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Recall Last Lecture

> (CS-250: A lot of interesting and useful material!

> A computational problem is defined by an input/output relationship
> Example: INPUT: n OUTPUT: }~" i

> An algorithm describes a specific computational procedure for
achieving that input/output relationship

> Example: return n(n+1)/2

» "Time + Space” is crucial for the usefulness of an algorithm
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The Growth of Functions

> Three algorithms: A, B, C with different running times in ms.

A (1000log, n ms) B (2n% ms) C (2" ms)
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—1000 log,(x)
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SORTING

Insertion Sort
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The sorting problem

Definition

INPUT: A sequence of n numbers (aj, ap, ..., a,).

OUTPUT: A permutation (reordering) (aj, a5, ..., a),) of the input
sequence such that a] < af <..- < a/.

For example

> Given the input (5,2,4,6,1,3)

> a correct output is (1,2,3,4,5,6)
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Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

> At all times, the cards, held in the left hand are sorted, and these
cards were originally the top cards of the pile on the table

HOHDDER
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Insertion Sort

The Algorithm

> Takes as parameters an array A[1...n] and the length n of the array

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—1
wlu'lc{i > 0 and A[i] > key
Ali + 1] = A[i]
i=i-1

Ali +1] = key
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Insertion Sort hesEETON SorT (4.1

key = A[j]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—1
while i > 0 and A[i] > key
Ali + 1] = Ali]

Example on (8,2,5,10,1, 3)

i=i-1
. Ali +1] = key
key . ': INSERTION-SORT (A, n)
for j = 2ton
key = A[j]
j . 3 // Tnsert A[j] into the sorted sequence A[l..j —1].
. i=j—1

while i > 0and A[i] > key
Ali +1] = A[i]

i m i=i-1
. Ali +1] = key
INSERTION-SORT(A, n)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—1

s while i > 0 and A[i] > key
A: 8 “ 8 10 Ali +1] = 4[]
i=i-1
Ali + 1] = key
INSERTION-SORT (A, n)
And sc for j =2ton
key = A[j]
// Insert A[] into the sorted sequence A[1..j —1].
i=j-1
while i > 0 and A[i] > key
Lecture 2, 19.02.2025 Ali +1] = Ali]
i=i-1




PROVING ALGORITHMS CORRECT

Loop invariants
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INSERTION-SORT (A4, 1)
for j =2ton

key = A[/]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j-1
while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i-1

Loop invariant: Ali +1] = key

At the start of each iteration of the “outer” for loop — the loop
indexed by j— the subarrary A[Ll..., j— 1] consists of the elements
originally in A[1,...,j — 1] but in sorted order.

Need to verify: Similar to induction

> Initialization: It is true prior to the first iteration of the loop.

» Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.

» Termination: When the loop terminates, the invariant — usually

along with the reason that the loop terminated — gives us a useful
property that helps show that the algorithm is correct.




I nse rt | on Sort INSERTION-SORT(A, )

for j =2ton
art of each iteration of the “outer" for loop key = ALj]
loop indexed by j— the subarrary A[l. .., — 1] consists of // Insert A[j] into the sorted sequence A[1..j —1].
the elements originally in A[L, ..., j — 1] but in sorted order. i=j-1
while i > 0 and A[i] > key
Ali + 1] = A[i]
i=i-1
Ali + 1] = key

Initialization

> Before the first iteration of the loop we h

J
> The subarray A[l...j — 1], therefore, consists of just the single element A[1]

> This is the original element in A[1] and trivially sorted
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INSERTION-SORT (A, n)

for j =2ton
- key = A[j]

loop indexed by j— the subarrary A[l. .., — 1] consists of // Insert A[j] into the sorted sequence A[l .. j —1].
the elements originally in A[1, ... ,j — 1] but in sorted order. i=j—1

while i > 0 and A[i] > key

. Ali + 1] = Al

Maintenance: i=i-l

Ali + 1] = key

> Assume invariant holds at the beginning orenesrceraviomwien = ke ror—

ALl k—1]

> The body of the for loop works by moving A[k — 1], A[k — 2] and so on one
step to the right until it finds the proper position for A[k], at which point it
inserts the value of A[K]

1 s k
o s is largest index in {1,..., k—1}
' such that A[s] < A[j] = A[k]
4‘ or 0 if no such index exists

> The subarray A[l... k] then consists of the elements originally in A[1...k] in a
sorted order. Incrementing j (to k + 1) for the next iteration of the for loop
then preserves the loop invariant :)

Before:

After:




I nse rt | on Sort INSERTION-SORT(A, )

for j =2ton
art of each iteration of the “outer” for loop key = ALj]
loop indexed by j— the subarrary A[l. .., — 1] consists of // Insert A[] into the sorted sequence A[1..j —1].
the elements originally in A[L, ..., j — 1] but in sorted order. i=j-1
while i > 0 and A[i] > key
. A Ali + 1] = A[i]
Termination i=i-1
Ali + 1] = key
> The condition of the for loop to terminate J

> Hence, j = n+ 1 when loop terminates

> The loop invariant then implies that A[1... n] contain the original elements in
sorted order
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ANALYZING ALGORITHMS
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We want to predict the resources that the algorithm requires. Usually,
running time.

For that we need a computational model

Random-access machine (RAM) model

> |nstructions are executed one after another

» Simplification basic instructions take constant (O(1)) time

> Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
> Data movement: load, store, copy.

> Control: conditional/unconditional branch, subroutine call and return

» We don't worry about precision, although it is crucial in certain
numerical applications



Time it takes depend on the input

» Sorting 1000 numbers take longer than sorting 3 numbers

> A given sorting algorithm may even take different amounts of time
on two inputs of the same size

Input size: depends on the problem being studied

> Usually, the number of items in the input. Like the size n of the
array being sorted

> If multiplying two integers, could be the total number of bits in the
two integers

> Could be described by more than one number: e.g. graph algorithm
running times are usually expressed in terms of the number of
vertices and the number of edges in the input graph.



Running time: on a particular input, it is the number of primitive
operations (steps) executed

> Figure that each line of pseudocode requires a constant amount of
time

> One line may take a different amount of time than another, but
each execution of line i takes the same amount of time ¢;

» This is assuming that the line consists only of primitive operations

> If the line is a subroutine call, then the actual call takes constant time,

but the execution of the subroutine might not

If the line specifies operations other than primitive ones, then it might
take more than constant time. Example: “sort the points by
x-coordinate”



Analysis of insertion sort

INSERTION-SORT (A, n)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j — 1].
i=j—1
while i > 0 and A[i] > key

Ali + 1] = A[i] number of times

. i=i-1 line executed
Ali + 1] = key . based| on the
INSERTION-SORT (A, n) cost times |0 lof j

for j =2ton cy n
key = A[j] ¢ n-—1
// Insert A[/] into the sorted sequence A[l..j —1]. 0 n—1

i=j-1 . 4 n—lO

while i > 0 and A[i] > key cs _2 17
Ali +1] = A[i] s Z--z(f; -1
i=i-1 ¢ Y=
Ali + 1] = key cg n—1

Best case: The array is already sorted

Lo T{n)p=cn+ a(n—1)4+ a(n—1)+ c(n—1)+ cg(n— 1) = ©(n)



We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Reasons:
> Gives a guaranteed upper bound on the running time for any input
> For some algorithms, the worst case occurs often. For example, when

searching, the worst case often occurs when the item being searched for is not
present

> Average case often as bad as worst-case: Suppose that we
randomly choose n numbers as the input to insertion sort
Order of growth: Focus on the important features
» Drop lower-order terms

> lIgnore the constant coefficient in the leading term
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Merge-sort with Transylvanian-saxon (German) folk dance
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Powerful algorithmic approach:
recursively divide problem into smaller subproblems




Divide-and-Conquer

Powerful algorithmic approach:

recursively divide problem into smaller subproblems
Divide the problem into a number of subproblems that are
smaller instances of the same problem

Conquer the subproblems by solving them recursively.
Base case: If the subproblems are small enough, just solve them by
brute force

Combine the subproblem solutions to give a solution to the original
problem
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Merge Sort = D & C applied to sorting

Example (5,2,4,7,1,3,2,6)
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To sort Alp...r]:

Divide by splitting into two subarrays A[p...q] and
Alg+1,...,r], where g is the halfway point of Alp...r]

Conquer by recursively sorting the two subarrays Alp...q] and
Alg+1,...r]

Combine by merging the two sorted subarrays A[p...q] and
Alg+1,...,r] to produce a singe sorted
subarray Alp...r]

MERGE-SORT(A4, p,r)

ifp<r // check for base case
q=|(p+r)/2] // divide
MERGE-SORT(4, p, q) // conquer
MERGE-SORT(4,g9 + 1,1) // conquer
MERGE(A, p,q,r) // combine
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What remains is the Merge procedure to solve the “merge” problem:

Definition

INPUT: Array A and indices p < g < r such that subarrays
Alp...q],Alg+1...r] are sorted.

OUTPUT: The two subarrays are merged into a single sorted
subarray in Alp...r].

We will give a procedure that solves this problem in time ©(n) where n is
the size of the subproblem, i.e.,

n=r—p+1
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|dea behind linear-time merging

Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile
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|dea behind linear-time merging

Think of two pile of cards that are placed face up

> Basic step: pick the smaller of the two cards and place it in the
output pile

> There are < n basic steps, since each basic step removes one card
from the input piles, and we started with n cards in the input pile

> Therefore the procedure should take 6(n) time
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Implementation Simplification

Instead of checking whether a pile is empty:

> Put in the bottom of each input pile a special sentinel card of
value co

> Stop once we have performed n = r — p + 1 basic steps
(picked n cards)

L{|2]2]/3||4]|]/5]|/6]|7

oRdn
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. . MERGE(A4, p,q,T1)
Merging Algorithm o

n,=r—gq
let L[1..ny + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + Jj]
Lin,+1] =00
Rln, + 1] = o0
i=1
ji=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
Alpl Alql Alrl i=i41
else A[k] = R[j]
Al2|2|83|3|4|83|8|8 j=j+1
MERGE(A4, p,q.r)

kK k k k k Kk k k m=q-p+l
np, =r—q

let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,

Lli]=A4 i —1
Ll2|als|7]co|R|[1]2]3]6 p P5gr*

R[j] = Alg + j]

A A A A A A A A A Lin +1] = 0o
P i i d i !

Rny +1] = o0
i=1
ji=1

fork = ptor
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. . MERGE(A, p,q,T1)
Merging Algorithm R

n,=r—gq
let L[1..n; + 1] and R[1..n, + 1] be new arrays
fori = 1ton,
Lii]=Alp+i—1]
for j = 1ton,
R[j] = Alg + j]
Ln;+1] =
Rln,+1] = o0
> Runtime analysis? i=1
j=1
fork = ptor
if L[i] < R[/]
Alk] = Ll[i]
i=i+1
else A[k] = R[]
J=Jj+1
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Use a recurrence equation to describe the running time:

>

»

Let T(n) = “running time on a problem of size n"

If nis small enough say n < ¢ for some constant ¢ then
T(n) = 6(1) (by brute force)

Otherwise, suppose we divide into a sub problems each of size n/b.

Let D(n) be the time to divide and let C(n) the time to combine
solutions.

We get the recurrence

T(n) = O(1) if n<c,
= aT(n/b)+ D(n) + C(n) otherwise.



Analysis of Merge Sort

MERGE-SORT(A, p,1)

ifp<r // check for base case
q=l(p+r)/2] // divide
MERGE-SORT (4, p, q) // conquer
MERGE-SORT(4,q + 1,r) // conquer
MERGE(A4, p,q,1) // combine

Divide: takes constant time, i.e., D(n) = ©(1)

Conquer: recursively solve two subproblems, each of size
n/2=2T(n/2).

Combine: Merge on an n-element subarray takes ©(n) time

= C(n) = ©(n).
Recurrence for merge sort running time is
T(n) = o(1) if n= I.l,
2T(n/2)+©(n) otherwise.
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v

Solving the recurrence for merge sort shows that it runs in time
©(nlogn), i.e., much faster than Insertion sort for large instances

v

For small instances insertion sort can still be faster

v

Insertion sort is also in place: the numbers are rearranged within
the array (with at most a constant number outside the array at any time)

> Merge sort is not in place!
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