum element is the root

E A

Min-Heap = minimum element is the root

E A
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

@ Height = 1
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

@ Height = 2
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

@ @ Height = 0
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root

@ @ Height = 3
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root = ©(log n)

@ @ Height = 3
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How to store a heap/tree?
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How to store a heap/tree?

pointer to left and right children
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How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array
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How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

Al8]  A[9]  A[L0]
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How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) =777
RiGHT(i) =777

PARENT(i) =777

Al8]  A[9]  A[L0]
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How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) = 2i
RiGHT(i) =777

PARENT(i) =777

Al8]  A[9]  A[L0]
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How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) = 2i
RIGHT(/) = 2i + 1

PARENT(i) =777

Al8]  A[9]  A[L0]

Lecture 5, 04.03.2025



How to store a heap/tree?

, o bt child

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roort is A[1]
LEFT(i) = 2i
RIGHT(/) = 2i + 1
PARENT(i) = [i/2]

Al8]  A[9]  A[L0]
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BUILDING AND MANIPULATING HEAPS
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Maintaining the heap property

MAX-HEAPIFY is important for manipulating heaps:

Given an j such that the subtrees of i are heaps, it ensures that the
subtree rooted at i is a heap satisfy the heap property
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MAX-HEAPIFY(A, i, n)
Algorithm:
> Compare A[i], A[LEFT(i)], A[RIGHT(i)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property

> Continue this process of comparing and swapping down the heap, until subtree
rooted at i is max-heap

Al A[9]  A[l0]
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MAX-HEAPIFY(A, i, n)
Algorithm:
> Compare A[i], A[LEFT(i)], A[RIGHT(i)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property
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MAX-HEAPIFY(A, i, n)
Algorithm:
> Compare A[i], A[LEFT(i)], A[RIGHT(i)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property

> Continue this process of comparing and swapping down the heap, until subtree
rooted at i is max-heap

ORORO. @
Al A[9]  A[l0]
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: MAX-HEAPIFY (A4, i,n)
Pseudo-code and analysis I = Lerr(i)
r = RIGHT(i)

if | <nand A[l] > Ali]
largest = 1

else largest = i

if r < n and A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Al8]  A[9]  A[10]
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: MAX-HEAPIFY (A4, i,n)
Pseudo-code and analysis I = Lerr(i)
r = RIGHT(i)

if /| <nand A[l] > Ali]
largest =1

else largest = i

if r < n and A[r] > Allargest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

A[8] Al9]  A[10] S
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MAX-HEAPIFY (A4, i,n)
| = LEFT(i)

r = RIGHT(i)

if | < nand A[l] > Ali]
largest = [

else largest = i

if » < nand A[r] > Allargest]
largest = r

if largest # i

Space? exchange A[i] with A[largest]

MAX-HEAPIFY (A, largest, n)

Running time?

AlB]  Al9]  Al10]



MAX-HEAPIFY (A4, i,n)
| = LEFT(i)

r = RIGHT(i)
if | < nand A[l] > Ali]
largest = [
O(height of /) = O(log n) ‘else largest = i
if » < nand A[r] > Allargest]
largest = r
if largest # i
Space? exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Running time?

AlB]  Al9]  Al10]



MAX-HEAPIFY (A4, i,n)
| = LEFT(i)

r = RIGHT(i)
if | <nand A[l] > Ali]
largest = [
O(height of /) = O(log n) ‘else largest = i
if » < nand A[r] > Allargest]
largest = r
if largest # i
Space? ©O(n) exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

Running time?

AlB]  Al9]  Al10]



— BUILD-MAX-HEAP(A4,n)
Building a heap fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

Given unordered array A of length n, BUILD-MAX-HEAP outputs a heap

|4|1|3|2|16|9|10|14|8|7|

Al8] Al9]  A[10]
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: BUILD-MAX-HEAP(A4,n)
Ana|ySIS fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

What is the worst-case running time of BUILD-MAX-HEAP?
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: BUILD-MAX-HEAP(A4,n)
Ana|ySIS fori = [n/2] downto 1

MAX-HEAPIFY (A, i,n)

What is the worst-case running time of BUILD-MAX-HEAP?

Simple bound: O(n) calls to MAX-HEAPIFY, each of which takes
O(lg n) time = O(nlgn) in total
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BUILD-MAX-HEAP(A,n)
fori = |n/2] downto 1

MAX-HEAPIFY (A,i,n)

What is the worst-case running time of BUILD-MAX-HEAP?
Simple bound: O(n) calls to MAX-HEAPIFY, each of which takes
O(lg n) time = O(nlg n) in total

Tighter analysis: Time to run MAX-HEAPIFY is linear in the height of
the node it's run on. Hence, the time is bounded by

lg n Ign h
Z{# nodes of height h}-O(h) =0 <n Z 2h> ,
h=0 h=0

which is O(n) since 332 £ = % =2.



