Algorithms: Sorting + (Time) Analysis

Alessandro Chiesa, Ola Svensson

=PrL

School of Computer and Communication Sciences

Lecture 2, 19.02.2025



Recall Last Lecture

» (CS-250: A lot of interesting and useful material!

Lecture 2, 19.02.2025



Recall Last Lecture

» (CS-250: A lot of interesting and useful material!

> A computational problem is defined by an input/output relationship

Lecture 2, 19.02.2025



Recall Last Lecture

» (CS-250: A lot of interesting and useful material!

> A computational problem is defined by an input/output relationship
> Example: INPUT: n OUTPUT: "7 i

Lecture 2, 19.02.2025



Recall Last Lecture

> (S-250: A lot of interesting and useful material!

> A computational problem is defined by an input/output relationship
> Example: INPUT: n OUTPUT: "7 i

> An algorithm describes a specific computational procedure for
achieving that input/output relationship

Lecture 2, 19.02.2025



Recall Last Lecture

» (CS-250: A lot of interesting and useful material!

> A computational problem is defined by an input/output relationship
> Example: INPUT: n OUTPUT: "7 i

> An algorithm describes a specific computational procedure for
achieving that input/output relationship

> Example: return n(n+1)/2

» "Time + Space” is crucial for the usefulness of an algorithm
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The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

A (1000log, n ms) B (2n% ms) C (2" ms)
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The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

A (1000log, n ms) B (2n% ms) C (2" ms)
n=2 ls 8 ms 4 ms
n=4 2s 32 ms 16 ms
n=38 3s 128 ms 256 ms
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The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

A (1000log, n ms) B (2n% ms) C (2" ms)
n=2 ls 8 ms 4 ms
n=4 2s 32 ms 16 ms
n=38 3s 128 ms 256 ms
n=16 4s 512 ms 1 m 5s 536 ms
n=32 5s 2 s 48 ms = 49 days 18h
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The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

A (1000log, n ms) B (2n% ms) C (2" ms)
n=2 ls 8 ms 4 ms
n=4 2s 32 ms 16 ms
n=38 3s 128 ms 256 ms
n=16 4s 512 ms 1 m 5s 536 ms
n=32 5s 2 s 48 ms = 49 days 18h
n=64 6s 85192 ms > age of the universe
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The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.
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SORTING

Insertion Sort
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The sorting problem

Definition

INPUT: A sequence of n numbers (a;, ap, ..., a,).

OUTPUT: A permutation (reordering) (a{, a5, ..., a,) of the input
sequence such that a] < a) <-.- < a/.
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The sorting problem

Definition

INPUT: A sequence of n numbers (a;, ap, ..., a,).

OUTPUT: A permutation (reordering) (a{, a5, ..., a,) of the input
sequence such that a] < a) <-.- < a/.

For example

> Given the input (5,2,4,6,1,3)

> a correct output is (1,2,3,4,5,6)
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Insertion Sort - The ldea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table
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> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

25 8[w0] |

Lecture 2, 19.02.2025



Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.
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Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
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—

258101.

Lecture 2, 19.02.2025



Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

1]2]5]8]10]
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Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

> At all times, the cards, held in the left hand are sorted, and these
cards were originally the top cards of the pile on the table

112]3|5]8]10
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Insertion Sort

The Algorithm

> Takes as parameters an array A[1l...n] and the length n of the array

INSERTION-SORT (A, n)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[L .. j — 1].
i=j-1
whileji > 0and A[i] > key
Ali +1] = Ali]
i=i—-1

Ali +1] = key
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INSERTION-SORT (A, 1)

- for j =2ton

Insertion Sort i = 4
// Insert A[j] into the sorted sequence A[1..j —1].

Example on (8,2,5,10,1, 3) i=j-1

while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i-—1

Ali + 1] = key
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INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i-1

Ali +1] = key

Insertion Sort

A:1215|8[10[1]3

And so on...
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PROVING ALGORITHMS CORRECT

Loop invariants
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INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
i=j—1
whilcii > 0 and A[i] > key
Ali +1] = A[i]
i=i-1

Ali +1] = key

Insertion Sort
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INSERTION-SORT (A, 1)
. for j =2ton
Insertion Sort v = A1)
// Insert A[j] into the sorted sequence A[1..j —1].

i=j—-1

while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i-1

Ali + 1] = key

Loop invariant:
At the start of each iteration of the “outer” for loop — the loop

indexed by j— the subarrary A[l...,j— 1] consists of the elements
originally in A[1,...,j — 1] but in sorted order.
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INSERTION-SORT (A, 1)

for j =2ton
key = A[j]

// Insert A[j] into the sorted sequence A[l .. j —1].
i=j—1
while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i—-1
Ali + 1] = key

Loop invariant:
At the start of each iteration of the “outer” for loop — the loop
indexed by j— the subarrary A[l...,j — 1] consists of the elements
originally in A[1,...,j — 1] but in sorted order.

Need to verify:
> Initialization: It is true prior to the first iteration of the loop.



INSERTION-SORT (A, 1)

for j =2ton
key = A[j]

// Insert A[j] into the sorted sequence A[l .. j —1].
i=j—1
while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i—-1
Ali + 1] = key

Loop invariant:
At the start of each iteration of the “outer” for loop — the loop
indexed by j— the subarrary A[l...,j — 1] consists of the elements
originally in A[1,...,j — 1] but in sorted order.

Need to verify:
> Initialization: It is true prior to the first iteration of the loop.
» Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.



INSERTION-SORT (A, )

for j =2ton
key = A[j]

// Insert A[j] into the sorted sequence A[l .. j —1].
i=j-1
while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i—-1
Ali + 1] = key

Loop invariant:
At the start of each iteration of the “outer” for loop — the loop
indexed by j— the subarrary A[l...,j — 1] consists of the elements
originally in A[1,...,j — 1] but in sorted order.

Need to verify:
> Initialization: It is true prior to the first iteration of the loop.
» Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.
» Termination: When the loop terminates, the invariant — usually
along with the reason that the loop terminated — gives us a useful
property that helps show that the algorithm is correct.



INSERTION-SORT (A, 1)

for j =2ton
key = A[j]

// Insert A[j] into the sorted sequence A[l .. j —1].
i=j—-1
whilej i > 0and A[i] > key
Ali + 1] = A[1)
i=i-1
Ali + 1] = key
Loop invariant:
At the start of each iteration of the “outer” for loop — the loop
indexed by j— the subarrary A[l...,j — 1] consists of the elements

originally in A[1,...,j — 1] but in sorted order.

Similar to induction
Need to verify:

> Initialization: It is true prior to the first iteration of the loop.

» Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.

» Termination: When the loop terminates, the invariant — usually
along with the reason that the loop terminated — gives us a useful
property that helps show that the algorithm is correct.




INSERTION-SORT (A, 1)

I . S for j = 2ton
nsertion Sort key = Alj]
// Insert A[j] into the sorted sequence A[l..j —1].
P i=j—1
loop indexed by j— the subarrary A[1. .., — 1] consists of ! . J .
the elements originally in A[1, ..., j — 1] but in sorted order. while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i-1
Initialization Ali + 1] = key

> Before the first iteration of the loop we have j = 2.
> The subarray A[l...j — 1], therefore, consists of just the single element A[1]

> This is the original element in A[1] and trivially sorted
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INSERTION-SORT (A, 1)

I . S for j = 2ton
nsertion Sort key = Alj]
// Insert A[j] into the sorted sequence A[l .. j —1].
L i=j—1
loop indexed by j— the subarrary A[1. .., — 1] consists of ! . J .
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> Assume invariant holds at the beginning of the iteration when j = k, i.e., for
All...k—1]
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key = A[j]
// Insert A[j] into the sorted sequence A[l .. j —1].
e start of each iteration of the “outer oop = the [
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Maintenance: Ali +11 = key

> Assume invariant holds at the beginning of the iteration when j = k, i.e., for
All...k—1]

> The body of the for loop works by moving A[k — 1], A[k — 2] and so on one
step to the right until it finds the proper position for A[k], at which point it
inserts the value of A[k]



INSERTION-SORT (A, 1)

I . S for j = 2ton
nsertion Sort ey = ALj)
// Insert A[j] into the sorted sequence A[l .. j —1].
€'start of ea P
loop indexed by j— the subarrary A[1. .., — 1] consists of ! . J .
the elements originally in A[1, ..., j — 1] but in sorted order. while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i-1
Maintenance: Alf + 17 = key

> Assume invariant holds at the beginning of the iteration when j = k, i.e., for
All...k—1]

> The body of the for loop works by moving A[k — 1], A[k — 2] and so on one
step to the right until it finds the proper position for A[k], at which point it
inserts the value of A[k]

1 s k

P s is largest index in {1,...,k—1}
' such that A[s] < A[j] = A[k]
A“ or 0 if no such index exists

Before:

After:
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INSERTION-SORT (A, n)

for j =2ton
key = A[j]
— // Insert A[j] into the sorted sequence A[1..j —1].
. . . . i =j—1

loop indexed by j— the subarrary A[1. .., — 1] consists of ! . J ) .
the elements originally in A[1, ..., j — 1] but in sorted order. while i > 0 and A[i] > key

Ali + 1] = Ali]

i=i-1
Maintenance: Ali +11 = key

> Assume invariant holds at the beginning of the iteration when j = k, i.e., for
All...k—1]

> The body of the for loop works by moving A[k — 1], A[k — 2] and so on one
step to the right until it finds the proper position for A[k], at which point it
inserts the value of A[k]

1 s
Before: o s is largest index in {1,...,k—1}

\
' such that A[s] < A[j] = A[k]
4“ or 0 if no such index exists

After: s

> The subarray A[l... k] then consists of the elements originally in A[1...k] in a
sorted order. Incrementing j (to k + 1) for the next iteration of the for loop
then preserves the loop invariant :)



INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—1
while i > 0 and A[i] > key

Insertion Sort

loop indexed by j— the subarrary A[1. .., — 1] consists of

the elements originally in A[1, ..., j — 1] but in sorted order. Al 1] = A
i=i—-1
Termination Ali +1] = key

> The condition of the for loop to terminate is that j > n
> Hence, j = n+ 1 when loop terminates

> The loop invariant then implies that A[1... n] contain the original elements in
sorted order
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INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l .. j —1].
i=j—1
while i > 0 and A[i] > key

Insertion Sort

loop indexed by j— the subarrary A[1. .., — 1] consists of

the elements originally in A[1, ..., j — 1] but in sorted order. Al 1] = AL
i=i—-1
Termination Ali +1] = key

> The condition of the for loop to terminate is that j > n
> Hence, j = n+ 1 when loop terminates

> The loop invariant then implies that A[1... n] contain the original elements in
sorted order
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ANALYZING ALGORITHMS
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We want to predict the resources that the algorithm requires. Usually,
running time.

For that we need a computational model

Random-access machine (RAM) model

> Instructions are executed one after another

» Simplification basic instructions take constant (O(1)) time

> Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
> Data movement: load, store, copy.

> Control: conditional/unconditional branch, subroutine call and return

» We don't worry about precision, although it is crucial in certain
numerical applications



Analyzing an algorithm’s running time (1/2)

Time it takes depend on the input

> Sorting 1000 numbers take longer than sorting 3 numbers
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Analyzing an algorithm’s running time (1/2)

Time it takes depend on the input

> Sorting 1000 numbers take longer than sorting 3 numbers

> A given sorting algorithm may even take different amounts of time
on two inputs of the same size
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Analyzing an algorithm'’s running time (1/2)

Time it takes depend on the input

> Sorting 1000 numbers take longer than sorting 3 numbers

> A given sorting algorithm may even take different amounts of time
on two inputs of the same size

Input size: depends on the problem being studied

> Usually, the number of items in the input. Like the size n of the
array being sorted
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Analyzing an algorithm'’s running time (1/2)

Time it takes depend on the input

> Sorting 1000 numbers take longer than sorting 3 numbers

> A given sorting algorithm may even take different amounts of time
on two inputs of the same size

Input size: depends on the problem being studied

> Usually, the number of items in the input. Like the size n of the
array being sorted

> If multiplying two integers, could be the total number of bits in the
two integers
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Time it takes depend on the input
» Sorting 1000 numbers take longer than sorting 3 numbers
> A given sorting algorithm may even take different amounts of time
on two inputs of the same size
Input size: depends on the problem being studied

» Usually, the number of items in the input. Like the size n of the
array being sorted

> If multiplying two integers, could be the total number of bits in the
two integers

» Could be described by more than one number: e.g. graph algorithm
running times are usually expressed in terms of the number of
vertices and the number of edges in the input graph.



Analyzing an algorithm’s running time (2/2)

Running time: on a particular input, it is the number of primitive
operations (steps) executed
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Analyzing an algorithm’s running time (2/2)

Running time: on a particular input, it is the number of primitive
operations (steps) executed

> Figure that each line of pseudocode requires a constant amount of
time
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Analyzing an algorithm'’s running time (2/2)

Running time: on a particular input, it is the number of primitive
operations (steps) executed

> Figure that each line of pseudocode requires a constant amount of
time

> One line may take a different amount of time than another, but
each execution of line i takes the same amount of time ¢;
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Running time: on a particular input, it is the number of primitive
operations (steps) executed

> Figure that each line of pseudocode requires a constant amount of
time

> One line may take a different amount of time than another, but
each execution of line i takes the same amount of time ¢;

> This is assuming that the line consists only of primitive operations

> |If the line is a subroutine call, then the actual call takes constant time,

but the execution of the subroutine might not

> If the line specifies operations other than primitive ones, then it might
take more than constant time. Example: “sort the points by
x-coordinate”



Analysis of insertion sort

INSERTION-SORT(A, n)
for j =2ton
key = A[]]
// Tnsert A[j] into the sorted sequence A[l .. j — 1].
i=j—1
whilgi > 0and A[i] > key
Ali +1] = A[i]
i=i-1

Ali + 1] = key
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Analysis of insertion sort

INSERTION-SORT(A, n) cost times
for j =2ton ¢ n
key = A[j] ¢ n—1
// Tnsert A[j] into the sorted sequence A[l..j —1]. 0 n—1
i=j—1 cg n—1
while i > 0 and A[i] > key e Yol
Ali +1] = A[i] 6 Y=
i=1i-1 c7 Z;’l=2(tj - 1)
Ali + 1] = key cg n—1
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Analysis of insertion sort

number of times

INSERTION-SORT(A, n)
for j =2ton

key = A[j]
// Tnsert A[j] into the sorted sequence A[l..; —1].
i=j—-1
whilgi > 0and A[i] > key
Ali +1] = A[i]
i=i-1
Ali + 1] = key

line
cost times  based
o n value
Ca n—1
0 n—1 /
cg n—1
Cs Z;-'= @
Ce Z;'=2(tj -1
7 Z;'l=2(tj -1
cg n—1

executed
on the
of j
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Analysis of insertion sort

number of times

line executed
INSERTION-SORT(A, n) cost times based] on the
for j =2ton o n value pof j

key = A[j] © n-1
// Tnsert A[j] into the sorted sequence A[l..j —1]. 0 n—1

i=j—-1 cg n—1

while i > 0 and A[i] > key s Y @
Ali + 1] = A[i] Ce Z;;z(tj -1
i=i-1 e Yt =1D

Ali + 1] = key cg n—1

Best case: The array is already sorted
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Analysis of insertion sort

number of times

line executed
INSERTION-SORT(A4, n) cost times based| on the
for j =2ton ¢ n value of j
key = A[j] ¢ n—1
// Tnsert A[j] into the sorted sequence A[l..j —1]. 0 n—1
i=j—1 cg n—1
while i > 0 and A[i] > key s Z;;@
Ali +1] = A[i] 6 D=t —1)
i=i-1 Cc7 Z;’l=2(tj - 1)
Ali + 1] = key cg n—1

Best case: The array is already sorted

T(n)=can+an—1)4+a(ln—1)+c(n—1)+ cg(n—1) = O(n)
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Analysis of insertion sort

number of times

line executed
INSERTION-SORT(A, n) cost times based] on the
for j =2ton o n value pof j

key = A[j] © n-1
// Tnsert A[j] into the sorted sequence A[l..j —1]. 0 n—1

i=j—-1 cg n—1

while i > 0 and A[i] > key s Y @
Ali + 1] = A[i] Ce Z;;z(tj -1
i=i-1 e Yt =1D

Ali + 1] = key cg n—1

Worst case: The array is in reverse sorted
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Analysis of insertion sort

number of times

line executed
INSERTION-SORT(A, n) cost times based] on the
for j =2ton ¢ n value of j
key = A[j] © n-1
// Tnsert A[j] into the sorted sequence A[l..j —1]. 0 n—1
i=j—1 cg n—1
while i > 0 and A[i] > key s Z;;@
Ali +1] = A[i] ¢ Xj,t—1)
i=i—1 ¢ Yiati=1)
Ali + 1] = key cg n—1
Worst case: The array is in reverse sorted
n(n+1)—2
T(n)=an+ca(n—1)+c(n—1)+ q%

+ (e + C7)M +ea(n—1)= @(n2)

2
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A note on Worst-case analysis

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n
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A note on Worst-case analysis

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Reasons:

> Gives a guaranteed upper bound on the running time for any input
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A note on Worst-case analysis

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Reasons:

> Gives a guaranteed upper bound on the running time for any input

> For some algorithms, the worst case occurs often. For example, when
searching, the worst case often occurs when the item being searched for is not
present
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We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Reasons:
> Gives a guaranteed upper bound on the running time for any input
> For some algorithms, the worst case occurs often. For example, when

searching, the worst case often occurs when the item being searched for is not

present
> Average case often as bad as worst-case: Suppose that we
randomly choose n numbers as the input to insertion sort
Order of growth: Focus on the important features
» Drop lower-order terms

> lIgnore the constant coefficient in the leading term



Intercultural Computer

S0l el a2l a3 ale) ais) al6) a7 a18) alo]

hbrindi)

,b8] bi9]

Merge-sort with Transyivanian-saxon (German) folk dance

AlgoRythmics - 5
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Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems
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Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems
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Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem
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Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force
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Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Combine the subproblem solutions to give a solution to the original
problem
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

NN 7|~%Mm
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

RN 7|~%Mm
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

|5247|<—%&»1326
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

5 2 7|<—J&»1326

4
A
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

5 2 7|<—J&»1326

4
A A
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

5 2 7|<—J&»1326

4
A A A
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

5 2
|sz47|~%M

JL A A
o ARG

4 7 1 3 2 6]
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)
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To sort A[p...r]:

Divide by splitting into two subarrays A[p...q] and
Alg+1,...,r], where g is the halfway point of Alp...r]

Conquer by recursively sorting the two subarrays Alp...q] and
Alg+1,...r]

Combine by merging the two sorted subarrays A[p...q] and
Alg+1,...,r] to produce a singe sorted
subarray Alp...r]
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To sort A[p...r]:

Divide by splitting into two subarrays A[p...q] and
Alg+1,...,r], where g is the halfway point of Alp...r]

Conquer by recursively sorting the two subarrays Alp...q] and
Alg+1,...r]

Combine by merging the two sorted subarrays A[p...q] and
Alg+1,...,r] to produce a singe sorted
subarray Alp...r]

MERGE-SORT(4, p, 1)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,1) // combine
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What remains is the Merge procedure to solve the “merge” problem:

Definition

INPUT: Array A and indices p < g < r such that subarrays
Alp...ql,Alg+1...r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in A[p...r].

We will give a procedure that solves this problem in time ©(n) where n is
the size of the subproblem, i.e.,

n=r—p+1
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|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging
Think of two pile of cards that are placed face up
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|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

> There are < n basic steps, since each basic step removes one card
from the input piles, and we started with n cards in the input pile

> Therefore the procedure should take 6(n) time
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)
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Implementation Simplification
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> Put in the bottom of each input pile a special sentinel card of
value oo
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> Put in the bottom of each input pile a special sentinel card of
value oo
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

6
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

;
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 2, 19.02.2025



Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

L2123 ||4]/5]|/6]|7

o] © [
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MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[ny +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
j=ij+1

Alpl Aldl Alr]
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MERGE(A, p.q,T1)
Merging Algorithm ottt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin;+1] = o
Ry + 1] = o0
i=1
j=1
fork = ptor

if L[i] < R[]

Alk] = L[i]
i=i+1

else A[k] = R[/]

J=Jj+1

Alp] Ald] Alr]
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Merging Algorithm ittt
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fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
J=Jj+1

Alp] Ald] Alr]
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MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Al[p+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin, +1] = o0
Rln, + 1] = o0
i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
i=i+1
else A[k] = R[]
J=Jj+1

Alp] Ald] Alr]
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Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n, =r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lil=Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lln; + 1] = oo
Ry +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
i=i+1
else A[k] = R[]
J=Jj+1
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Merging Algorithm

MERGE(A4, p,q.r)
n=qg-p+1
n, =r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lli] = Alp+i—1]

for j = 1ton,
R[j] = Alg + j]
Ln, +1] = ©
R[n, + 1] = o0
i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = LI[i]
Alp] Ald] Alr] else i«l[?]l:llilj ]
Al 2 7 6 —
A
k
Li{2]a 00 3 o0
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Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1
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for j = 1ton,
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Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
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j=Jj+1
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MERGE(A, p,q,r)
Merging Algorithm mogTrtl
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lii]=Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Ln;+1] =
R[ny +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
J=Jj+1

> Runtime analysis?
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MERGE(A, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] = o0
R[n, +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
J=Jj+l1

> Runtime analysis?

Merge runs in time ©(n) where n is the number of elements in the
subarray, i.e.,
n=r—p+1
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Analyzing divide-and-conquer algorithms
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Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:

> Let T(n) = “running time on a problem of size n"
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> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)
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Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

> Otherwise, suppose we divide into a sub problems each of size n/b.

> Let D(n) be the time to divide and let C(n) the time to combine
solutions.

> We get the recurrence

{@(1) if n<c,

T(n) = aT(n/b)+ D(n) + C(n) otherwise.
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Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine
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MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)
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q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
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Lecture 2, 19.02.2025



Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case

q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(4, p,q,r) // combine
Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size

n/2=2T(n/2).
Combine: Merge on an n-element subarray takes ©(n) time
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Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Combine: Merge on an n-element subarray takes ©(n) time

= C(n) = ©(n).
Recurrence for merge sort running time is
T(n) = o(1) if n= %,
2T(n/2) +©(n) otherwise.
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> Solving the recurrence for merge sort shows that it runs in time
©(nlog n), i.e., much faster than Insertion sort for large instances
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Summary

> Solving the recurrence for merge sort shows that it runs in time
©(nlog n), i.e., much faster than Insertion sort for large instances

» For small instances insertion sort can still be faster

> |nsertion sort is also in place: the numbers are rearranged within
the array (with at most a constant number outside the array at any time)
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Summary

> Solving the recurrence for merge sort shows that it runs in time
©(nlog n), i.e., much faster than Insertion sort for large instances

» For small instances insertion sort can still be faster

> |nsertion sort is also in place: the numbers are rearranged within
the array (with at most a constant number outside the array at any time)

> Merge sort is not in place!
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