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RECALL LAST LECTURE

Solving Recurrences:

> Substitution method
> Recursion Trees
» (Master Method)

Maximum-Subarray Problem
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Recall Recursion trees

Example: T(1) = c and T(n) =2T(n/2) + cn?
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Qualified guess: T(n) = cn? Zl,.ofon 3 < cn? =0(n?)

Lecture 5, 04.03.2025



Recall Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ ch
cn/3 c2n/3 cn
VRN VRN
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logz n levels out after Iog3/2 n levels

> There are logz n full levels and after logs, n levels the problem size
is down to 1.

> Each level contributes = cn
Qualified guess: exist positive constants a, b so that
a-nlogz(n) < T(n) < b-nlogy,, n= T(n)=0O(nlogn)
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Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
If f(n) = O(n'°82=<) for some constant e > 0, then T(n) = ©(n'°¢s2)
If f(n) = ©(n'°8b2), then T(n) = ©(n'°%? log n)

If f(n) = Q(n'°8b3+€) for some constant ¢ > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) =c and T(n) =2T(n/2) + cn
f(n) = O(n) and a= b =2 so log,(a) = 1 and f(n) = O(n'°es(2)).
By Master theorem, we have T(n) = ©(nlogn) :)
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Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day j"

Definition

INPUT: An array A[l...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i... ]

Examples: | 1 | -4 | 3 | -4 |output is i =j =3 and the sum 3

(2[4 [a s 7][7]2[+]3]2]

output is i = 3 and j = 6 and the sum 14
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Maximum-subarray problem

More examples
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Divide-and-Conquer
-1 5 7 -7 -1]

-2 -4 3 k—Ab 7 -7 1]

solve recursively solve
1 |

2 4 3 -1| 5 7 -7 -1|

it
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Also find the maximum subarray that crosses the midpoint!

-2 -4 3 -1 57 -1 -]

-2 -4 3 -1%—%&|5 7 -7 -1)

solve recursively solve recursively

1 1
Vv V¥

2 4 3 -1 5 7 -7 -1
bine?
2 4 3 -1 5 7 71 -]

N
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Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid + 1... high].

Conquer by finding maximum subarrays of A[low ... mid] and
Almid + 1. .. highl.

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

This strategy works because any subarray must either lie entirely on one
side of the midpoint or cross the midpoint
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Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid + 1. .. high].

Conquer by finding maximum subarrays of A[low ... mid] and
Almid + 1. .. highl].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = | (low + high)/2]
(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (A4, low, mid)
(right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high. left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high. right-sum)
else return (cross-low, cross-high, cross-sum)
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FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low

return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|
Assume that we can find Uefi-low, lefi-high, left-sum) =
X X i FIND-MAXIMUM-SUBARRAY (A4, low, mid)
max-crossing-subarray in time ©(n) (right-low. right-high. right-sum) =

FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2= T(n/2)
Merge time dominated by FIND-MAX-CROSSING-SUBARRAY
= O(n)

Recursion for the running time is

o(1) ifn=1,

Tn) = 2T(n/2) +©(n) otherwise

Hence, T(n) = ©(nlog n)



Finding maximum subarray crossing midpoint

> Any subarray crossing the midpoint A[mid] is made of two
subarrays A[i ... mid] and Almid +1,...,j] where low < i < mid
and mid < j < high

> Find maximum subarrays of the form A[i... mid] and
A[mid +1...j] and then combine them.

2 4 3 -1 57 -1 -]

-2 -4 3 -1||5 7 -7 -]

2 -4 3 -15 7 -7 -]
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FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
. . for i = mid downto low
Running time? ©(n) sum = sum + A]
if sum > left-sum
left-sum = sum
max-left =i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
Space? ©(n) sum = 0
for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
_2 _4 sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

low mid

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
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Matrix Multiplication

Definition
Input: Two n X n (square) matrices, A = (a;) and B = (bj)

Output: nx n matrix C = (c;j), where C=A-B

Example (n = 2):
cr G2\ fan an) . b1 b2
1 a1 ax b1 b

where c11 = anbir + annbo,
c12 = airbhiz + annbo,
c21 = ap1b11 + anboi,
Cop = ap1b1o + anab2a.

(o) 9)G )
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How to multiply two matrices?

Cl2 - Cin

Cn1 Cn2 - Cpn

al=aibi+aihi+aizbsy+. ..

o1 =az1bi1 +ax2br1 +ax3b3y+ ..

2 =az1b12+ ax2br2+ ax3b3n +
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bii1 bio
by1 boo
bn 1 bn 2

n

ya1,nbn1 = E a1k b1

k=1
n

<, 32,.nbn1 = E acbi1
k=1
n

ooy anbpo = E ackbra
k=1

n
ci=  an by



Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (A, B, n)
let C be anew n X n matrix
fori = 1ton
for j = 1ton
Cij =0
fork = 1ton
cij = cij + aig - byj
return C

735 7-13) [ 12\ (3 -1
70 77 \-1 3 1 2

Example:
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Naive Algorithm

Well simply multiply the matrices...

SQUARE-MAT-MULT (A, B, n)

let C be anew n X n matrix
fori = 1ton

for j = 1ton
Cij =0
fork = 1ton

Cij = Cij + @ik - by;
return C

Running time? ©(n?) @

Space? ©(n?)
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Ci2 = A11Bio + A12B2

Ci1 = A1 Bi1 + Ai2Bx

Coo = Ap1Bio + A2 Boo

(o1 = Ao1Bi1 + AxBxy



Divide-and-Conquer Algorithm

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Gi1 G _ Aun A\ (Bu B
C1 G A Ax By Bx
Conquer: Since

Ci1 = A1 - Bii + Az - By

G2 = A11 - Bio + Agp - B

G1 = Ao - Bi1 + Az - By

Co2 = Aoy - Bio + Az - B

we recursively solve 8 matrix multiplications that each
multiply two n/2 x n/2 matrices.

Combine: Make the additions to get C
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REC-MAT-MULT (A, B.n)

let C be a new n x n matrix
ifn==

cn = an-bn
else partition A, B, and C into /2 x n/2 submatrices

Let T(n) be the time to mUltlpIy Cy1 = REC-MAT-MULT(Ay, B11,n/2) + REC-MAT-MULT (A2, B2y, 1/2)
. Ci2 = REC-MAT-MULT(Ay;, By2.n/2) + REC-MAT-MULT (A5, B2,.n/2)
two n X n matrices. Cy1 = REC-MAT-MULT(A3y, Byy,n/2) + REC-MAT-MULT (A3, B2y, 1/2)
Cy = REC-MAT-MULT (A3, Bj2.n/2) + REC-MAT-MULT (A2, Bys, n/2)

return C

Base case: n=1. Perform one scalar murtipnication—orr)
Recursive case: n > 1.
> Dividing takes ©(1) time if careful and ©(n?) if simply copying

» Conquering makes 8 recursive calls, each multiplying n/2 x n/2
matrices = 8T (n/2)

» Combining takes time ©(n?) time to add n/2 x n/2 matrices.
Recurrence is

o(1) ifn=1

Tn) = 8T(n/2) +O(n?) ifn>1

Master method = T(n) = ©(n®)



STRASSEN’S ALGORITHM FOR
MATRIX MULTIPLICATION
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The ldea

Make less recursive calls

> Perform only 7 recursive multiplications of n/2 x n/2 matrices,
rather than 8

> Will cost several additions of n/2 x n/2 matrices, but just a
constant more

= can still absorb the constant factor for matrix additions into the
O(n?) term

To obtain the recurrence

o) ifn=1
T(n) = {7T(n/2) +o(r?) ifn>1

Master method = T(n) = ©(n'°&:7)
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Strassen’s method

Divide each of A, B, C into four n/2 x n/2 matrices: so that
Gi1 G _ Aun A\ (Bu B
G G A Ax By1 Bo

Conquer: Calculate recursively 7 matrix multiplications, each of two
n/2 x n/2 matrices:
My := (A11 + A»)(Bi1 + B») Ms := (A1 + A12) B

My := (Ax1 + A22)Bn M := (A2 — A11)(B11 + Br2)
Ms := A11(B12 — B22) M7 := (A12 — A2)(Ba1 + B22)
My := A (B21 — B11)

Combine: Let
Ci=M +My—Ms+ M;  Cio=M3+ Ms
Co1 =My + My Coo =My — My + M3 + Ms
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Analysis of Strassen's Method

Base case: n=1= it takes time ©(1)

Recursive case: n>1
> Dividing takes time ©(n?)

» Conquering makes 7 recursive calls, each multiplying n/2 x n/2
matrices = 7T (n/2)

> Combining takes time ©(n?) time to add n/2 x n/2 matrices.

Recurrence is

_Je() ifn=1
Tn) = {7T(n/2) +o(r?) ifn>1

Master method = T(n) = ©(n'°&:7)
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Notes about Strassen’'s method

> First to beat ©(n%) time

> Faster known today, method by Coppersmith and Winograd runs in
time O(n*37°) recently improved by Vassilevska Williams to
O(n?3727).

> Big open problem how to multiply matrices in best way

> Naive method better for small instances because of hidden
constants
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> Divide-and-conquer simple but powerful algorithmic paradigm
> Merge-sort and maximum subarray both run in time ©(nlog n)

> Strassen’s algorithm for matrix multiplication in time ©(n'°€7)
where log, 7 =~ 2.8.
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Algorithm  worst-case running time in-place

Insertion Sort o(n?) YES
Merge Sort O(nlog n) NO
Heapsort:

» O(nlg n) worst case — like merge sort
» Sorts in place — like insertion sort
» Combines the best of both algorithms

Uses a cool datastructure: heaps
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Data Structures = “Building Blocks”

Algorithm

Algorithm
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What kind of operations do we want to do?

» Modifying operations: insertion, deletion, ...

» Query operations: search, maximum, minimum, ...

Data structure containing numbers



(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

Hiteap off siize B
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Max)-Heap property: key of i's children is smaller or equal to i's key
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(Binary) heap data structure

Heap A (not garbage-collected storage) is a nearly complete binary tree

(Min)-Heap property: key of i's children is greater or equal to i's key
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Max-Heap = maximum element is the root

E A

Min-Heap = minimum element is the root

E A
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Height of a heap

Height of node = # of edges on a longest simple path from the node
down to a leaf

Height of heap = height of root = ©(log n)

Height = @
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How to store a heap/tree?

. o bt chitd

Use that tree is almost complete to store it in array

A=l16 |14 108 |7][0o]3]2]4]1]

In this representation:
Roor is A[1]

LEFT(i) =?77=2j
RiGHT(i) =?77=2i+1

PARENT(/) =777=

Li/2]

A8l A[9]  A[L0]
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BUILDING AND MANIPULATING HEAPS
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Maintaining the heap property

MAX-HEAPIFY is important for manipulating heaps:

Given an i such that the subtrees of i are heaps, it ensures that the
subtree rooted at i is a heap satisfy the heap property
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MAX-HEAPIFY(A, i, n)
Algorithm:

> Compare A[i], A[LEFT(i)], A[RIGHT(/)]

> If necessary, swap A[i] with the largest of the two children to preserve heap
property

> Continue this process of comparing and swapping down the heap, until subtree
rooted at i is max-heap

Al8]l APl  A[L0] @
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MAX-HEAPIFY (A4, i,n)

| = LEFT(i)
r = RIGHT(i)
Running time? if [ < nand A[l] > A[i]
largest = [
O(height of i) = O(log n) else largest = i
if r < n and A[r] > Allargest]
largest = r
Space? ©O(n) if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

A8l A[9]  A[10] \&_/j



Building a heap BUILD-MAX-HEAP(4, n)
fori = |n/2] downto 1
MAX-HEAPIFY (4, i,n)
Given unordered array A of length n, BUuiLD-MAX-HEAP outputs a heap

Alg] Al9] Al10] @
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BUILD-MAX-HEAP(A,n)

fori = |n/2] downto 1
MAX-HEAPIFY (A,i,n)

What is the worst-case running time of BUILD-MAX-HEAP?

Simple bound: O(n) calls to MAX-HEAPIFY, each of which takes
O(lg n) time = O(nlg n) in total

Tighter analysis: Time to run MAX-HEAPIFY is linear in the height of
the node it's run on. Hence, the time is bounded by

g Ign
Z{# nodes of height h}o ( Z 2h> ’

which is O(n) since 337 & = (1,1{?2)2 =2




