

Algorithms: Sorting + (Time) Analysis

Alessandro Chiesa, Ola Svensson

School of Computer and Communication Sciences

Lecture 2, 19.02.2025

Recall Last Lecture

- ▶ CS-250: A lot of interesting and useful material!
- ▶ A computational problem is defined by an input/output relationship
 - ▶ Example: **INPUT:** n **OUTPUT:** $\sum_{i=1}^n i$
- ▶ An algorithm describes a specific computational procedure for achieving that input/output relationship
 - ▶ Example: $\text{return } n(n + 1)/2$
- ▶ “Time + Space” is crucial for the usefulness of an algorithm

The Growth of Functions

- Three algorithms: A, B, C with different running times in ms.

SORTING

Insertion Sort

The sorting problem

Definition

INPUT: A sequence of n numbers $\langle a_1, a_2, \dots, a_n \rangle$.

OUTPUT: A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \dots \leq a'_n$.

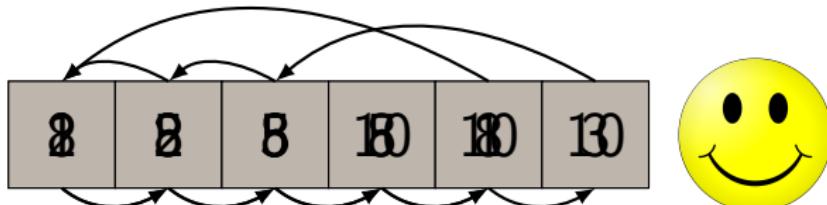
For example

- ▶ Given the input $\langle 5, 2, 4, 6, 1, 3 \rangle$
- ▶ a correct output is $\langle 1, 2, 3, 4, 5, 6 \rangle$

Insertion Sort - The Idea

Like sorting a hand of playing cards

- ▶ Start with an empty left hand of playing cards and the cards face down on the table
- ▶ Then remove one card at a time from the table, and insert it into the correct position in the left hand
- ▶ To find the correct position for a card, compare it with each of the cards already in the hand, from right to left.
- ▶ At all times, the cards, held in the left hand are sorted, and these cards were originally the top cards of the pile on the table



Insertion Sort

The Algorithm

- ▶ Takes as parameters an array $A[1 \dots n]$ and the length n of the array

```
INSERTION-SORT( $A, n$ )
  for  $j = 2$  to  $n$ 
     $key = A[j]$ 
    // Insert  $A[j]$  into the sorted sequence  $A[1 \dots j - 1]$ .
     $i = j - 1$ 
    while  $i > 0$  and  $A[i] > key$ 
       $A[i + 1] = A[i]$ 
       $i = i - 1$ 
     $A[i + 1] = key$ 
```

Insertion Sort

Example on $\langle 8, 2, 5, 10, 1, 3 \rangle$

key:

8
3
1

j:

i:

A:

8	8	8	10
---	---	---	----

And so

INSERTION-SORT(A, n)

for $j = 2$ to n

key = $A[j]$

// Insert $A[j]$ into the sorted sequence $A[1 \dots j - 1]$.

$i = j - 1$

while $i > 0$ and $A[i] > key$

$A[i + 1] = A[i]$

$i = i - 1$

$A[i + 1] = key$

INSERTION-SORT(A, n)

for $j = 2$ to n

key = $A[j]$

// Insert $A[j]$ into the sorted sequence $A[1 \dots j - 1]$.

$i = j - 1$

while $i > 0$ and $A[i] > key$

$A[i + 1] = A[i]$

$i = i - 1$

$A[i + 1] = key$

INSERTION-SORT(A, n)

for $j = 2$ to n

key = $A[j]$

// Insert $A[j]$ into the sorted sequence $A[1 \dots j - 1]$.

$i = j - 1$

while $i > 0$ and $A[i] > key$

$A[i + 1] = A[i]$

$i = i - 1$

$A[i + 1] = key$

INSERTION-SORT(A, n)

for $j = 2$ to n

key = $A[j]$

// Insert $A[j]$ into the sorted sequence $A[1 \dots j - 1]$.

$i = j - 1$

while $i > 0$ and $A[i] > key$

$A[i + 1] = A[i]$

$i = i - 1$

PROVING ALGORITHMS CORRECT

Loop invariants

Insertion Sort

INSERTION-SORT(A, n)

```
for  $j = 2$  to  $n$ 
    key =  $A[j]$ 
    // Insert  $A[j]$  into the sorted sequence  $A[1 \dots j - 1]$ .
     $i = j - 1$ 
    while  $i > 0$  and  $A[i] > key$ 
         $A[i + 1] = A[i]$ 
         $i = i - 1$ 
     $A[i + 1] = key$ 
```

Loop invariant:

At the start of each iteration of the “outer” **for** loop – the loop indexed by j – the subarray $A[1 \dots, j - 1]$ consists of the elements originally in $A[1, \dots, j - 1]$ but in sorted order.

Need to verify:

Similar to induction

- ▶ **Initialization:** It is true prior to the first iteration of the loop.
- ▶ **Maintenance:** If it is true before an iteration of the loop, it remains true before the next iteration.
- ▶ **Termination:** When the loop terminates, the invariant — usually along with the reason that the loop terminated — gives us a useful property that helps show that the algorithm is correct.

Insertion Sort

At the start of each iteration of the “outer” **for** loop – the loop indexed by j – the subarray $A[1 \dots j - 1]$ consists of the elements originally in $A[1, \dots, j - 1]$ but in sorted order.

Initialization

- ▶ Before the first iteration of the loop we have $j = 2$.
- ▶ The subarray $A[1 \dots j - 1]$, therefore, consists of just the single element $A[1]$.
- ▶ This is the original element in $A[1]$ and trivially sorted

INSERTION-SORT(A, n)

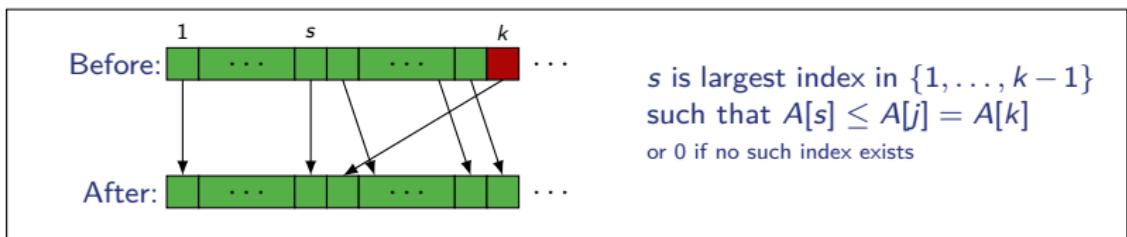
```
for j = 2 to n
    key = A[j]
    // Insert A[j] into the sorted sequence A[1..j - 1].
    i = j - 1
    while i > 0 and A[i] > key
        A[i + 1] = A[i]
        i = i - 1
    A[i + 1] = key
```


Insertion Sort

At the start of each iteration of the “outer” **for** loop – the loop indexed by j – the subarray $A[1 \dots, j - 1]$ consists of the elements originally in $A[1, \dots, j - 1]$ but in sorted order.

Maintenance:

- ▶ Assume invariant holds at the beginning of the iteration when $j = k$, i.e., for $A[1 \dots k - 1]$
- ▶ The body of the **for** loop works by moving $A[k - 1], A[k - 2]$ and so on one step to the right until it finds the proper position for $A[k]$, at which point it inserts the value of $A[k]$



- ▶ The subarray $A[1 \dots k]$ then consists of the elements originally in $A[1 \dots k]$ in a sorted order. Incrementing j (to $k + 1$) for the next iteration of the **for** loop then preserves the loop invariant :)

Insertion Sort

At the start of each iteration of the “outer” **for** loop – the loop indexed by j – the subarray $A[1 \dots j - 1]$ consists of the elements originally in $A[1, \dots, j - 1]$ but in sorted order.

Termination

- ▶ The condition of the **for** loop to terminate is that $j \geq n$
- ▶ Hence, $j = n + 1$ when loop terminates
- ▶ The loop invariant then implies that $A[1 \dots n]$ contain the original elements in sorted order

INSERTION-SORT(A, n)

```
for j = 2 to n
    key = A[j]
    // Insert A[j] into the sorted sequence A[1..j - 1].
    i = j - 1
    while i > 0 and A[i] > key
        A[i + 1] = A[i]
        i = i - 1
    A[i + 1] = key
```


ANALYZING ALGORITHMS

Computational Model

We want to predict the resources that the algorithm requires. Usually, running time.

For that we need a computational model

Random-access machine (RAM) model

- ▶ Instructions are executed one after another
- ▶ Simplification basic instructions take constant ($O(1)$) time
 - ▶ Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
 - ▶ Data movement: load, store, copy.
 - ▶ Control: conditional/unconditional branch, subroutine call and return
- ▶ We don't worry about precision, although it is crucial in certain numerical applications

Analyzing an algorithm's running time (1/2)

Time it takes depend on the input

- ▶ Sorting 1000 numbers take longer than sorting 3 numbers
- ▶ A given sorting algorithm may even take different amounts of time on two inputs of the same size

Input size: depends on the problem being studied

- ▶ Usually, the number of items in the input. Like the size n of the array being sorted
- ▶ If multiplying two integers, could be the total number of bits in the two integers
- ▶ Could be described by more than one number: e.g. graph algorithm running times are usually expressed in terms of the number of vertices and the number of edges in the input graph.

Analyzing an algorithm's running time (2/2)

Running time: on a particular input, it is the number of primitive operations (steps) executed

- ▶ Figure that each line of pseudocode requires a constant amount of time
- ▶ One line may take a different amount of time than another, but each execution of line i takes the same amount of time c_i
- ▶ This is assuming that the line consists only of primitive operations
 - ▶ If the line is a subroutine call, then the actual call takes constant time, but the execution of the subroutine might not
 - ▶ If the line specifies operations other than primitive ones, then it might take more than constant time. Example: “sort the points by x-coordinate”

Analysis of insertion sort

```
INSERTION-SORT( $A, n$ )
```

```
  for  $j = 2$  to  $n$ 
```

```
    key =  $A[j]$ 
```

```
    // Insert  $A[j]$  into the sorted sequence  $A[1 \dots j - 1]$ .
```

```
     $i = j - 1$ 
```

```
    while  $i > 0$  and  $A[i] > key$ 
```

```
       $A[i + 1] = A[i]$ 
```

```
       $i = i - 1$ 
```

```
     $A[i + 1] = key$ 
```

```
INSERTION-SORT( $A, n$ )
```

```
  for  $j = 2$  to  $n$ 
```

```
    key =  $A[j]$ 
```

```
    // Insert  $A[j]$  into the sorted sequence  $A[1 \dots j - 1]$ .
```

```
     $i = j - 1$ 
```

```
    while  $i > 0$  and  $A[i] > key$ 
```

```
       $A[i + 1] = A[i]$ 
```

```
       $i = i - 1$ 
```

```
     $A[i + 1] = key$ 
```

	<i>cost</i>	<i>times</i>	number of times line executed based on the value of j
c_1	n		
c_2	$n - 1$		
c_3	0	$n - 1$	
c_4	$n - 1$		
c_5	$\sum_{j=2}^n t_j$		
c_6	$\sum_{j=2}^n (t_j - 1)$		
c_7	$\sum_{j=2}^n (t_j - 1)$		
c_8	$n - 1$		

Best case: The array is already sorted

$$T(n) = c_1 n + c_2(n - 1) + c_4(n - 1) + c_5(n - 1) + c_8(n - 1) = \Theta(n)$$

A note on Worst-case analysis

We usually concentrate on finding the **worst-case running time**: the longest running time for *any* input of size n

Reasons:

- ▶ Gives a guaranteed upper bound on the running time for any input
- ▶ For some algorithms, the worst case occurs often. For example, when searching, the worst case often occurs when the item being searched for is not present
- ▶ Average case often as bad as worst-case: Suppose that we randomly choose n numbers as the input to insertion sort

Order of growth: Focus on the important features

- ▶ Drop lower-order terms
- ▶ Ignore the constant coefficient in the leading term

SORTING BY DIVIDE-AND-CONQUER

Merge Sort

Divide-and-Conquer

Powerful algorithmic approach:

recursively divide problem into smaller subproblems

Divide-and-Conquer

Powerful algorithmic approach:

recursively divide problem into smaller subproblems

Divide the problem into a number of subproblems that are smaller instances of the same problem

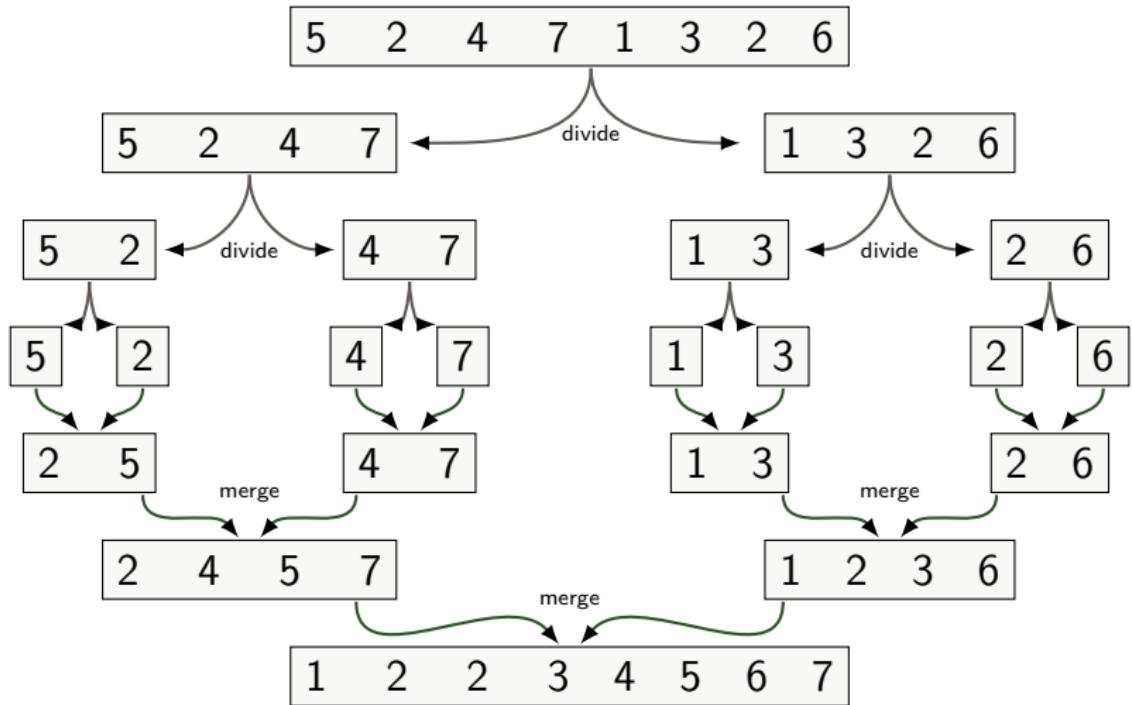
Conquer the subproblems by solving them recursively.

Base case: If the subproblems are small enough, just solve them by brute force

Combine the subproblem solutions to give a solution to the original problem

Merge Sort = D & C applied to sorting

Example $\langle 5, 2, 4, 7, 1, 3, 2, 6 \rangle$



Merge sort

To sort $A[p \dots r]$:

Divide by splitting into two subarrays $A[p \dots q]$ and $A[q + 1, \dots, r]$, where q is the halfway point of $A[p \dots r]$

Conquer by recursively sorting the two subarrays $A[p \dots q]$ and $A[q + 1, \dots, r]$

Combine by merging the two sorted subarrays $A[p \dots q]$ and $A[q + 1, \dots, r]$ to produce a single sorted subarray $A[p \dots r]$

MERGE-SORT(A, p, r)

```
if  $p < r$                                 // check for base case
     $q = \lfloor (p + r)/2 \rfloor$           // divide
    MERGE-SORT( $A, p, q$ )                // conquer
    MERGE-SORT( $A, q + 1, r$ )            // conquer
    MERGE( $A, p, q, r$ )                  // combine
```

Merging

What remains is the Merge procedure to solve the “merge” problem:

Definition

INPUT: Array A and indices $p \leq q < r$ such that subarrays $A[p \dots q]$, $A[q + 1 \dots r]$ are sorted.

OUTPUT: The two subarrays are merged into a single sorted subarray in $A[p \dots r]$.

We will give a procedure that solves this problem in time $\Theta(n)$ where n is the size of the subproblem, i.e.,

$$n = r - p + 1$$

Idea behind linear-time merging

Think of two piles of cards that are placed face up

- Basic step: pick the smaller of the two cards and place it in the output pile

Idea behind linear-time merging

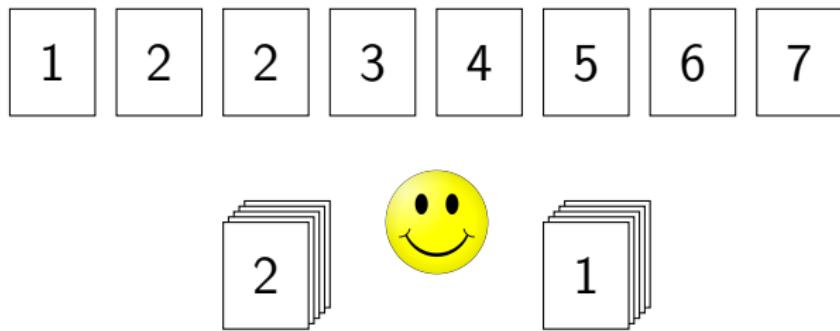
Think of two pile of cards that are placed face up

- ▶ Basic step: pick the smaller of the two cards and place it in the output pile
- ▶ There are $\leq n$ basic steps, since each basic step removes one card from the input piles, and we started with n cards in the input pile
- ▶ Therefore the procedure should take $\theta(n)$ time

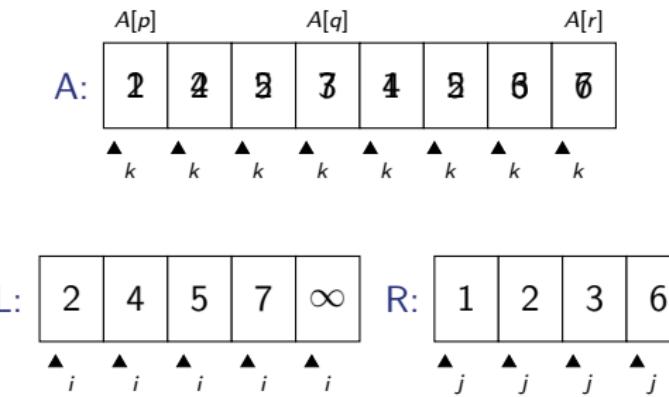
Implementation Simplification

Instead of checking whether a pile is empty:

- ▶ Put in the bottom of each input pile a special **sentinel** card of value ∞
- ▶ Stop once we have performed $n = r - p + 1$ basic steps (picked n cards)



Merging Algorithm



MERGE(A, p, q, r)

$n_1 = q - p + 1$

$n_2 = r - q$

let $L[1..n_1 + 1]$ and $R[1..n_2 + 1]$ be new arrays

for $i = 1$ to n_1

$L[i] = A[p + i - 1]$

for $j = 1$ to n_2

$R[j] = A[q + j]$

$L[n_1 + 1] = \infty$

$R[n_2 + 1] = \infty$

$i = 1$

$j = 1$

for $k = p$ to r

if $L[i] \leq R[j]$

$A[k] = L[i]$

$i = i + 1$

else $A[k] = R[j]$

$j = j + 1$

MERGE(A, p, q, r)

$n_1 = q - p + 1$

$n_2 = r - q$

let $L[1..n_1 + 1]$ and $R[1..n_2 + 1]$ be new arrays

for $i = 1$ to n_1

$L[i] = A[p + i - 1]$

for $j = 1$ to n_2

$R[j] = A[q + j]$

$L[n_1 + 1] = \infty$

$R[n_2 + 1] = \infty$

$i = 1$

$j = 1$

for $k = p$ to r

if $L[i] \leq R[j]$

$A[k] = L[i]$

Merging Algorithm

- Runtime analysis?

MERGE(A, p, q, r)

$n_1 = q - p + 1$

$n_2 = r - q$

let $L[1..n_1 + 1]$ and $R[1..n_2 + 1]$ be new arrays

for $i = 1$ **to** n_1

$L[i] = A[p + i - 1]$

for $j = 1$ **to** n_2

$R[j] = A[q + j]$

$L[n_1 + 1] = \infty$

$R[n_2 + 1] = \infty$

$i = 1$

$j = 1$

for $k = p$ **to** r

if $L[i] \leq R[j]$

$A[k] = L[i]$

$i = i + 1$

else $A[k] = R[j]$

$j = j + 1$

Analyzing divide-and-conquer algorithms

Use a **recurrence** equation to describe the running time:

- ▶ Let $T(n)$ = “running time on a problem of size n ”
- ▶ If n is small enough say $n \leq c$ for some constant c then $T(n) = \Theta(1)$ (by brute force)
- ▶ Otherwise, suppose we divide into a sub problems each of size n/b .
- ▶ Let $D(n)$ be the time to divide and let $C(n)$ the time to combine solutions.
- ▶ We get the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq c, \\ aT(n/b) + D(n) + C(n) & \text{otherwise.} \end{cases}$$

Analysis of Merge Sort

MERGE-SORT(A, p, r)

```
if  $p < r$                                 // check for base case
     $q = \lfloor (p + r)/2 \rfloor$            // divide
    MERGE-SORT( $A, p, q$ )                 // conquer
    MERGE-SORT( $A, q + 1, r$ )               // conquer
    MERGE( $A, p, q, r$ )                  // combine
```

Divide: takes constant time, i.e., $D(n) = \Theta(1)$

Conquer: recursively solve two subproblems, each of size $n/2 \Rightarrow 2T(n/2)$.

Combine: Merge on an n -element subarray takes $\Theta(n)$ time
 $\Rightarrow C(n) = \Theta(n)$.

Recurrence for merge sort running time is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{otherwise.} \end{cases}$$

Summary

- ▶ Solving the recurrence for merge sort shows that it runs in time $\Theta(n \log n)$, i.e., much faster than Insertion sort for large instances
- ▶ For small instances insertion sort can still be faster
- ▶ Insertion sort is also **in place**: the numbers are rearranged within the array (with at most a constant number outside the array at any time)
- ▶ Merge sort is not in place!