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Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

7 6 2 3 1 5 10 12 9 15 4

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

107 6 2 3 1 5 12 9 15 4

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

7 6 2 3 1 5 9 4 15 12

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

7 6 2 3 1 5 9 4 15 12

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

7 6 2 3 1 5 9 4

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

7 6 2 3 1 9 45

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

2 3 1 4 7 6 9

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

2 3 1 4 7 96

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

6

7 9

2 3 1 4

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

6

7 9

3 1 42

Lecture 25, 20.05.2025



Recall: Quick Sort
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Recall: Quick Sort

I Randomized quick sort has expected running time Θ(n lg n) for any
input.

I The algorithm is in-place

I Very efficient and easy to implement in practice

I Based on divide-and-conquer paradigm (as merge-sort)
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Recall: Quick Sort

I Randomized quick sort has expected running time Θ(n lg n) for any
input.

I The algorithm is in-place

I Very efficient and easy to implement in practice

I Based on divide-and-conquer paradigm (as merge-sort)

Lecture 25, 20.05.2025



WHY ALWAYS Θ(n lg n)?
Quick-Sort, Merge-Sort, Heap-Sort . . .
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Lower bounds for sorting

I Ω(n) to even examine the inputs

Better lower bound for “comparison” sorting:
I The only operation that may be used to gain order information

about a sequence is comparison of pairs of elements.
I All sorts seen so far are comparison sorts: insertion sort, merge sort,

quicksort, heapsort
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Decision tree

I Abstraction of any comparison sort

I Represents comparisons made by
I a specific sorting algorithm
I on inputs of a given size

I We are only counting #comparisons (OK since looking for lower bound)
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Decision tree

I Abstraction of any comparison sort

I Represents comparisons made by
I a specific sorting algorithm
I on inputs of a given size

I We are only counting #comparisons (OK since looking for lower bound)
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Decision tree

What is the number of leaves of the decision tree? n!

What is the height of the decision tree? Ω(log n!) = Ω(n lg n)

Therefore, exists input permutation so that we need to do Ω(n lg n)
comparisons
Similar argument implies that Ω(n lg n) comparisons are necessary for most inputs
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Decision tree

What is the number of leaves of the decision tree? n!

What is the height of the decision tree? Ω(log n!) = Ω(n lg n)

Therefore, exists input permutation so that we need to do Ω(n lg n)
comparisons
Similar argument implies that Ω(n lg n) comparisons are necessary for most inputs
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Comparison sorting

I Any such algorithm takes (expected) time Ω(n lg n)

I In some sense, merge-sort, heapsort, and quicksort are optimal
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LINEAR TIME SORTING
(non-comparison sorts)

Lecture 25, 20.05.2025



Assumption about keys

Input: A[1 . . . n], where A[j] ∈ {0, 1, . . . , k} for j = 1, 2, . . . , n.
Array A and values n and k are given as parameters

Output: B[1 . . . n] sorted

Example k = 5, n = 8:

A: 2 5 3 0 2’ 3’ 0’ 3”

B: 0 0’ 2 2’ 3 3’ 3” 5
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 0 0 0 0 0
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

2 0 2 3 0 1
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

2 2 4 7 7 8
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

2 2 4 7 7 8
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
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Algorithm
Use an auxiliar array C [0 . . . k]
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

1 2 4 6 7 8
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:
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Algorithm
Use an auxiliar array C [0 . . . k]
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 2 3 4 7 7

3”0’ 3’2’0 3
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 2 3 4 7 7
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 2 2 4 7 7

3”0’ 3’2’0 3 5
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Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 2 2 4 7 7

3”0’ 3’2’0 3 52
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Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small
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Summary

I Comparison sort can not beat O(n lg n)

I Other sorting methods available when we now structure about the
input

I Counting sort runs in time Θ(n + k) when all numbers are in
{0, 1, . . . , k}
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