Algorithms: Divide-and-Conquer (Merge-Sort)

Alessandro Chiesa, Ola Svensson

=PrL

School of Computer and Communication Sciences

Lecture 3, 25.02.2025

CalculateSum(n):

.ans =0

1
. 2. fori=1,2,...,n
Often used for proof of correctness in presence of loops 3. ans=ans+i
4. return ans
Loop invariant = “a statement that is satisfied during the loop”

Ex: At the start of each iteration ans = (i — 1) *i/2

Need to verify (similar to induction)

Initialization: True at the beginning of the 1st iteration of the loop

Maintenance: If it is true before an iteration of the loop, it remains true
before the next iteration.

Termination: When the loop terminates, the invariant — usually along
with the reason that the loop terminated — gives us a useful property
that helps show that the algorithm is correct.

The difficulty is often to come up with the right loop invariant

INSERTION-SORT (A, 1)
for j =2ton
key = A[]]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—-1
whileji > 0and A[i] > key
Ali + 1] = Ali]
i=i-1
Ali 4+ 1] = key

. . Linear-Search (A,v)
Loop invariant: 1 for i ¢ 1 to length(A)
i] =.v then
At the start @f each pg[é]@;,l(;n of the “outer” for loop — the loop
indexed by j+ theeswimar¥aky A[l..., j — 1] consists of the elements

originally in A[1,...,j — 1] but in sorted order.
Loop invariant:

At the start of each iteration of the for loop we have A[j] # v for all
Jj<i.

Random-access machine (RAM) model
> Instructions are executed one after another

» Simplification basic instructions take constant (O(1)) time

> Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
> Data movement: load, store, copy.
> Control: conditional/unconditional branch, subroutine call and return

Running time: on a particular input, it is the number of primitive
operations (steps) executed

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Order of growth: Focus on the important features
» Drop lower-order terms

> lIgnore the constant coefficient in the leading term

Recall Last Lecture: Analysis of insertion sort

number of times

line executed
INSERTION-SORT (A, 1) cost times based| on the
for j = 2ton o n value of j
key = A[j] ¢ n—1
// Insert A[J] into the sorted sequence A[l..j —1]. 0 n—1
i=j—1 e n—1
whilei > 0 and A[i] > key s Y @
Al +1] = A[i] 6 Yot —1)
i=i-1 ez YL@ -1
Ali + 1] = key cg n—1

Worst case: The array is in reverse sorted

T(n=ante(n—1)+aln-1)+ Csw
et)™= 1) = o(m?)

2

Lecture 3, 25.02.2025

DIVIDE-AND-CONQUER

Merge Sort

Lecture 3, 25.02.2025

Divide-and-Conquer

Powerful algorithmic approach:

recursively divide problem into smaller subproblems
Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Combine the subproblem solutions to give a solution to the original
problem

Lecture 3, 25.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

|5247|<—JK>1326

l

|z e
—

1 2 2 3 45 6 7|

Lecture 3, 25.02.2025

To sort Alp...r]:

Divide by splitting into two subarrays A[p...q] and
Alg+1,...,r], where g is the halfway point of Alp...r]

Conquer by recursively sorting the two subarrays A[p...q] and
Alg+1,...r]

Combine by merging the two sorted subarrays Alp...q] and
Alg+1,...,r] to produce a singe sorted
subarray Alp...r]

MERGE-SORT(A4, p,r)

ifp<r // check for base case
q=|(p+r)/2] // divide
MERGE-SORT(4, p, q) // conquer
MERGE-SORT(4,g9 + 1,1) // conquer
MERGE(A, p,q,r) // combine

Lecture 3, 25.02.2025

What remains is the MERGE procedure to solve the “merge” problem:

Definition

INPUT: Array A and indices p < g < r such that subarrays
Alp...q],Alg+1...r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in Alp...r].

Example:

Lecture 3, 25.02.2025

MERGE-SORT(4, p, 1)
ifp<r
q=1[(p+r)/2]

MERGE-SORT(A4, p, q)
MERGE-SORT(A4,q + 1,7)
MERGE(A4, p,q,1)

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp...r]

Proof by inductionon n=r —p
Base case n = 0: In this case r = p so A[p...r] is trivially sorted.
Inductive case: Assume statement true Vn € {0,1,...,k — 1} and prove the statement for n = k.

> By induction hypothesis MERGE-SORT(A, p, q) and
MERGE-SORT(A, g+1, r) successfully sort the two subarrays.

» Therefore a correct merge procedure will successfully sort Alp...q]
as required.

|dea behind linear-time merging

Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 3, 25.02.2025

|dea behind linear-time merging

Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

> There are < n basic steps, since each basic step removes one card
from the input piles, and we started with n cards in the input pile

> Therefore the procedure should take 6(n) time

Lecture 3, 25.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value co

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

L{|2]2]/3||4]|]/5]|/6]|7

oRdn

Lecture 3, 25.02.2025

. . MERGE(A4, p,q,T1)
Merging Algorithm o

n,=r—gq
let L[1..ny + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + Jj]
Lin,+1] =00
Rln, + 1] = o0
i=1
ji=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alpl Alql Alrl i=i41
else A[k] = R[j]
Al2|2|83|3|4|83|8|8 j=j+1
MERGE(A4, p,q.r)

kK k k k k Kk k k m=q-p+l
np, =r—q

let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

Lli]=A4 i —1
Ll2|als|7]co|R|[1]2]3]6 p P5gr*

R[j] = Alg + j]

A A A A A A A A A Lin +1] = 0o
P i i d i !

Rny +1] = o0
i=1
ji=1

fork = ptor

Lecture 3, 25.02.2025 if L[i] < R[/]

ATl — T 151

. . MERGE(A, p,q,T1)
Merging Algorithm R

n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lii]=Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Ln;+1] =
Rln,+1] = o0
> Runtime analysis? i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = Ll[i]
i=i+1
else A[k] = R[]
J=Jj+1

Lecture 3, 25.02.2025

Use a recurrence equation to describe the running time:

>

»

Let T(n) = “running time on a problem of size n"

If nis small enough say n < ¢ for some constant ¢ then
T(n) = 6(1) (by brute force)

Otherwise, suppose we divide into a sub problems each of size n/b.

Let D(n) be the time to divide and let C(n) the time to combine
solutions.

We get the recurrence

T(n) = O(1) if n<c,
= aT(n/b)+ D(n) + C(n) otherwise.

Analysis of Merge Sort

MERGE-SORT(A, p,1)

ifp<r // check for base case
q=l(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,1) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Combine: Merge on an n-element subarray takes ©(n) time

= C(n) = ©(n).
Recurrence for merge sort running time is
T(n) = o(1) if n= I.l,
2T(n/2)+©(n) otherwise.

Lecture 3, 25.02.2025

worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlogn) NO

> A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

> Insertion sort is incremental: having sorted the subarray A[l...j — 1], we

inserted the single element A[j] into its proper place, yielding the sorted
subarray A[1...j].

> Merge sort is divide-and-conquer: break the problem into smaller

subproblems and then combine the solutions to the subproblems

SOLVING RECURRENCES

nnnnnnnnn

INDUCTION
INDUCTION
INDUCTION

Lecture 3, 25.02.2025

Analysing Recurrences

As an example, we shall consider the following recurrence

c if n=1,

T(n) =
(n) 2T(n/2)+ c-n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
MERGE-SORT by selecting c sufficiently large and small, respectively.
We shall solve recurrences by using three techniques:

> The substitution method

> Recursion trees

» Master method

Lecture 3, 25.02.2025

The substitution method

> Guess the form of the solution

» Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n

A qualified guess is that T(n) = ©(nlog n)

Lecture 3, 25.02.2025

The substitution method: proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Inductive step: Assume statement true Vn € {2,3,..., k — 1} and prove the statement for n = k.

T(n)=2T(n/2)+cn

We can thus select a to be a positive constant so that both the base

cases and the inductive step holds. Hence, T(n) = O(nlog n)
Lecture 3, 25.02.2025

The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Inductive Step: Assume statement true Vn € {0,1,..., k — 1} and prove the statement for n = k.

T(n)=2T(n/2)+cn

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T(n) = Q(nlogn)

Lecture 3, 25.02.2025

Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T(n) = 4T(n/4) + n, that
T(n) = O(n):

T(n) <4(c(n/4))+n
<cn+n=0(n) wrong!

Because we haven't proven the exact form of our inductive hypothesis
(which is that T(n) < cn), this proof is false

Lecture 3, 25.02.2025

Recursion trees

Another way to generate a guess. Then verify by substitution method.

> Each node corresponds to the cost of a subproblem

» We sum the costs within each level of the tree to obtain a set of
per-level costs,

> then we sum all the per-level costs to determine the total cost of all
levels of the recursion.

Lecture 3, 25.02.2025

(7]
(]
(D]
—
4+
C
.2
(9]
—
3
O
(D)
o

Our favorite example: T(1) = c and T(n) =2T(n/2) +cn

cn

cn

cn

cn

T(1) T(Q) T() T(A) TQ) TQ) TQ) T(Q) TQ) T(Q) TA) TQ) TQ) TA) T(Q) T(Q)

+

2~

2|og2(n) =n

O(nlogn)

Qualified guess: T(n) = cnlog, n

Lecture 3, 25.02.2025

Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ ch
cn/3 c2n/3 cn
VRN VRN
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logz n levels out after Iog3/2 n levels

> There are logz n full levels and after logs, n levels the problem size
is down to 1.

> Each level contributes = cn
Qualified guess: exist positive constants a, b so that
a-nlogz(n) < T(n) < b-nlogy,, n= T(n)=0O(nlogn)

Lecture 3, 25.02.2025

Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
If f(n) = O(n'°82=<) for some constant € > 0, then T(n) = ©(n'°¢s2)
If f(n) = ©(n'°8b2), then T(n) = ©(n'°%? log n)

If f(n) = Q(n'°8b3*€) for some constant ¢ > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) =c and T(n) =2T(n/2) + cn
f(n) = O(n) and a= b =2 so log,(a) = 1 and f(n) = O(n'°es(2)).
By Master theorem, we have T(n) = ©(nlogn) :)

XE

v

Divide-and-conquer simple but powerful algorithmic paradigm

v

Solving the recurrence for merge sort shows that it runs in time
©(nlogn), i.e., much faster than Insertion sort for large instances

v

For small instances insertion sort can still be faster

v

Solving recurrences fun but delicate

Lecture 3, 25.02.2025

