
Algorithms: Linear Time Sorting?

Ola Svensson

School of Computer and Communication Sciences

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

7 6 2 3 1 5 10 12 9 15 4

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

107 6 2 3 1 5 12 9 15 4

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

7 6 2 3 1 5 9 4 15 12

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

7 6 2 3 1 5 9 4 15 12

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

7 6 2 3 1 5 9 4

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

7 6 2 3 1 9 45

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

2 3 1 4 7 6 9

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

2 3 1 4 7 96

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

6

7 9

2 3 1 4

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

6

7 9

3 1 42

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

6

7 9

2

1 3 4

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

6

7 9

2

1 43

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

6

7 9

2

1 3

4

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

6

7 9

2

1 3

4

Lecture 25, 20.05.2025



Recall: Quick Sort

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

10

12

15

5

6

7

9

2

1 3

4

Lecture 25, 20.05.2025



Recall: Quick Sort

I Randomized quick sort has expected running time Θ(n lg n) for any
input.

I The algorithm is in-place

I Very efficient and easy to implement in practice

I Based on divide-and-conquer paradigm (as merge-sort)

Lecture 25, 20.05.2025



Recall: Quick Sort

I Randomized quick sort has expected running time Θ(n lg n) for any
input.

I The algorithm is in-place

I Very efficient and easy to implement in practice

I Based on divide-and-conquer paradigm (as merge-sort)

Lecture 25, 20.05.2025



Recall: Quick Sort

I Randomized quick sort has expected running time Θ(n lg n) for any
input.

I The algorithm is in-place

I Very efficient and easy to implement in practice

I Based on divide-and-conquer paradigm (as merge-sort)

Lecture 25, 20.05.2025



Recall: Quick Sort

I Randomized quick sort has expected running time Θ(n lg n) for any
input.

I The algorithm is in-place

I Very efficient and easy to implement in practice

I Based on divide-and-conquer paradigm (as merge-sort)

Lecture 25, 20.05.2025



WHY ALWAYS Θ(n lg n)?
Quick-Sort, Merge-Sort, Heap-Sort . . .

Lecture 25, 20.05.2025



Lower bounds for sorting

I Ω(n) to even examine the inputs

Better lower bound for “comparison” sorting:
I The only operation that may be used to gain order information

about a sequence is comparison of pairs of elements.
I All sorts seen so far are comparison sorts: insertion sort, merge sort,

quicksort, heapsort

Lecture 25, 20.05.2025



Decision tree

I Abstraction of any comparison sort

I Represents comparisons made by
I a specific sorting algorithm
I on inputs of a given size

I We are only counting #comparisons (OK since looking for lower bound)

Lecture 25, 20.05.2025



Decision tree

I Abstraction of any comparison sort

I Represents comparisons made by
I a specific sorting algorithm
I on inputs of a given size

I We are only counting #comparisons (OK since looking for lower bound)

Lecture 25, 20.05.2025



Decision tree

I Abstraction of any comparison sort

I Represents comparisons made by
I a specific sorting algorithm
I on inputs of a given size

I We are only counting #comparisons (OK since looking for lower bound)

Lecture 25, 20.05.2025



Decision tree

I Abstraction of any comparison sort

I Represents comparisons made by
I a specific sorting algorithm
I on inputs of a given size

I We are only counting #comparisons (OK since looking for lower bound)

Lecture 25, 20.05.2025



Decision tree

What is the number of leaves of the decision tree? n!

What is the height of the decision tree? Ω(log n!) = Ω(n lg n)

Therefore, exists input permutation so that we need to do Ω(n lg n)
comparisons
Similar argument implies that Ω(n lg n) comparisons are necessary for most inputs

Lecture 25, 20.05.2025



Decision tree

What is the number of leaves of the decision tree?

n!

What is the height of the decision tree? Ω(log n!) = Ω(n lg n)

Therefore, exists input permutation so that we need to do Ω(n lg n)
comparisons
Similar argument implies that Ω(n lg n) comparisons are necessary for most inputs

Lecture 25, 20.05.2025



Decision tree

What is the number of leaves of the decision tree? n!

What is the height of the decision tree? Ω(log n!) = Ω(n lg n)

Therefore, exists input permutation so that we need to do Ω(n lg n)
comparisons
Similar argument implies that Ω(n lg n) comparisons are necessary for most inputs

Lecture 25, 20.05.2025



Decision tree

What is the number of leaves of the decision tree? n!

What is the height of the decision tree?

Ω(log n!) = Ω(n lg n)

Therefore, exists input permutation so that we need to do Ω(n lg n)
comparisons
Similar argument implies that Ω(n lg n) comparisons are necessary for most inputs

Lecture 25, 20.05.2025



Decision tree

What is the number of leaves of the decision tree? n!

What is the height of the decision tree? Ω(log n!) = Ω(n lg n)

Therefore, exists input permutation so that we need to do Ω(n lg n)
comparisons
Similar argument implies that Ω(n lg n) comparisons are necessary for most inputs

Lecture 25, 20.05.2025



Decision tree

What is the number of leaves of the decision tree? n!

What is the height of the decision tree? Ω(log n!) = Ω(n lg n)

Therefore, exists input permutation so that we need to do Ω(n lg n)
comparisons
Similar argument implies that Ω(n lg n) comparisons are necessary for most inputs

Lecture 25, 20.05.2025



Comparison sorting

I Any such algorithm takes (expected) time Ω(n lg n)

I In some sense, merge-sort, heapsort, and quicksort are optimal

Lecture 25, 20.05.2025



LINEAR TIME SORTING
(non-comparison sorts)

Lecture 25, 20.05.2025



Assumption about keys

Input: A[1 . . . n], where A[j] ∈ {0, 1, . . . , k} for j = 1, 2, . . . , n.
Array A and values n and k are given as parameters

Output: B[1 . . . n] sorted

Example k = 5, n = 8:

A: 2 5 3 0 2’ 3’ 0’ 3”

B: 0 0’ 2 2’ 3 3’ 3” 5

Lecture 25, 20.05.2025



Assumption about keys

Input: A[1 . . . n], where A[j] ∈ {0, 1, . . . , k} for j = 1, 2, . . . , n.
Array A and values n and k are given as parameters

Output: B[1 . . . n] sorted

Example k = 5, n = 8:

A: 2 5 3 0 2’ 3’ 0’ 3”

B: 0 0’ 2 2’ 3 3’ 3” 5

Lecture 25, 20.05.2025



Assumption about keys

Input: A[1 . . . n], where A[j] ∈ {0, 1, . . . , k} for j = 1, 2, . . . , n.
Array A and values n and k are given as parameters

Output: B[1 . . . n] sorted

Example k = 5, n = 8:

A: 2 5 3 0 2’ 3’ 0’ 3”

B: 0 0’ 2 2’ 3 3’ 3” 5

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 0 0 0 0 0

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

2 0 2 3 0 1

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

2 2 4 7 7 8

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

2 2 4 7 7 8

j

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

2 2 4 6 7 8

j

3”

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

2 2 4 6 7 8

3”

j

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

1 2 4 6 7 8

3”

j

0’

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

1 2 4 6 7 8

3”0’

j

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

1 2 4 5 7 8

3”0’

j

3’

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

1 2 4 5 7 8

3”0’ 3’

j

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

1 2 3 5 7 8

3”0’ 3’

j

2’

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

1 2 3 5 7 8

3”0’ 3’2’

j

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 2 3 5 7 8

3”0’ 3’2’

j

0

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 2 3 5 7 8

3”0’ 3’2’0

j

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 2 3 4 7 8

3”0’ 3’2’0

j

3

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 2 3 4 7 8

3”0’ 3’2’0 3

j

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 2 3 4 7 7

3”0’ 3’2’0 3

j

5

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 2 3 4 7 7

3”0’ 3’2’0 3 5

j

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 2 2 4 7 7

3”0’ 3’2’0 3 5

j

2

Lecture 25, 20.05.2025



Algorithm
Use an auxiliar array C [0 . . . k]

2 5 3 0 2’ 3’ 0’ 3”
A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

A:

C [0] C [1] C [2] C [3] C [4] C [5]

C:

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

B:

0 2 2 4 7 7

3”0’ 3’2’0 3 52

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop:

Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop:

Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop:

Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop:

Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values?

No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values?

Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values?

Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Runtime analysis

I First for-loop: Θ(k)

I 2nd for-loop: Θ(n)

I 3rd for-loop: Θ(k)

I 4th for-loop: Θ(n)

I Total: Θ(n + k)

How big k is practical?

I 32-bit values? No

I 16-bit values? Probably not

I 8-bit values? Maybe depending on n

I 4-bit values? Probably unless n is very
small

Lecture 25, 20.05.2025



Summary

I Comparison sort can not beat O(n lg n)

I Other sorting methods available when we now structure about the
input

I Counting sort runs in time Θ(n + k) when all numbers are in
{0, 1, . . . , k}

Lecture 25, 20.05.2025


