Algorithms: Divide-and-Conquer (Analysis and

Maximum-subarray problem)

Alessandro Chiesa, Ola Svensson

=PrL

School of Computer and Communication Sciences

Lecture 4, 26.02.2025

worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlogn) NO

> A sorting algorithm is in-place of the numbers are rearranged within
the array (with at most a constant number outside the array at any time)

> Insertion sort is incremental: having sorted the subarray A[l...j — 1], we
inserted the single element A[j] into its proper place, yielding the sorted
subarray A[l...j].

> Merge sort is divide-and-conquer: break the problem into smaller

subproblems and then combine the solutions to the subproblems

Use a recurrence equation to describe the running time:

>

»

Let T(n) = “running time on a problem of size n"

If nis small enough say n < ¢ for some constant ¢ then
T(n) = 6(1) (by brute force)

Otherwise, suppose we divide into a sub problems each of size n/b.

Let D(n) be the time to divide and let C(n) the time to combine
solutions.

We get the recurrence

T(n) = O(1) if n<c,
= aT(n/b)+ D(n) + C(n) otherwise.

Recall: Analysis of Merge Sort

MERGE-SORT(4, p, r)

ifp<r // check for base case
q=1(p+r)/2] // divide
MERGE-SORT (4, p.q) // conquer
MERGE-SORT(A4,q + 1,r) // conquer
MERGE(A4, p,q,T1) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2 = 2T(n/2).

Combine: Merge on an n-element subarray takes ©(n) time

= C(n) = ©(n).
Recurrence for merge sort running time is (if we wish to be strict)
1 ifn=1
T(n) — e() T n .7
2T(n/2)+©(n) otherwise.

(1) ifn=1,

Lecture 4, 26.02.2025 T(n) = { T([n/2])+ T([n/2]) + ©(n) otherwise.

It's easier to fool
people than to
convince them
that they have
been fooled.

-Mark Twain

=
& [T immEDIATELY
‘ REGRET THIS
w3 DECISION.

YOU: Show me the money!

GREED'#
IS

GOOD ‘&

BANKER:\ has
everybody. & =8

SOLVING RECURRENCES

nnnnnnnnn

INDUCTION
INDUCTION
INDUCTION

Lecture 4, 26.02.2025

Analysing Recurrences

As an example, we shall consider the following recurrence

c ifn=1,

T(n) = T(ln/2])+ T([n/2]) + c-n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
MERGE-SORT by selecting c sufficiently large and small, respectively.

Indeed, there exists constants ¢, co > 0 such that

c ifn=1, o(1) ifn=1, o ifn=1,
2T(n/2) 4+ c; - n otherwise. — | 2T(n/2)+ ©(n) otherwise. — | 2T(n/2)+ cn otherwise.

Hence, LHS = Q(nlog n) and RHS = O(nlog n) implies that the recurrence for
MERGE-SORT is ©(nlog n)

Lecture 4, 26.02.2025

Analysing Recurrences

As an example, we shall consider the following recurrence

c ifn=1,

T(n) = T(ln/2])+ T([n/2]) +c-n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
MERGE-SORT by selecting c sufficiently large and small, respectively.

We shall solve recurrences by using three techniques:
> The substitution method
> Recursion trees

» Master method

Lecture 4, 26.02.2025

The substitution method

> Guess the form of the solution (forget about details such as floor,
ceiling, etc.)

» Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n

A qualified guess is that T(n) = ©(nlog n)

Lecture 4, 26.02.2025

Proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant fixed constant k, T(1), T(2),..., T(k)
are bounded by a constant value depending on k, selecting a sufficiently
larger than this value will satisfy the base cases.

Lecture 4, 26.02.2025

Proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Inductive step: Assume statement true Vn € {2,3,..., k — 1} where k is sufficiently large constant

and prove the statement for n = k.

T(n)=T(|n/2])+ T([n/2])+ cn

We can thus select a to be a positive constant so that both the base

cases and the inductive step holds. Hence, T(n) = O(nlog n)
Lecture 4, 26.02.2025

Proof of guess

Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n > 1

Proof by induction on n

Base case: For any fixed constant k, T(1), T(2),..., T(k) is bounded
by below by some constant (depending on k). Selecting b sufficiently
smaller than this constant satisfies the base cases.

Lecture 4, 26.02.2025

Proof of guess

Lower bound

There exists a constant b > 0 such that T(n) > b- nlogn for all n > 1

Proof by induction on n

Inductive step: Assume statement true Vn € {1, .. ., k — 1} where k is a sufficiently large constant

and prove the statement for n = k.

T(n)=T(|n/2])+ T([n/2])+ cn

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T(n) = Q(nlog n)

Lecture 4, 26.02.2025

Floors and ceilings in a recurrence relation introduce a lot
of low order terms.

This makes calculations messy but it does not change the
final asymptotic result.

When analyzing recurrences we will simply assume for
simplicity that all divisions evaluate to an integer.

Do you see another reason why we may disregard floors
and ceilings in the analysis of merge sort?

Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T(n) = 4T(n/4) + n, that
T(n) = O(n):

T(n) <4(c(n/4))+n
<cn+n=0(n) wrong!

Because we haven't proven the exact form of our inductive hypothesis
(which is that T(n) < cn), this proof is false

Lecture 4, 26.02.2025

Sometimes solution is to prove something stronger

Let T(n) = T(n/4)+ T(3n/4)+cifn>2and T(2)=T(1)=c.

Upper bound

There exists constants b, b’ > 0 such that T(n) < b-n—b' forall n>1

Proof by induction on n

Base cases: For any constant fixed constant k, T(1), T(2),..., T (k) are bounded by a constant value depending

on k, selecting b and b’ so that b — b’ is sufficiently larger than this value will satisfy the base cases.

Inductive Step: Assume statement true Vn € {2,3,..., k — 1} and prove the statement for n = k.

T(n)=T(n/4)+ T(3n/4) +c

We can thus select b and b’ to be positive constants so that both the
base cases and the inductive step holds. Hence, T(n) = O(n)

Lecture 4, 26.02.2025

Recursion trees

Another way to generate a guess. Then verify by substitution method.

> Each node corresponds to the cost of a subproblem

» We sum the costs within each level of the tree to obtain a set of
per-level costs,

> then we sum all the per-level costs to determine the total cost of all
levels of the recursion.

Lecture 4, 26.02.2025

(7]
(]
(D]
—
4+
C
.2
(9]
—
3
O
(D)
o

Our favorite example: T(1) = c and T(n) =2T(n/2) +cn

cn

cn

cn

cn

T(1) T(Q) T() T(A) TQ) TQ) TQ) T(Q) TQ) T(Q) TA) TQ) TQ) TA) T(Q) T(Q)

+

2~

2|og2(n) =n

O(nlog n)

Qualified guess: T(n) = cnlog, n

Lecture 4, 26.02.2025

Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ ch
cn/3 c2n/3 cn
VRN VRN
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logz n levels out after Iog3/2 n levels

> There are logz n full levels and after logs, n levels the problem size
is down to 1.

> Each level contributes = cn
Qualified guess: exist positive constants a, b so that
a-nlogz(n) < T(n) < b-nlogy,, n= T(n)=0O(nlogn)

Lecture 4, 26.02.2025

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
If f(n) = O(n'°82=<) for some constant € > 0, then T(n) = ©(n'°¢s2)
If f(n) = ©(n'°8b2), then T(n) = ©(n'°%? log n)

If f(n) = Q(n'°8b3*€) for some constant ¢ > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) =c and T(n) =2T(n/2) + cn
f(n) = ©(n) and a= b =2 so log,(a) = 1 and f(n) = O(n'°e+(2)).
By Master theorem, we have T(n) = ©(nlogn) :)

XE

I IMMEDIATELY
REGRET THIS i
DECISION. GREED /

IN

GOOD

Scenario

120

90 O\ / \
50 \ / \
70 \V/

60— 7T T

> You have the prices that a stock traded at over a period of n
consecutive days

» When should you have bought the stock? When should you have
sold the stock?

> Even though it's in retrospect, you can yell at your stockbroker for
not recommending these buy and sell dates

Lecture 4, 26.02.2025

Optimal Solution Structure

Why not just “buy low,sell high"?

> Lowest price might occur after the highest price

> But wouldn’t the optimal strategy involve buying at the lowest price
or selling at the highest price?

> Not necessarily:

11

o A\ /\ Day |0 1 2 3 4
y
Price |10 11 7 10 6
; o\
7 \ Change 1 —4 3 —4
6 T T T T T
o 1 2 3 4

It requires us to solve the MAXIMUM-SUBARRAY PROBLEM

Lecture 4, 26.02.2025

Maximum-subarray problem

“If we let A[i] = (price after day i) — (price after day i — 1) then if the maximum
subarray is A[i ... j] then we should have bought just before day i and sold just after
day j"

Definition

INPUT: An array A[l...n] of numbers

OUTPUT: Indices i and j such that A[i...j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[/i...]

Examples: | 1 | -4 | 3 | -4 |output is i =j =3 and the sum 3

(2[4 [a s 7][7]2[+]3]2]

output is i = 3 and j = 6 and the sum 14

Lecture 4, 26.02.2025

Maximum-subarray problem

More examples

110 /f\
100
" .\ / N\ —
s \ / \
6() T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Day | 0 1 2 3 4 5 6 7.8 910 11 12 1314 1516
Price 100 113 110 85 105 102 86 63 81 101 04 106 101 79 94 90 97
Change 13 -3 —25 20 -3 —16 —23/18 20 —7 12|-5 —22 15 —4 7
0l N\
K N A
9
D 0 1 2 3 4
. \ / \ Dy |
\/ \ ce 0 11 7 10 6
7 \ Change 1 —4 —4
6 T T T T T
0 1 2 3 4

Lecture 4, 26.02.2025

FIRST ALGORITHM (brute force)

Lecture 4, 26.02.2025

Maximum-subarray-slow(A[1. .. n])
BrUte Force B.val <~ —c0, B.i+ 1, B.j<n

fori<1ton
tmp < 0
for j«<—iton
tmp < tmp + A[j]

1
2
Simply check all possible subarrays 3
4
5
6 if tmp > B.val
7
8
9
4

(5) = ©(n?) many

B.val < tmp
B.i<+i
B.j<+j

return (B.i, B.j, B.val)

Current best (B.val) = 8®o

and soon ...

Lecture 4, 26.02.2025

What is the running time? ©(n?)

How much space do we use? ©(n)

Lecture 4, 26.02.2025

Maximum-subarray-slow(A[1. .. n])
B.val < —c0, B.i+ 1, B.j<n
fori<1ton
tmp < 0
for j«<—iton
tmp < tmp + A[j]
if tmp > B.val
B.val < tmp
B+
B.j<+j
return (B.i, B.j, B.val)

POO~NOOOOPDWNH

Divide-and-Conquer

-2 4 3 15 7 7 -1

it

Lecture 4, 26.02.2025

Also find the maximum subarray that crosses the midpoint!

-2 -4 3 -1 57 -1 -]

2 4 3 -1 diide 5 7 -7 -1)
2 4 3 -1 5 7 -7 -1

2 4 3 -1 5 7 71 -]

N

Lecture 4, 26.02.2025

Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid + 1... high].

Conquer by finding maximum subarrays of A[low ... mid] and
Almid + 1. .. highl.

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

This strategy works because any subarray must either lie entirely on one
side of the midpoint or cross the midpoint

Lecture 4, 26.02.2025

Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low ... mid] and A[mid + 1. .. high].

Conquer by finding maximum subarrays of A[low ... mid] and
Almid + 1. .. highl].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low
return (low, high, A[low]) // base case: only one element
else mid = | (low + high)/2]
(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (A4, low, mid)
(right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high. left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high. right-sum)
else return (cross-low, cross-high, cross-sum)

Lecture 4, 26.02.2025

FIND-MAXIMUM-SUBARRAY (4, low, high)
if high == low

return (low, high, A[low]) // base case: only one element
else mid = |(low + high)/2]|
Assume that we can find Uefi-low, lefi-high, left-sum) =
X X i FIND-MAXIMUM-SUBARRAY (A4, low, mid)
max-crossing-subarray in time ©(n) (right-low. right-high. right-sum) =

FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low. left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

Divide takes constant time,i.e., ©(1)

Conquer recursively solve two subproblems, each of size
n/2= T(n/2)
Merge time dominated by FIND-MAX-CROSSING-SUBARRAY
= O(n)

Recursion for the running time is

o(1) ifn=1,

Tn) = 2T(n/2) +©(n) otherwise

Hence, T(n) = ©(nlog n)

Finding maximum subarray crossing midpoint

> Any subarray crossing the midpoint A[mid] is made of two
subarrays A[i ... mid] and Almid + 1,...,j] where low < i < mid
and mid < j < high

> Find maximum subarrays of the form A[i... mid] and
A[mid +1...j] and then combine them.

2 4 3 -15 7 -1 -]

-2 -4 3 -1|[5 7 -7 -]

2 -4 3 -15 7 -7 -1]

Lecture 4, 26.02.2025

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
. . for i = mid downto low
Running time? ©(n) sum = sum + A]
if sum > left-sum
left-sum = sum
max-left =i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —o0
Space? ©(n) sum = 0
for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
// Find a maximum subarray of the form A[i .. mid].
left-sum = —oo
sum = 0
for i = mid downto low
_2 _4 sum = sum + Ali]
if sum > left-sum
left-sum = sum

Crossing subarray

low mid

max-left = i
// Find a maximum subarray of the form A[mid + 1.. j].
right-sum = —oo
sum = 0

for j = mid + 1 to high
sum = sum + A[j]
if sum > right-sum
right-sum = sum
max-right = j

Lecture 4, 26.02.2025
v // Return the indices and the sum of the two subarrays.

v

Divide-and-conquer simple but powerful algorithmic paradigm

> Merge-sort and maximum subarray both run in time ©(nlog n)

v

This is much faster than ©(n?) for large instances

v

Remember techniques for solving recurrences

v

Solving recurrences fun but delicate

Lecture 4, 26.02.2025

