Algorithms: Sorting + (Time) Analysis

Alessandro Chiesa, Ola Svensson

=PrL

School of Computer and Communication Sciences

Lecture 2, 19.02.2025

Recall Last Lecture

» (CS-250: A lot of interesting and useful material!

Lecture 2, 19.02.2025

Recall Last Lecture

» (CS-250: A lot of interesting and useful material!

> A computational problem is defined by an input/output relationship

Lecture 2, 19.02.2025

Recall Last Lecture

» (CS-250: A lot of interesting and useful material!

> A computational problem is defined by an input/output relationship
> Example: INPUT: n OUTPUT: "7 i

Lecture 2, 19.02.2025

Recall Last Lecture

> (S-250: A lot of interesting and useful material!

> A computational problem is defined by an input/output relationship
> Example: INPUT: n OUTPUT: "7 i

> An algorithm describes a specific computational procedure for
achieving that input/output relationship

Lecture 2, 19.02.2025

Recall Last Lecture

» (CS-250: A lot of interesting and useful material!

> A computational problem is defined by an input/output relationship
> Example: INPUT: n OUTPUT: "7 i

> An algorithm describes a specific computational procedure for
achieving that input/output relationship

> Example: return n(n+1)/2

» "Time + Space” is crucial for the usefulness of an algorithm

Lecture 2, 19.02.2025

The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

A (1000log, n ms) B (2n% ms) C (2" ms)

Lecture 2, 19.02.2025

The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

A (1000log, n ms) B (2n% ms) C (2" ms)

n=2 1ls 8 ms 4 ms

Lecture 2, 19.02.2025

The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

A (1000log, n ms) B (2n% ms) C (2" ms)
n=2 1ls 8 ms 4 ms
n=4 2s 32 ms 16 ms

Lecture 2, 19.02.2025

The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

A (1000log, n ms) B (2n% ms) C (2" ms)
n=2 ls 8 ms 4 ms
n=4 2s 32 ms 16 ms
n=38 3s 128 ms 256 ms

Lecture 2, 19.02.2025

The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

A (1000log, n ms) B (2n% ms) C (2" ms)
n=2 ls 8 ms 4 ms
n=4 2s 32 ms 16 ms
n=38 3s 128 ms 256 ms
n=16 4s 512 ms 1 m 5s 536 ms

Lecture 2, 19.02.2025

The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

A (1000log, n ms) B (2n% ms) C (2" ms)
n=2 ls 8 ms 4 ms
n=4 2s 32 ms 16 ms
n=38 3s 128 ms 256 ms
n=16 4s 512 ms 1 m 5s 536 ms
n=32 5s 2 s 48 ms = 49 days 18h

Lecture 2, 19.02.2025

The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

A (1000log, n ms) B (2n% ms) C (2" ms)
n=2 ls 8 ms 4 ms
n=4 2s 32 ms 16 ms
n=38 3s 128 ms 256 ms
n=16 4s 512 ms 1 m 5s 536 ms
n=32 5s 2 s 48 ms = 49 days 18h
n=64 6s 85192 ms > age of the universe

Lecture 2, 19.02.2025

The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

60,000 | — 2x2
—— 1000 log,(x)
. ox
40,000 +
20,000 |
0 % : :
50 100 150

Lecture 2, 19.02.2025

SORTING

Insertion Sort

Lecture 2, 19.02.2025

The sorting problem

Definition

INPUT: A sequence of n numbers (a;, ap, ..., a,).

OUTPUT: A permutation (reordering) (a{, a5, ..., a,) of the input
sequence such that a] < a) <-.- < a/.

Lecture 2, 19.02.2025

The sorting problem

Definition

INPUT: A sequence of n numbers (a;, ap, ..., a,).

OUTPUT: A permutation (reordering) (a{, a5, ..., a,) of the input
sequence such that a] < a) <-.- < a/.

For example

> Given the input (5,2,4,6,1,3)

Lecture 2, 19.02.2025

The sorting problem

Definition

INPUT: A sequence of n numbers (a;, ap, ..., a,).

OUTPUT: A permutation (reordering) (a{, a5, ..., a,) of the input
sequence such that a] < a) <-.- < a/.

For example

> Given the input (5,2,4,6,1,3)

> a correct output is (1,2,3,4,5,6)

Lecture 2, 19.02.2025

Insertion Sort - The ldea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

¢ [

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

o2

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

m

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

25 8[w0] |

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

258101.

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

—

258101.

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

1]2]5]8]10]

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

Lecture 2, 19.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

> At all times, the cards, held in the left hand are sorted, and these
cards were originally the top cards of the pile on the table

112]3|5]8]10

Lecture 2, 19.02.2025

Insertion Sort

The Algorithm

> Takes as parameters an array A[1l...n] and the length n of the array

INSERTION-SORT (A, n)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[L .. j — 1].
i=j-1
whileji > 0and A[i] > key
Ali +1] = Ali]
i=i—-1

Ali +1] = key

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)

- for j =2ton

Insertion Sort i = 4
// Insert A[j] into the sorted sequence A[1..j —1].

Example on (8,2,5,10,1, 3) i=j-1

while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i-—1

Ali + 1] = key

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i—-1

Ali + 1] = key

Insertion Sort

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)

Insertion Sort

key = A[]]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i-1

Ali + 1] = key

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while /i > 0 and A[i] > key
Ali + 1] = A[i]
i=i-1

Ali + 1] = key

Insertion Sort

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) ivh——ﬂgi;loan“[i] -
Ali + 1] = A[i]
i=i-1

Ali + 1] = key

Insertion Sort

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while i > 0 and A[i] > key
Al + 1] = A[i]
i=i-1

Ali + 1] = key

Insertion Sort

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i—-1

Ali + 1] = key

Insertion Sort

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) ivh——ﬂgi;loan“[i] -
Ali + 1] = A[i]
i=i-1

Ali + 1] = key

Insertion Sort

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i-1

Ali +1] = key

Insertion Sort

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i—-1

Ali + 1] = key

Insertion Sort

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)

Insertion Sort

key = A[]]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i-1

Ali + 1] = key

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while /i > 0 and A[i] > key
Ali + 1] = A[i]
i=i-1

Ali + 1] = key

Insertion Sort

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) ivh——ﬂgi;loan“[i] -
Ali + 1] = A[i]

Insertion Sort

i=i-1

Ali + 1] = key

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while i > 0 and A[i] > key
Al + 1] = A[i]
i=i-1

Ali + 1] = key

Insertion Sort

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i—-1

Ali + 1] = key

Insertion Sort

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) ivh——ﬂgi;loan“[i] -
Ali + 1] = A[i]

Insertion Sort

i=i-1

Ali + 1] = key

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
Example on (8,2,5,10,1, 3) i=j-1 .
while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i-1

Ali +1] = key

Insertion Sort

A:1215|8[10[1]3

And so on...

Lecture 2, 19.02.2025

PROVING ALGORITHMS CORRECT

Loop invariants

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[1..j —1].
i=j—1
whilcii > 0 and A[i] > key
Ali +1] = A[i]
i=i-1

Ali +1] = key

Insertion Sort

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
. for j =2ton
Insertion Sort v = A1)
// Insert A[j] into the sorted sequence A[1..j —1].

i=j—-1

while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i-1

Ali + 1] = key

Loop invariant:
At the start of each iteration of the “outer” for loop — the loop

indexed by j— the subarrary A[l...,j— 1] consists of the elements
originally in A[1,...,j — 1] but in sorted order.

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)

for j =2ton
key = A[j]

// Insert A[j] into the sorted sequence A[l .. j —1].
i=j—1
while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i—-1
Ali + 1] = key

Loop invariant:
At the start of each iteration of the “outer” for loop — the loop
indexed by j— the subarrary A[l...,j — 1] consists of the elements
originally in A[1,...,j — 1] but in sorted order.

Need to verify:
> Initialization: It is true prior to the first iteration of the loop.

INSERTION-SORT (A, 1)

for j =2ton
key = A[j]

// Insert A[j] into the sorted sequence A[l .. j —1].
i=j—1
while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i—-1
Ali + 1] = key

Loop invariant:
At the start of each iteration of the “outer” for loop — the loop
indexed by j— the subarrary A[l...,j — 1] consists of the elements
originally in A[1,...,j — 1] but in sorted order.

Need to verify:
> Initialization: It is true prior to the first iteration of the loop.
» Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.

INSERTION-SORT (A,)

for j =2ton
key = A[j]

// Insert A[j] into the sorted sequence A[l .. j —1].
i=j-1
while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i—-1
Ali + 1] = key

Loop invariant:
At the start of each iteration of the “outer” for loop — the loop
indexed by j— the subarrary A[l...,j — 1] consists of the elements
originally in A[1,...,j — 1] but in sorted order.

Need to verify:
> Initialization: It is true prior to the first iteration of the loop.
» Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.
» Termination: When the loop terminates, the invariant — usually
along with the reason that the loop terminated — gives us a useful
property that helps show that the algorithm is correct.

INSERTION-SORT (A, 1)

for j =2ton
key = A[j]

// Insert A[j] into the sorted sequence A[l .. j —1].
i=j—-1
whilej i > 0and A[i] > key
Ali + 1] = A[1)
i=i-1
Ali + 1] = key
Loop invariant:
At the start of each iteration of the “outer” for loop — the loop
indexed by j— the subarrary A[l...,j — 1] consists of the elements

originally in A[1,...,j — 1] but in sorted order.

Similar to induction
Need to verify:

> Initialization: It is true prior to the first iteration of the loop.

» Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.

» Termination: When the loop terminates, the invariant — usually
along with the reason that the loop terminated — gives us a useful
property that helps show that the algorithm is correct.

INSERTION-SORT (A, 1)

I . S for j = 2ton
nsertion Sort key = Alj]
// Insert A[j] into the sorted sequence A[l..j —1].
P i=j—1
loop indexed by j— the subarrary A[1. .., — 1] consists of ! . J .
the elements originally in A[1, ..., j — 1] but in sorted order. while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i-1
Initialization Ali + 1] = key

> Before the first iteration of the loop we have j = 2.
> The subarray A[l...j — 1], therefore, consists of just the single element A[1]

> This is the original element in A[1] and trivially sorted

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)

I . S for j = 2ton
nsertion Sort ey = ALj)
// Insert A[j] into the sorted sequence A[l..j —1].
P i=j—1
loop indexed by j— the subarrary A[1. .., — 1] consists of ! . J .
the elements originally in A[1, ..., j — 1] but in sorted order. while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i—-1
Initialization Ali + 1] = key

> Before the first iteration of the loop we have j = 2.
> The subarray A[l...j — 1], therefore, consists of just the single element A[1]

> This is the original element in A[1] and trivially sorted

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)

I . S for j = 2ton
nsertion Sort key = Alj]
// Insert A[j] into the sorted sequence A[l .. j —1].
L i=j—1
loop indexed by j— the subarrary A[1. .., — 1] consists of ! . J .
the elements originally in A[1, ..., j — 1] but in sorted order. while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i-1
Maintenance: Ali + 11 = key

> Assume invariant holds at the beginning of the iteration when j = k, i.e., for
All...k—1]

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)

for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l .. j —1].
e start of each iteration of the “outer oop = the [
loop indexed by j— the subarrary A[1. .., — 1] consists of) ’ .
the elements originally in A[1, ... ,j — 1] but in sorted order. while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i—-1
Maintenance: Ali +11 = key

> Assume invariant holds at the beginning of the iteration when j = k, i.e., for
All...k—1]

> The body of the for loop works by moving A[k — 1], A[k — 2] and so on one
step to the right until it finds the proper position for A[k], at which point it
inserts the value of A[k]

INSERTION-SORT (A, 1)

I . S for j = 2ton
nsertion Sort ey = ALj)
// Insert A[j] into the sorted sequence A[l .. j —1].
€'start of ea P
loop indexed by j— the subarrary A[1. .., — 1] consists of ! . J .
the elements originally in A[1, ..., j — 1] but in sorted order. while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i-1
Maintenance: Alf + 17 = key

> Assume invariant holds at the beginning of the iteration when j = k, i.e., for
All...k—1]

> The body of the for loop works by moving A[k — 1], A[k — 2] and so on one
step to the right until it finds the proper position for A[k], at which point it
inserts the value of A[k]

1 s k

P s is largest index in {1,...,k—1}
' such that A[s] < A[j] = A[k]
A“ or 0 if no such index exists

Before:

After:

Lecture 2, 19.02.2025

INSERTION-SORT (A, n)

for j =2ton
key = A[j]
— // Insert A[j] into the sorted sequence A[1..j —1].
. . . . i =j—1

loop indexed by j— the subarrary A[1. .., — 1] consists of ! . J) .
the elements originally in A[1, ..., j — 1] but in sorted order. while i > 0 and A[i] > key

Ali + 1] = Ali]

i=i-1
Maintenance: Ali +11 = key

> Assume invariant holds at the beginning of the iteration when j = k, i.e., for
All...k—1]

> The body of the for loop works by moving A[k — 1], A[k — 2] and so on one
step to the right until it finds the proper position for A[k], at which point it
inserts the value of A[k]

1 s
Before: o s is largest index in {1,...,k—1}

\
' such that A[s] < A[j] = A[k]
4“ or 0 if no such index exists

After: s

> The subarray A[l... k] then consists of the elements originally in A[1...k] in a
sorted order. Incrementing j (to k + 1) for the next iteration of the for loop
then preserves the loop invariant :)

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—1
while i > 0 and A[i] > key

Insertion Sort

loop indexed by j— the subarrary A[1. .., — 1] consists of

the elements originally in A[1, ..., j — 1] but in sorted order. Al 1] = A
i=i—-1
Termination Ali +1] = key

> The condition of the for loop to terminate is that j > n
> Hence, j = n+ 1 when loop terminates

> The loop invariant then implies that A[1... n] contain the original elements in
sorted order

Lecture 2, 19.02.2025

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l .. j —1].
i=j—1
while i > 0 and A[i] > key

Insertion Sort

loop indexed by j— the subarrary A[1. .., — 1] consists of

the elements originally in A[1, ..., j — 1] but in sorted order. Al 1] = AL
i=i—-1
Termination Ali +1] = key

> The condition of the for loop to terminate is that j > n
> Hence, j = n+ 1 when loop terminates

> The loop invariant then implies that A[1... n] contain the original elements in
sorted order

Lecture 2, 19.02.2025

ANALYZING ALGORITHMS

Lecture 2, 19.02.2025

We want to predict the resources that the algorithm requires. Usually,
running time.

For that we need a computational model

Random-access machine (RAM) model

> Instructions are executed one after another

» Simplification basic instructions take constant (O(1)) time

> Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
> Data movement: load, store, copy.

> Control: conditional/unconditional branch, subroutine call and return

» We don't worry about precision, although it is crucial in certain
numerical applications

Analyzing an algorithm’s running time (1/2)

Time it takes depend on the input

> Sorting 1000 numbers take longer than sorting 3 numbers

Lecture 2, 19.02.2025

Analyzing an algorithm’s running time (1/2)

Time it takes depend on the input

> Sorting 1000 numbers take longer than sorting 3 numbers

> A given sorting algorithm may even take different amounts of time
on two inputs of the same size

Lecture 2, 19.02.2025

Analyzing an algorithm'’s running time (1/2)

Time it takes depend on the input

> Sorting 1000 numbers take longer than sorting 3 numbers

> A given sorting algorithm may even take different amounts of time
on two inputs of the same size

Input size: depends on the problem being studied

> Usually, the number of items in the input. Like the size n of the
array being sorted

Lecture 2, 19.02.2025

Analyzing an algorithm'’s running time (1/2)

Time it takes depend on the input

> Sorting 1000 numbers take longer than sorting 3 numbers

> A given sorting algorithm may even take different amounts of time
on two inputs of the same size

Input size: depends on the problem being studied

> Usually, the number of items in the input. Like the size n of the
array being sorted

> If multiplying two integers, could be the total number of bits in the
two integers

Lecture 2, 19.02.2025

Time it takes depend on the input
» Sorting 1000 numbers take longer than sorting 3 numbers
> A given sorting algorithm may even take different amounts of time
on two inputs of the same size
Input size: depends on the problem being studied

» Usually, the number of items in the input. Like the size n of the
array being sorted

> If multiplying two integers, could be the total number of bits in the
two integers

» Could be described by more than one number: e.g. graph algorithm
running times are usually expressed in terms of the number of
vertices and the number of edges in the input graph.

Analyzing an algorithm’s running time (2/2)

Running time: on a particular input, it is the number of primitive
operations (steps) executed

Lecture 2, 19.02.2025

Analyzing an algorithm’s running time (2/2)

Running time: on a particular input, it is the number of primitive
operations (steps) executed

> Figure that each line of pseudocode requires a constant amount of
time

Lecture 2, 19.02.2025

Analyzing an algorithm'’s running time (2/2)

Running time: on a particular input, it is the number of primitive
operations (steps) executed

> Figure that each line of pseudocode requires a constant amount of
time

> One line may take a different amount of time than another, but
each execution of line i takes the same amount of time ¢;

Lecture 2, 19.02.2025

Running time: on a particular input, it is the number of primitive
operations (steps) executed

> Figure that each line of pseudocode requires a constant amount of
time

> One line may take a different amount of time than another, but
each execution of line i takes the same amount of time ¢;

> This is assuming that the line consists only of primitive operations

> |If the line is a subroutine call, then the actual call takes constant time,

but the execution of the subroutine might not

> If the line specifies operations other than primitive ones, then it might
take more than constant time. Example: “sort the points by
x-coordinate”

Analysis of insertion sort

INSERTION-SORT(A, n)
for j =2ton
key = A[]]
// Tnsert A[j] into the sorted sequence A[l .. j — 1].
i=j—1
whilgi > 0and A[i] > key
Ali +1] = A[i]
i=i-1

Ali + 1] = key

Lecture 2, 19.02.2025

Analysis of insertion sort

INSERTION-SORT(A, n) cost times
for j =2ton ¢ n
key = A[j] ¢ n—1
// Tnsert A[j] into the sorted sequence A[l..j —1]. 0 n—1
i=j—1 cg n—1
while i > 0 and A[i] > key e Yol
Ali +1] = A[i] 6 Y=
i=1i-1 c7 Z;’l=2(tj - 1)
Ali + 1] = key cg n—1

Lecture 2, 19.02.2025

Analysis of insertion sort

number of times

INSERTION-SORT(A, n)
for j =2ton

key = A[j]
// Tnsert A[j] into the sorted sequence A[l..; —1].
i=j—-1
whilgi > 0and A[i] > key
Ali +1] = A[i]
i=i-1
Ali + 1] = key

line
cost times based
o n value
Ca n—1
0 n—1 /
cg n—1
Cs Z;-'= @
Ce Z;'=2(tj -1
7 Z;'l=2(tj -1
cg n—1

executed
on the
of j

Lecture 2, 19.02.2025

Analysis of insertion sort

number of times

line executed
INSERTION-SORT(A, n) cost times based] on the
for j =2ton o n value pof j

key = A[j] © n-1
// Tnsert A[j] into the sorted sequence A[l..j —1]. 0 n—1

i=j—-1 cg n—1

while i > 0 and A[i] > key s Y @
Ali + 1] = A[i] Ce Z;;z(tj -1
i=i-1 e Yt =1D

Ali + 1] = key cg n—1

Best case: The array is already sorted

Lecture 2, 19.02.2025

Analysis of insertion sort

number of times

line executed
INSERTION-SORT(A4, n) cost times based| on the
for j =2ton ¢ n value of j
key = A[j] ¢ n—1
// Tnsert A[j] into the sorted sequence A[l..j —1]. 0 n—1
i=j—1 cg n—1
while i > 0 and A[i] > key s Z;;@
Ali +1] = A[i] 6 D=t —1)
i=i-1 Cc7 Z;’l=2(tj - 1)
Ali + 1] = key cg n—1

Best case: The array is already sorted

T(n)=can+an—1)4+a(ln—1)+c(n—1)+ cg(n—1) = O(n)

Lecture 2, 19.02.2025

Analysis of insertion sort

number of times

line executed
INSERTION-SORT(A, n) cost times based] on the
for j =2ton o n value pof j

key = A[j] © n-1
// Tnsert A[j] into the sorted sequence A[l..j —1]. 0 n—1

i=j—-1 cg n—1

while i > 0 and A[i] > key s Y @
Ali + 1] = A[i] Ce Z;;z(tj -1
i=i-1 e Yt =1D

Ali + 1] = key cg n—1

Worst case: The array is in reverse sorted

Lecture 2, 19.02.2025

Analysis of insertion sort

number of times

line executed
INSERTION-SORT(A, n) cost times based] on the
for j =2ton ¢ n value of j
key = A[j] © n-1
// Tnsert A[j] into the sorted sequence A[l..j —1]. 0 n—1
i=j—1 cg n—1
while i > 0 and A[i] > key s Z;;@
Ali +1] = A[i] ¢ Xj,t—1)
i=i—1 ¢ Yiati=1)
Ali + 1] = key cg n—1
Worst case: The array is in reverse sorted
n(n+1)—2
T(n)=an+ca(n—1)+c(n—1)+ q%

+ (e + C7)M +ea(n—1)= @(n2)

2

Lecture 2, 19.02.2025

A note on Worst-case analysis

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Lecture 2, 19.02.2025

A note on Worst-case analysis

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Reasons:

> Gives a guaranteed upper bound on the running time for any input

Lecture 2, 19.02.2025

A note on Worst-case analysis

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Reasons:

> Gives a guaranteed upper bound on the running time for any input

> For some algorithms, the worst case occurs often. For example, when
searching, the worst case often occurs when the item being searched for is not
present

Lecture 2, 19.02.2025

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Reasons:
> Gives a guaranteed upper bound on the running time for any input
> For some algorithms, the worst case occurs often. For example, when

searching, the worst case often occurs when the item being searched for is not

present
> Average case often as bad as worst-case: Suppose that we
randomly choose n numbers as the input to insertion sort
Order of growth: Focus on the important features
» Drop lower-order terms

> lIgnore the constant coefficient in the leading term

Intercultural Computer

S0l el a2l a3 ale) ais) al6) a7 a18) alo]

hbrindi)

,b8] bi9]

Merge-sort with Transyivanian-saxon (German) folk dance

AlgoRythmics - 5

PR

Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Lecture 2, 19.02.2025

Powerful algorithmic approach:

recursively divide problem into smaller subproblems

Powerful algorithmic approach:

recursively divide problem into smaller subproblems

Powerful algorithmic approach:

recursively divide problem into smaller subproblems

Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Lecture 2, 19.02.2025

Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Lecture 2, 19.02.2025

Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Lecture 2, 19.02.2025

Divide-and-Conquer

Powerful algorithmic approach:
recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Combine the subproblem solutions to give a solution to the original
problem

Lecture 2, 19.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

Lecture 2, 19.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

NN 7|~%Mm

Lecture 2, 19.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

RN 7|~%Mm

Lecture 2, 19.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

|5247|<—%&»1326

Lecture 2, 19.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

5 2 7|<—J&»1326

4
A

Lecture 2, 19.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

5 2 7|<—J&»1326

4
A A

Lecture 2, 19.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

713 2 6]

5 2 7|<—J&»1326

4
A A A

Lecture 2, 19.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

5 2
|sz47|~%M

JL A A
o ARG

4 7 1 3 2 6]

Lecture 2, 19.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

Lecture 2, 19.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

Lecture 2, 19.02.2025

Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)

Lecture 2, 19.02.2025

To sort A[p...r]:

Divide by splitting into two subarrays A[p...q] and
Alg+1,...,r], where g is the halfway point of Alp...r]

Conquer by recursively sorting the two subarrays Alp...q] and
Alg+1,...r]

Combine by merging the two sorted subarrays A[p...q] and
Alg+1,...,r] to produce a singe sorted
subarray Alp...r]

Lecture 2, 19.02.2025

To sort A[p...r]:

Divide by splitting into two subarrays A[p...q] and
Alg+1,...,r], where g is the halfway point of Alp...r]

Conquer by recursively sorting the two subarrays Alp...q] and
Alg+1,...r]

Combine by merging the two sorted subarrays A[p...q] and
Alg+1,...,r] to produce a singe sorted
subarray Alp...r]

MERGE-SORT(4, p, 1)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,1) // combine

Lecture 2, 19.02.2025

What remains is the Merge procedure to solve the “merge” problem:

Definition

INPUT: Array A and indices p < g < r such that subarrays
Alp...ql,Alg+1...r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in A[p...r].

We will give a procedure that solves this problem in time ©(n) where n is
the size of the subproblem, i.e.,

n=r—p+1

Lecture 2, 19.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 2, 19.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 2, 19.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 2, 19.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 2, 19.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 2, 19.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 2, 19.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 2, 19.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 2, 19.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

Lecture 2, 19.02.2025

|dea behind linear-time merging
Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

> There are < n basic steps, since each basic step removes one card
from the input piles, and we started with n cards in the input pile

> Therefore the procedure should take 6(n) time

Lecture 2, 19.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 2, 19.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 2, 19.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 2, 19.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 2, 19.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

6

Lecture 2, 19.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

;

Lecture 2, 19.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 2, 19.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 2, 19.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

Lecture 2, 19.02.2025

Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value oo

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

L2123 ||4]/5]|/6]|7

o] © [

Lecture 2, 19.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[ny +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
j=ij+1

Alpl Aldl Alr]

Lecture 2, 19.02.2025

MERGE(A, p.q,T1)
Merging Algorithm ottt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin;+1] = o
Ry + 1] = o0
i=1
j=1
fork = ptor

if L[i] < R[]

Alk] = L[i]
i=i+1

else A[k] = R[/]

J=Jj+1

Alp] Ald] Alr]

Lecture 2, 19.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
J=Jj+1

Alp] Ald] Alr]

Lecture 2, 19.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Al[p+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin, +1] = o0
Rln, + 1] = o0
i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
i=i+1
else A[k] = R[]
J=Jj+1

Alp] Ald] Alr]

Lecture 2, 19.02.2025

Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n, =r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lil=Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lln; + 1] = oo
Ry +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
i=i+1
else A[k] = R[]
J=Jj+1

Lecture 2, 19.02.2025

Merging Algorithm

MERGE(A4, p,q.r)
n=qg-p+1
n, =r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lli] = Alp+i—1]

for j = 1ton,
R[j] = Alg + j]
Ln, +1] = ©
R[n, + 1] = o0
i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = LI[i]
Alp] Ald] Alr] else i«l[?]l:llilj]
Al 2 7 6 —
A
k
Li{2]a 00 3 o0

Lecture 2, 19.02.2025

Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1

Lecture 2, 19.02.2025

Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1

Lecture 2, 19.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
=l
Jg=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alp] Ala] Al oo A = T
j=Jj+1

Lecture 2, 19.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
=l
Jg=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alp] Ala] Al oo A = T
j=Jj+1

Lecture 2, 19.02.2025

Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1

Lecture 2, 19.02.2025

Merging Algorithm

Alp]

Alq]

Alr]

MERGE(A4, p,q.r)
n=q—-p+1
n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Lin,+1] =00
Rln, + 1] = o0
i=1
j=1
fork = ptor

if L[i] = R[]

A[k] = L[i]
i=i+1

else A[k] = R[j]

j=Jj+1

Lecture 2, 19.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
=l
Jg=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alp] Ala] Al oo A = T
j=Jj+1

Lecture 2, 19.02.2025

MERGE(A4, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] =00
R[n, + 1] = o0
=l
Jg=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alp] Ala] Al oo A = T
j=Jj+1

Lecture 2, 19.02.2025

MERGE(A, p,q,r)
Merging Algorithm mogTrtl
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lii]=Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Ln;+1] =
R[ny +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
J=Jj+1

> Runtime analysis?

Lecture 2, 19.02.2025

MERGE(A, p,q,r)
Merging Algorithm ittt
let L[1..n; + 1] and R[1..n, + 1] be new arrays

fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Lin,+1] = o0
R[n, +1] = o0
i=1
j=1
fork = ptor
if L[i] < R[]
Alk] = L[i]
i=i+1
else A[k] = R[/]
J=Jj+l1

> Runtime analysis?

Merge runs in time ©(n) where n is the number of elements in the
subarray, i.e.,
n=r—p+1

Lecture 2, 19.02.2025

Analyzing divide-and-conquer algorithms

Lecture 2, 19.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:

> Let T(n) = “running time on a problem of size n"

Lecture 2, 19.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

Lecture 2, 19.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

> Otherwise, suppose we divide into a sub problems each of size n/b.

Lecture 2, 19.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

> Otherwise, suppose we divide into a sub problems each of size n/b.

> Let D(n) be the time to divide and let C(n) the time to combine
solutions.

Lecture 2, 19.02.2025

Analyzing divide-and-conquer algorithms

Use a recurrence equation to describe the running time:
> Let T(n) = “running time on a problem of size n"

> If nis small enough say n < c for some constant ¢ then
T(n) = ©(1) (by brute force)

> Otherwise, suppose we divide into a sub problems each of size n/b.

> Let D(n) be the time to divide and let C(n) the time to combine
solutions.

> We get the recurrence

{@(1) if n<c,

T(n) = aT(n/b)+ D(n) + C(n) otherwise.

Lecture 2, 19.02.2025

Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Lecture 2, 19.02.2025

Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Lecture 2, 19.02.2025

Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Lecture 2, 19.02.2025

Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case

q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(4, p,q,r) // combine
Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size

n/2=2T(n/2).
Combine: Merge on an n-element subarray takes ©(n) time

Lecture 2, 19.02.2025

= C(n) = ©(n).

Analysis of Merge Sort

MERGE-SORT(A, p,r)

ifp<r // check for base case
q=(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,r) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Combine: Merge on an n-element subarray takes ©(n) time

= C(n) = ©(n).
Recurrence for merge sort running time is
T(n) = o(1) if n= %,
2T(n/2) +©(n) otherwise.

Lecture 2, 19.02.2025

> Solving the recurrence for merge sort shows that it runs in time
©(nlog n), i.e., much faster than Insertion sort for large instances

Lecture 2, 19.02.2025

> Solving the recurrence for merge sort shows that it runs in time
©(nlog n), i.e., much faster than Insertion sort for large instances

» For small instances insertion sort can still be faster

Lecture 2, 19.02.2025

Summary

> Solving the recurrence for merge sort shows that it runs in time
©(nlog n), i.e., much faster than Insertion sort for large instances

» For small instances insertion sort can still be faster

> |nsertion sort is also in place: the numbers are rearranged within
the array (with at most a constant number outside the array at any time)

Lecture 2, 19.02.2025

Summary

> Solving the recurrence for merge sort shows that it runs in time
©(nlog n), i.e., much faster than Insertion sort for large instances

» For small instances insertion sort can still be faster

> |nsertion sort is also in place: the numbers are rearranged within
the array (with at most a constant number outside the array at any time)

> Merge sort is not in place!

Lecture 2, 19.02.2025

