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CalculateSum(n):

.ans =0

1
. 2. fori=1,2,...,n
Often used for proof of correctness in presence of loops 3. ans=ans+i
4. return ans
Loop invariant = “a statement that is satisfied during the loop”

Ex: At the start of each iteration ans = (i — 1) *i/2

Need to verify (similar to induction)

Initialization: True at the beginning of the 1st iteration of the loop

Maintenance: If it is true before an iteration of the loop, it remains true
before the next iteration.

Termination: When the loop terminates, the invariant — usually along
with the reason that the loop terminated — gives us a useful property
that helps show that the algorithm is correct.




The difficulty is often to come up with the right loop invariant

INSERTION-SORT (A, 1)
for j =2ton
key = A[]]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—-1
whileji > 0and A[i] > key
Ali + 1] = Ali]
i=i-1
Ali 4+ 1] = key

. . Linear-Search (A,v)
Loop invariant: 1 for i ¢ 1 to length(A)
i] =.v then
At the start @f each pg[é]@;,l(;n of the “outer” for loop — the loop
indexed by j+ theeswimar¥aky A[l..., j — 1] consists of the elements

originally in A[1,...,j — 1] but in sorted order.
Loop invariant:

At the start of each iteration of the for loop we have A[j] # v for all
Jj<i.



Random-access machine (RAM) model
> Instructions are executed one after another

» Simplification basic instructions take constant (O(1)) time

> Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
> Data movement: load, store, copy.
> Control: conditional/unconditional branch, subroutine call and return

Running time: on a particular input, it is the number of primitive
operations (steps) executed

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Order of growth: Focus on the important features
» Drop lower-order terms

> lIgnore the constant coefficient in the leading term



Recall Last Lecture: Analysis of insertion sort

number of times

line executed
INSERTION-SORT (A, 1) cost times based| on the
for j = 2ton o n value of j
key = A[j] ¢ n—1
// Insert A[J] into the sorted sequence A[l..j —1]. 0 n—1
i=j—1 e n—1
whilei > 0 and A[i] > key s Y @
Al +1] = A[i] 6 Yot —1)
i=i-1 ez YL@ -1
Ali + 1] = key cg n—1

Worst case: The array is in reverse sorted

T(n=ante(n—1)+aln-1)+ Csw
et )™= 1) = o(m?)

2
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DIVIDE-AND-CONQUER

Merge Sort
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Divide-and-Conquer

Powerful algorithmic approach:

recursively divide problem into smaller subproblems
Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Combine the subproblem solutions to give a solution to the original
problem
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

|5247|<—JK>1326

l

|z e
—

1 2 2 3 45 6 7|
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To sort Alp...r]:

Divide by splitting into two subarrays A[p...q] and
Alg+1,...,r], where g is the halfway point of Alp...r]

Conquer by recursively sorting the two subarrays A[p...q] and
Alg+1,...r]

Combine by merging the two sorted subarrays Alp...q] and
Alg+1,...,r] to produce a singe sorted
subarray Alp...r]

MERGE-SORT(A4, p,r)

ifp<r // check for base case
q=|(p+r)/2] // divide
MERGE-SORT(4, p, q) // conquer
MERGE-SORT(4,g9 + 1,1) // conquer
MERGE(A, p,q,r) // combine
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What remains is the MERGE procedure to solve the “merge” problem:

Definition

INPUT: Array A and indices p < g < r such that subarrays
Alp...q],Alg+1...r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in Alp...r].

Example:
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MERGE-SORT(4, p, 1)
ifp<r
q=1[(p+r)/2]

MERGE-SORT(A4, p, q)
MERGE-SORT(A4,q + 1,7)
MERGE(A4, p,q,1)

Assuming that the implementation of the MERGE procedure is correct,
MERGE-SORT (A, p,r) correctly sorts the numbers in Alp...r]

Proof by inductionon n=r —p
Base case n = 0: In this case r = p so A[p...r] is trivially sorted.
Inductive case: Assume statement true Vn € {0,1,...,k — 1} and prove the statement for n = k.

> By induction hypothesis MERGE-SORT(A, p, q) and
MERGE-SORT(A, g+1, r) successfully sort the two subarrays.

» Therefore a correct merge procedure will successfully sort Alp...q]
as required.




|dea behind linear-time merging

Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging

Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

> There are < n basic steps, since each basic step removes one card
from the input piles, and we started with n cards in the input pile

> Therefore the procedure should take 6(n) time
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value co

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

L{|2]2]/3||4]|]/5]|/6]|7

oRdn
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. . MERGE(A4, p,q,T1)
Merging Algorithm o

n,=r—gq
let L[1..ny + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + Jj]
Lin,+1] =00
Rln, + 1] = o0
i=1
ji=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alpl Alql Alrl i=i41
else A[k] = R[j]
Al2|2|83|3|4|83|8|8 j=j+1
MERGE(A4, p,q.r)

kK k k k k Kk k k m=q-p+l
np, =r—q

let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

Lli]=A4 i —1
Ll2|als|7]co|R|[1]2]3]6 p P5gr*

R[j] = Alg + j]

A A A A A A A A A Lin +1] = 0o
P i i d i !

Rny +1] = o0
i=1
ji=1

fork = ptor
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. . MERGE(A, p,q,T1)
Merging Algorithm R

n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lii]=Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Ln;+1] =
Rln,+1] = o0
> Runtime analysis? i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = Ll[i]
i=i+1
else A[k] = R[]
J=Jj+1
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Use a recurrence equation to describe the running time:

>

»

Let T(n) = “running time on a problem of size n"

If nis small enough say n < ¢ for some constant ¢ then
T(n) = 6(1) (by brute force)

Otherwise, suppose we divide into a sub problems each of size n/b.

Let D(n) be the time to divide and let C(n) the time to combine
solutions.

We get the recurrence

T(n) = O(1) if n<c,
= aT(n/b)+ D(n) + C(n) otherwise.



Analysis of Merge Sort

MERGE-SORT(A, p,1)

ifp<r // check for base case
q=l(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,1) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Combine: Merge on an n-element subarray takes ©(n) time

= C(n) = ©(n).
Recurrence for merge sort running time is
T(n) = o(1) if n= I.l,
2T(n/2)+©(n) otherwise.
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worst-case running time in-place
Insertion Sort o(n?) YES
Merge Sort O(nlogn) NO

> A sorting algorithm is in-place if the numbers are rearranged within
the array (while using at most a constant amount of additional space)

> Insertion sort is incremental: having sorted the subarray A[l...j — 1], we

inserted the single element A[j] into its proper place, yielding the sorted
subarray A[1...j].

> Merge sort is divide-and-conquer: break the problem into smaller

subproblems and then combine the solutions to the subproblems



SOLVING RECURRENCES

nnnnnnnnn

INDUCTION
INDUCTION
INDUCTION
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Analysing Recurrences

As an example, we shall consider the following recurrence

c if n=1,

T(n) =
(n) 2T(n/2)+ c-n otherwise.

Note that this recurrence upper bounds and lower bounds the recurrence for
MERGE-SORT by selecting c sufficiently large and small, respectively.
We shall solve recurrences by using three techniques:

> The substitution method

> Recursion trees

» Master method
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The substitution method

> Guess the form of the solution

» Use mathematical induction to find the constants and show that
the solution works.

T(n)=2T(n/2)+c-n

A qualified guess is that T(n) = ©(nlog n)
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The substitution method: proof of guess

Upper bound

There exists a constant a > 0 such that T(n) < a- nlogn for all n > 2

Proof by induction on n

Base cases: For any constant n € {2,3,4}, T(n) has a constant value,
selecting a larger than this value will satisfy the base cases when
ne{2,3,4}.

Inductive step: Assume statement true Vn € {2,3,..., k — 1} and prove the statement for n = k.

T(n)=2T(n/2)+cn

We can thus select a to be a positive constant so that both the base

cases and the inductive step holds. Hence, T(n) = O(nlog n)
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The substitution method: proof of guess

Lower bound
There exists a constant b > 0 such that T(n) > b- nlogn for all n >0

Proof by induction on n

Base case: For n=1, T(n) = c and b- nlogn =0 so the base case is
satisfied for any b.

Inductive Step: Assume statement true Vn € {0,1,..., k — 1} and prove the statement for n = k.

T(n)=2T(n/2)+cn

We can thus select b to be a positive constant so that both the base
cases and the inductive step holds. Hence, T(n) = Q(nlogn)
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Common mistake using the substitution method

Be careful when using asymptotic notation!

The false proof for the recurrence T(n) = 4T(n/4) + n, that
T(n) = O(n):

T(n) <4(c(n/4))+n
<cn+n=0(n) wrong!

Because we haven't proven the exact form of our inductive hypothesis
(which is that T(n) < cn), this proof is false
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Recursion trees

Another way to generate a guess. Then verify by substitution method.

> Each node corresponds to the cost of a subproblem

» We sum the costs within each level of the tree to obtain a set of
per-level costs,

> then we sum all the per-level costs to determine the total cost of all
levels of the recursion.
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Our favorite example: T(1) = c and T(n) =2T(n/2) +cn

cn

cn

cn

cn

T(1) T(Q) T() T(A) TQ) TQ) TQ) T(Q) TQ) T(Q) TA) TQ) TQ) TA) T(Q) T(Q)

+

2~

2|og2(n) =n

O(nlogn)

Qualified guess: T(n) = cnlog, n
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Recursion trees

Another interesting example: T(n) = T(n/3)+ T(2n/3) +cn

/ cn \ ch
cn/3 c2n/3 cn
VRN VRN
cn/9 c2n/9 c2n/9 c4n/9 cn
leftmost branch peters rightmost branch peters
out after logz n levels out after Iog3/2 n levels

> There are logz n full levels and after logs, n levels the problem size
is down to 1.

> Each level contributes = cn
Qualified guess: exist positive constants a, b so that
a-nlogz(n) < T(n) < b-nlogy,, n= T(n)=0O(nlogn)

Lecture 3, 25.02.2025



Used to black-box solve recurrences of the form T(n) = aT(n/b) + f(n)

Let a> 1 and b > 1 be constants, let T(n) be defined on the nonnegative integers by
the recurrence

T(n) = aT(n/b) + f(n).
Then, T(n) has the following asymptotic bounds
If f(n) = O(n'°82=<) for some constant € > 0, then T(n) = ©(n'°¢s2)
If f(n) = ©(n'°8b2), then T(n) = ©(n'°%? log n)

If f(n) = Q(n'°8b3*€) for some constant ¢ > 0, and if a- f(n/b) < c - f(n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n))

Our favorite example: T(1) =c and T(n) =2T(n/2) + cn
f(n) = O(n) and a= b =2 so log,(a) = 1 and f(n) = O(n'°es(2)).
By Master theorem, we have T(n) = ©(nlogn) :)

XE



v

Divide-and-conquer simple but powerful algorithmic paradigm

v

Solving the recurrence for merge sort shows that it runs in time
©(nlogn), i.e., much faster than Insertion sort for large instances

v

For small instances insertion sort can still be faster

v

Solving recurrences fun but delicate
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