
Algorithms: Divide-and-Conquer (Analysis and

Maximum-subarray problem)

Alessandro Chiesa, Ola Svensson

School of Computer and Communication Sciences

Lecture 4, 26.02.2025



Recall Last Lecture: Sorting

Algorithm worst-case running time in-place
Insertion Sort Θ(n2) YES

Merge Sort Θ(n log n) NO

▶ A sorting algorithm is in-place of the numbers are rearranged within
the array (with at most a constant number outside the array at any time)

▶ Insertion sort is incremental: having sorted the subarray A[1 . . . j − 1], we
inserted the single element A[j] into its proper place, yielding the sorted
subarray A[1 . . . j].

▶ Merge sort is divide-and-conquer: break the problem into smaller
subproblems and then combine the solutions to the subproblems

Lecture 4, 26.02.2025



Recall: Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
▶ Let T (n) = “running time on a problem of size n”
▶ If n is small enough say n ≤ c for some constant c then

T (n) = Θ(1) (by brute force)

▶ Otherwise, suppose we divide into a sub problems each of size n/b.
▶ Let D(n) be the time to divide and let C(n) the time to combine

solutions.
▶ We get the recurrence

T (n) =
{

Θ(1) if n ≤ c,

aT (n/b) + D(n) + C(n) otherwise.

Lecture 4, 26.02.2025



Recall: Analysis of Merge Sort

Divide: takes constant time, i.e., D(n) = Θ(1)

Conquer: recursively solve two subproblems, each of size
n/2 ⇒ 2T (n/2).

Combine: Merge on an n-element subarray takes Θ(n) time
⇒ C(n) = Θ(n).

Recurrence for merge sort running time is (if we wish to be strict)

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise.

T (n) =
{

Θ(1) if n = 1,

T (⌊n/2⌋) + T (⌈n/2⌉) + Θ(n) otherwise.Lecture 4, 26.02.2025



Lecture 4, 26.02.2025



Does your banker fool you?

YOU: How come I just lost 20% of my
fortune on the investments you
recommended?

YOU: Oh ok.

YOU: Oh ok.

YOU: Show me the money!

BANKER: It has been a bad year for
everybody.

Maximum subarrayproblem
. . . but first we finish the analysis of recurrences

Lecture 4, 26.02.2025



SOLVING RECURRENCES

INDUCTION

INDUCTION

INDUCTION
INDUCTION

INDUCTION
INDUCTION

INDUCTIONINDUCTIONINDUCTIONINDUCTION
Lecture 4, 26.02.2025



Analysing Recurrences

As an example, we shall consider the following recurrence

T (n) =
{

c if n = 1,

T (⌊n/2⌋) + T (⌈n/2⌉) + c · n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
merge-sort by selecting c sufficiently large and small, respectively.

Indeed, there exists constants c1, c2 ≥ 0 such that{
c1 if n = 1,

2T (n/2) + c1 · n otherwise.
≤

{
Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise.
≤

{
c2 if n = 1,

2T (n/2) + c2n otherwise.

Hence, LHS = Ω(n log n) and RHS = O(n log n) implies that the recurrence for
merge-sort is Θ(n log n)

Lecture 4, 26.02.2025



Analysing Recurrences

As an example, we shall consider the following recurrence

T (n) =
{

c if n = 1,

T (⌊n/2⌋) + T (⌈n/2⌉) + c · n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
merge-sort by selecting c sufficiently large and small, respectively.

We shall solve recurrences by using three techniques:
▶ The substitution method
▶ Recursion trees
▶ Master method

Lecture 4, 26.02.2025



The substitution method
▶ Guess the form of the solution (forget about details such as floor,

ceiling, etc.)
▶ Use mathematical induction to find the constants and show that

the solution works.

T (n) = 2T (n/2) + c · n
= 2(2T (n/4) + c · n/2) + c · n = 4T (n/4) + 2 · cn
= 4(2T (n/8) + c · n/4) + 2 · cn = 8T (n/8) + 3 · cn

...

Hmm it seems like

= 2kT (n/2k) + k · cn

A qualified guess is that T (n) = Θ(n log n)

Lecture 4, 26.02.2025



Proof of guess

Upper bound
There exists a constant a > 0 such that T (n) ≤ a · n log n for all n ≥ 2

Proof by induction on n

Base cases: For any constant fixed constant k, T (1), T (2), . . . , T (k)
are bounded by a constant value depending on k, selecting a sufficiently
larger than this value will satisfy the base cases.

Lecture 4, 26.02.2025



Proof of guess

Upper bound
There exists a constant a > 0 such that T (n) ≤ a · n log n for all n ≥ 2

Proof by induction on n

Inductive step: Assume statement true ∀n ∈ {2, 3, . . . , k − 1} where k is sufficiently large constant

and prove the statement for n = k.

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn

≤ 2 · a(n + 1)
2 log((n + 1)/2) + cn

≤ a(n + 1) log(3n/4) + cn
= a(n + 1) (log n − log(4/3)) + cn
= a · n log n + (a log n − a(n + 1) log(4/3)) + cn
≤ a · n log n (if we select a ≥ 2c/ log(4/3))

We can thus select a to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = O(n log n)

Lecture 4, 26.02.2025



Proof of guess

Lower bound
There exists a constant b > 0 such that T (n) ≥ b · n log n for all n ≥ 1

Proof by induction on n

Base case: For any fixed constant k, T (1), T (2), . . . , T (k) is bounded
by below by some constant (depending on k). Selecting b sufficiently
smaller than this constant satisfies the base cases.

Lecture 4, 26.02.2025



Proof of guess

Lower bound
There exists a constant b > 0 such that T (n) ≥ b · n log n for all n ≥ 1

Proof by induction on n

Inductive step: Assume statement true ∀n ∈ {1, . . . , k − 1} where k is a sufficiently large constant

and prove the statement for n = k.

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn

≥ 2 · b(n − 1)
2 log((n − 1)/2) + c · n

≥ b(n − 1) · log(n/3) + c · n
= b · n log n − b · log n − b(n − 1) log 3 + c · n
≥ b · n log n (if we select b ≤ c/(2 · log 3))

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T (n) = Ω(n log n)

Lecture 4, 26.02.2025



Floors and ceilings are a mess

▶ Floors and ceilings in a recurrence relation introduce a lot
of low order terms.

▶ This makes calculations messy but it does not change the
final asymptotic result.

▶ When analyzing recurrences we will simply assume for
simplicity that all divisions evaluate to an integer.

▶ Do you see another reason why we may disregard floors
and ceilings in the analysis of merge sort? Analyze the
running time for the next power of two. This increases the
instances at most twice and all divisions will be an integer.

Lecture 4, 26.02.2025



Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T (n) = 4T (n/4) + n, that
T (n) = O(n):

T (n) ≤ 4(c(n/4)) + n
≤ cn + n = O(n) wrong!

Because we haven’t proven the exact form of our inductive hypothesis
(which is that T (n) ≤ cn), this proof is false

Lecture 4, 26.02.2025



Sometimes solution is to prove something stronger
Let T (n) = T (n/4) + T (3n/4) + c if n ≥ 2 and T (2) = T (1) = c.

Upper bound
There exists constants b, b′ > 0 such that T (n) ≤ b · n − b′ for all n ≥ 1

Proof by induction on n

Base cases: For any constant fixed constant k, T (1), T (2), . . . , T (k) are bounded by a constant value depending

on k, selecting b and b′ so that b − b′ is sufficiently larger than this value will satisfy the base cases.

Inductive step: Assume statement true ∀n ∈ {2, 3, . . . , k − 1} and prove the statement for n = k.

T (n) = T (n/4) + T (3n/4) + c

≤ bn
4 − b′ + 3bn

4 − b′ + c = b · n − 2b′ + c

≤ b · n − b′ (if we select b′ ≥ c)

We can thus select b and b′ to be positive constants so that both the
base cases and the inductive step holds. Hence, T (n) = O(n)

Lecture 4, 26.02.2025



Recursion trees

Another way to generate a guess. Then verify by substitution method.

▶ Each node corresponds to the cost of a subproblem

▶ We sum the costs within each level of the tree to obtain a set of
per-level costs,

▶ then we sum all the per-level costs to determine the total cost of all
levels of the recursion.

Lecture 4, 26.02.2025



Recursion trees
Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn

cn

cn/2 cn/2

cn/4 cn/4 cn/4cn/4 cn

...

cn

cn

cn

T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1)

log2(n)

2log2(n) = n

Qualified guess: T (n) = cn log2 n = Θ(n log n)

Lecture 4, 26.02.2025



Recursion trees
Another interesting example: T (n) = T (n/3) + T (2n/3) + cn

cn

cn/3 c2n/3

cn/9 c2n/9 c4n/9c2n/9
...

leftmost branch peters
out after log3 n levels

rightmost branch peters
out after log3/2 n levels

cn

cn

cn

▶ There are log3 n full levels and after log3/2 n levels the problem size
is down to 1.

▶ Each level contributes ≈ cn
Qualified guess: exist positive constants a, b so that

a · n log3(n) ≤ T (n) ≤ b · n log3/2 n ⇒ T (n) = Θ(n log n)
Lecture 4, 26.02.2025



Master method
Used to black-box solve recurrences of the form T (n) = aT (n/b) + f (n)

Theorem (Master Theorem)
Let a ≥ 1 and b > 1 be constants, let T (n) be defined on the nonnegative integers by
the recurrence

T (n) = aT (n/b) + f (n).

Then, T (n) has the following asymptotic bounds

▶ If f (n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a)

▶ If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)

▶ If f (n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if a · f (n/b) ≤ c · f (n) for
some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n))

Our favorite example: T (1) = c and T (n) = 2T (n/2) + cn
▶ f (n) = Θ(n) and a = b = 2 so logb(a) = 1 and f (n) = Θ(nlogb(a)).
▶ By Master theorem, we have T (n) = Θ(n log n) :)

Lecture 4, 26.02.2025



MAXIMUM-SUBARRAY PROBLEM

Lecture 4, 26.02.2025



Scenario

▶ You have the prices that a stock traded at over a period of n
consecutive days

▶ When should you have bought the stock? When should you have
sold the stock?

▶ Even though it’s in retrospect, you can yell at your stockbroker for
not recommending these buy and sell dates

Lecture 4, 26.02.2025



Optimal Solution Structure

Why not just “buy low,sell high”?

▶ Lowest price might occur after the highest price
▶ But wouldn’t the optimal strategy involve buying at the lowest price

or selling at the highest price?
▶ Not necessarily:

It requires us to solve the maximum-subarray problem

Lecture 4, 26.02.2025



Maximum-subarray problem
“If we let A[i] = (price after day i)− (price after day i − 1) then if the maximum
subarray is A[i . . . j] then we should have bought just before day i and sold just after
day j.”

Definition
INPUT: An array A[1 . . . n] of numbers

OUTPUT: Indices i and j such that A[i . . . j] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in A[i . . . j]

Examples: 1 -4 3 -4 output is i = j = 3 and the sum 3

-2 -4 3 -1 5 7 -7 -2 4 -3 2

output is i = 3 and j = 6 and the sum 14

Lecture 4, 26.02.2025



Maximum-subarray problem
More examples

Lecture 4, 26.02.2025



FIRST ALGORITHM (brute force)

Lecture 4, 26.02.2025



Brute Force
Simply check all possible subarrays(n

2
)

= Θ(n2) many

Current best (B.val) = −∞ tmp = 0

-2 -4 3 -1 5 7 -7

tmp = −2Current best (B.val) = −2 tmp = −6Current best (B.val) = −2 tmp = −3Current best (B.val) = −2 tmp = −4Current best (B.val) = −2 tmp = 1Current best (B.val) = 1 tmp = 8Current best (B.val) = 8 tmp = 1Current best (B.val) = 8 tmp = −4Current best (B.val) = 8 tmp = −1Current best (B.val) = 8 tmp = −2Current best (B.val) = 8 tmp = 3Current best (B.val) = 8 tmp = 10Current best (B.val) = 10 tmp = 3Current best (B.val) = 10

and so on . . .

Lecture 4, 26.02.2025

Maximum-subarray-slow(A[1 . . . n])
1 B.val ← −∞, B.i ← 1, B.j ← n
2 for i ← 1 to n
3 tmp ← 0
4 for j ← i to n
5 tmp ← tmp + A[j]
6 if tmp > B.val
7 B.val ← tmp
8 B.i ← i
9 B.j ← j
4 return (B.i , B.j, B.val)



Brute Force

What is the running time? Θ(n2)

How much space do we use? Θ(n)

Lecture 4, 26.02.2025

Maximum-subarray-slow(A[1 . . . n])
1 B.val ← −∞, B.i ← 1, B.j ← n
2 for i ← 1 to n
3 tmp ← 0
4 for j ← i to n
5 tmp ← tmp + A[j]
6 if tmp > B.val
7 B.val ← tmp
8 B.i ← i
9 B.j ← j
4 return (B.i , B.j, B.val)



Divide-and-Conquer

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1divide

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

combine?

Lecture 4, 26.02.2025



Solution
Also find the maximum subarray that crosses the midpoint!

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1divide

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

combine?

Lecture 4, 26.02.2025



Divide-and-Conquer approach

Divide the subarray into two subarrays of as equal size as possible.
Find the midpoint mid of the subarrays, and consider the
subarrays A[low . . . mid ] and A[mid + 1 . . . high].

Conquer by finding maximum subarrays of A[low . . . mid ] and
A[mid + 1 . . . high].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

This strategy works because any subarray must either lie entirely on one
side of the midpoint or cross the midpoint

Lecture 4, 26.02.2025



Divide-and-Conquer approach
Divide the subarray into two subarrays of as equal size as possible.

Find the midpoint mid of the subarrays, and consider the
subarrays A[low . . . mid ] and A[mid + 1 . . . high].

Conquer by finding maximum subarrays of A[low . . . mid ] and
A[mid + 1 . . . high].

Combine by finding a maximum subarray that crosses the midpoint,
and using the best solution out of the three

Lecture 4, 26.02.2025



Analysis
Assume that we can find
max-crossing-subarray in time Θ(n)

Divide takes constant time,i.e., Θ(1)

Conquer recursively solve two subproblems, each of size
n/2 ⇒ T (n/2)

Merge time dominated by find-max-crossing-subarray
⇒ Θ(n)

Recursion for the running time is

T (n) =
{

Θ(1) if n = 1,

2T (n/2) + Θ(n) otherwise
Hence, T (n) = Θ(n log n)

Lecture 4, 26.02.2025



Finding maximum subarray crossing midpoint

▶ Any subarray crossing the midpoint A[mid ] is made of two
subarrays A[i . . . mid ] and A[mid + 1, . . . , j] where low ≤ i ≤ mid
and mid < j ≤ high

▶ Find maximum subarrays of the form A[i . . . mid ] and
A[mid + 1 . . . j] and then combine them.

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

-2 -4 3 -1 5 7 -7 -1

Lecture 4, 26.02.2025



Crossing subarray

Running time? Θ(n)

Space? Θ(n)

-2 -4 3 -1 5 7 -7 -1

low mid high

Lecture 4, 26.02.2025



Summary

▶ Divide-and-conquer simple but powerful algorithmic paradigm

▶ Merge-sort and maximum subarray both run in time Θ(n log n)

▶ This is much faster than Θ(n2) for large instances

▶ Remember techniques for solving recurrences

▶ Solving recurrences fun but delicate

Lecture 4, 26.02.2025


