Algorithms: Hashing and Quick Sort
Alessandro Chiesa, Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 24, 14.05.2025

Hash tables: summary

HAsH-tables efficiently implement:

INSERT: O(1)
DELETE: O(1)
SEARCH: Expected O(n/m) (if good hash function)

Cannot avoid collisions without having m > n?

Instead deal with collisions using for example chaining

Lecture 24, 14.05.2025

v

The sorting algorithm of choice in many computer systems

\4

Easy to implement

> Fast in practice (and as we will see in theory)

v

As merge-sort, based on divide-and-conquer paradigm

Lecture 24, 14.05.2025

DIVIDE-AND-CONQUER
Quick Sort

Lecture 24, 14.05.2025

DIVIDE-AND-CONQUER

Quick Sort

Lecture 24, 14.05.2025

DIVIDE-AND-CONQUER

Quick Sort

Lecture 24, 14.05.2025

DIVIDE-AND-CONQUER

Quick Sort

Lecture 24, 14.05.2025

Quick Sort ldea

Example (5,8,4,7,1,2,3,6)

Lecture 24, 14.05.2025

Quick Sort ldea

Example (5,8,4,7,1,2,3,6)

Lecture 24, 14.05.2025

Quick Sort ldea

Example (5,8,4,7,1,2,3, 6)

712 3 6]

|5 4 1 2 3|«%—>-

Lecture 24, 14.05.2025

Quick Sort ldea

Example (5,8,4,7,1,2,3, 6)

712 3 6]

|5 4 1 2 3|«%—>-

Lecture 24, 14.05.2025

Quick Sort ldea

Example (5,8,4,7,1,2,3, 6)

712 3 6]

5 4 1 2 3|<—/ed-wdesk—>-

Lecture 24, 14.05.2025

Quick Sort ldea

Example (5,8,4,7,1,2,3, 6)

712 3 6]

5 4 1 2 3|<—/ed-wdesk—>-

Lecture 24, 14.05.2025

Quick Sort ldea

Example (5,8,4,7,1,2,3, 6)

712 3 6]

4 1 2 3 |$—» m

3 divides

Lecture 24, 14.05.2025

Quick Sort ldea

Example (5,8,4,7,1,2,3, 6)

712 3 6]

4 1 2 3|$—>m

3 divides
4 m?

%ides

Lecture 24, 14.05.2025

Quick Sort ldea

Example (5,8,4,7,1,2,3, 6)

712 3 6]

4 1 2 3 |$—» m
A} 4/3 divides

3 divides

%ides 4 h;*
* *,J

Lecture 24, 14.05.2025

Quick Sort ldea

Example (5,8,4,7,1,2,3, 6)

712 3 6]

4 1 2 3|$—>m

A} 4/3 divides

3 divides
4 ﬁ;’

%ides

com bme

|12345|

Lecture 24, 14.05.2025

Quick Sort ldea

Example (5,8,4,7,1,2,3, 6)

712 3 6]

4 1 2 3|$—>m

A} 4/5 divides

3 divides
4%?

%ides

q;"b‘“;_z
'”“i'/w
Av/_J

1 2 3 45 6 7 8|

Lecture 24, 14.05.2025

Quick Sort — Divide-and-Conquer

To sort the subarray A[p...r]:

Divide: Partition A[p...r], into two (possibly empty) subarrays
Alp...q—1] and A[g+1...r], such that each element in
the first subarray is < A[g] and each element in the

second subarray is > A[q]

Lecture 24, 14.05.2025

Quick Sort — Divide-and-Conquer

To sort the subarray A[p...r]:

Divide: Partition A[p...r], into two (possibly empty) subarrays
Alp...q—1] and A[g+1...r], such that each element in
the first subarray is < A[g] and each element in the
second subarray is > A[q]

Conquer: Sort the two subarrays by recursive calls to QUICKSORT

Lecture 24, 14.05.2025

Quick Sort — Divide-and-Conquer

To sort the subarray A[p...r]:

Divide: Partition A[p...r], into two (possibly empty) subarrays
Alp...q—1] and A[g+1...r], such that each element in
the first subarray is < A[g] and each element in the
second subarray is > A[q]

Conquer: Sort the two subarrays by recursive calls to QUICKSORT

Lecture 24, 14.05.2025

Quick Sort — Divide-and-Conquer

To sort the subarray Alp...r]:

Divide: Partition A[p...r], into two (possibly empty) subarrays
Alp...q—1] and A[g+1...r], such that each element in
the first subarray is < A[g] and each element in the
second subarray is > A[q]

Conquer: Sort the two subarrays by recursive calls to QUICKSORT

Combine: No work is needed to combine the subarrays, because they
are sorted in place

Lecture 24, 14.05.2025

Partitioning (divide step)

PARTITION always selects the last element A[r] in the subarray A[p...r]
as the pivot — the element around which to partition

PARTITION(A, p,r)

x = Alr]
i=p—1
for j = ptor — 1
if A[j] < x
i=i+1

exchange A[i] with A[]]
exchange A[i + 1] with A[r]
returni + 1

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

“[s]

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

“[s]

Al Aldl Alr]

Lecture 24, 14.05.2025

PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

“[s]

Al Aldl Alr]

Lecture 24, 14.05.2025

Alpl Alq] Alr]

Correctness of Partitioning EJE j 112[3]6

Loop Invariant:
All entries in Alp... /] are < pivot
All entries in A[i +1...j — 1] are > pivot
A[r] = pivot

Lecture 24, 14.05.2025

Alpl Alq] Alr]

Correctness of Partitioning EJE j 11236

Loop Invariant:
All entries in A[p...i] are < pivot
All entries in A[i +1...j — 1] are > pivot
A[r] = pivot

Initialization: Before the loop starts, loop invariant satisfied, because r is the pivot
and the subarrays A[p...i] and A[i +1...j — 1] are empty

Lecture 24, 14.05.2025

Alpl Alq] Alr]

Correctness of Partitioning EESE: - 11236

Loop Invariant:
All entries in A[p...i] are < pivot
All entries in A[i +1...j — 1] are > pivot
A[r] = pivot

Initialization: Before the loop starts, loop invariant satisfied, because r is the pivot
and the subarrays A[p...i] and A[i +1...j — 1] are empty

Maintenance: If A[j] < pivot, then A[j] and A[i + 1] are swapped and then i and j
are incremented. If A[j] > pivot then increment only j

Lecture 24, 14.05.2025

Alp] Alq] Alr]

Loop Invariant:
All entries in A[p...i] are < pivot
All entries in A[i+1...j— 1] are > pivot
Alr] = pivot

Initialization: Before the loop starts, loop invariant satisfied, because r is the pivot
and the subarrays A[p...i] and A[i +1...j — 1] are empty

Maintenance: If A[j] < pivot, then A[j] and A[i + 1] are swapped and then i and j

are incremented. If A[j] > pivot then increment only j

Termination: When the loop terminates, j = r so all elements in A are partitioned
into Alp...i] < pivot, A[i+1...r—1] > pivot and A[r] = pivot

Alp] Alq] Alr]

Loop Invariant:
All entries in A[p...i] are < pivot
All entries in A[i+1...j— 1] are > pivot
Alr] = pivot

Initialization: Before the loop starts, loop invariant satisfied, because r is the pivot
and the subarrays A[p...i] and A[i +1...j — 1] are empty

Maintenance: If A[j] < pivot, then A[j] and A[i + 1] are swapped and then i and j

are incremented. If A[j] > pivot then increment only j

Termination: When the loop terminates, j = r so all elements in A are partitioned
into Alp...i] < pivot, A[i+1...r—1] > pivot and A[r] = pivot

The last two lines of PARTITION moves the pivot element to the “right” place by
swapping A[i + 1] and A[r]

Time for partitioning

PARTITION(A, p,r)
x = Alr]
i=p—1
forj = ptor —1
if A[j] < x
i=i+1
exchange A[i] with A[}]
exchange A[i + 1] with A[r]
returni + 1

Lecture 24, 14.05.2025

Time for partitioning

PARTITION(A, p,r)

x = Alr]
i=p—1
for j = ptor —1
if A[j] < x
i=i+1

exchange A[i] with A[]]
exchange A[i + 1] with A[r]
return i + 1

> for loop runs ~ n:=r — p+ 1 times.
> Each iteration takes time ©(1)

> Total running time is ©(n) for an array of length n.

Lecture 24, 14.05.2025

Time for partitioning

PARTITION(A, p,r)

x = Alr]
i=p—1
for j = ptor —1
if A[j] < x
i=i+1
exchange A[i] with A[}]

exchange A[i + 1] with A[r]
return i + 1

\4

for loop runs ~ n:=r — p+ 1 times.

v

Each iteration takes time ©(1)

v

Total running time is ©(n) for an array of length n.

v

Note that the number of comparisons made is ~ n

Lecture 24, 14.05.2025

Quick Sort Algorithm

QUICKSORT(4, p, r)
ifp<r
q = PARTITION(A, p,r)
QUICKSORT(4, p,g — 1)
QUICKSORT(A,q + 1,1)

Lecture 24, 14.05.2025

Worst case running time of quick sort

Lecture 24, 14.05.2025

Worst case running time of quick sort

Lecture 24, 14.05.2025

Worst case running time of quick sort

Lecture 24, 14.05.2025

Worst case running time of quick sort

Lecture 24, 14.05.2025

Worst case running time of quick sort

Lecture 24, 14.05.2025

Worst case running time of quick sort

Lecture 24, 14.05.2025

Worst case running time of quick sort

Lecture 24, 14.05.2025

Worst case running time of quick sort

1 2 3 o(3)
()

Lecture 24, 14.05.2025

Worst case running time of quick sort

Total running time: ©(n?)

1 2 3 @ o(3)

()

Lecture 24, 14.05.2025

Best case running time of quick sort

Lecture 24, 14.05.2025

Best case running time of quick sort

> Occurs when the subarrays are completely balanced every time =
the pivots always split the array into two subarrays of equal size

Lecture 24, 14.05.2025

Best case running time of quick sort

> Occurs when the subarrays are completely balanced every time =
the pivots always split the array into two subarrays of equal size

> Get the recurrence

T(n) =2T(n/2) + ©(n)

Lecture 24, 14.05.2025

Best case running time of quick sort

> Occurs when the subarrays are completely balanced every time =
the pivots always split the array into two subarrays of equal size

> Get the recurrence

T(n) =2T(n/2) + ©(n)

= O(nlgn)

Lecture 24, 14.05.2025

Average case over all inputs

Intuition

> Imagine that PARTITION always produces a 9-to-1 split.

> Get the recurrence T(n) = T(9n/10) + T(n/10) + ©(n)

Lecture 24, 14.05.2025

Average case over all inputs

Intuition

> Imagine that PARTITION always produces a 9-to-1 split.

> Get the recurrence T(n) = T(9n/10) + T(n/10) + ©(n) = O(nlgn)

Lecture 24, 14.05.2025

Average case over all inputs

Intuition

> Imagine that PARTITION always produces a 9-to-1 split.
> Get the recurrence T(n) = T(9n/10) + T(n/10) + ©(n) = O(nlgn)

> Splits in the recursion tree will not always be good, there will be
usually a mix of good and bad splits

Lecture 24, 14.05.2025

Average case over all inputs

Intuition

> Imagine that PARTITION always produces a 9-to-1 split.
> Get the recurrence T(n) = T(9n/10) + T(n/10) + ©(n) = O(nlgn)

> Splits in the recursion tree will not always be good, there will be
usually a mix of good and bad splits

> For intuition why this not affect the running time, suppose we
alternate between best-case and worst-case flips

Lecture 24, 14.05.2025

Average case over all inputs

Intuition

> Imagine that PARTITION always produces a 9-to-1 split.
> Get the recurrence T(n) = T(9n/10) + T(n/10) + ©(n) = O(nlgn)

> Splits in the recursion tree will not always be good, there will be
usually a mix of good and bad splits

> For intuition why this not affect the running time, suppose we
alternate between best-case and worst-case flips

O/n\ _

((n-1)/2-1] [(n-1)/2]

1

Lecture 24, 14.05.2025

Average case over all inputs

Intuition

> |magine that PARTITION always produces a 9-to-1 split.
> Get the recurrence T(n) = T(9n/10) 4 T(n/10) + ©(n) = ©(nlgn)

> Splits in the recursion tree will not always be good, there will be
usually a mix of good and bad splits

> For intuition why this not affect the running time, suppose we
alternate between best-case and worst-case flips

<= > ©(n)

((n-1)/2-1] | (n-1)/2]

Lecture 24, 14.05.2025

Average case over all inputs

Intuition

> |magine that PARTITION always produces a 9-to-1 split.
> Get the recurrence T(n) = T(9n/10) 4 T(n/10) + ©(n) = ©(nlgn)

> Splits in the recursion tree will not always be good, there will be
usually a mix of good and bad splits

> For intuition why this not affect the running time, suppose we
alternate between best-case and worst-case flips

<-->0e((n)----- > O(n)
((n-1)/2-1] | (n1)/2]

((n-1)/2-1] | (n-1)/2]

Lecture 24, 14.05.2025

Average case over all inputs

Intuition

> |magine that PARTITION always produces a 9-to-1 split.
> Get the recurrence T(n) = T(9n/10) 4 T(n/10) + ©(n) = ©(nlgn)

> Splits in the recursion tree will not always be good, there will be
usually a mix of good and bad splits

> For intuition why this not affect the running time, suppose we
alternate between best-case and worst-case flips

<-->0e((n)----- > O(n)
((n-1)/2-1] | (n1)/2]

((n-1)/2-1] | (n-1)/2]

Both trees have the same asymptotic running time: ©(nlg n)

Lecture 24, 14.05.2025

RANDOMIZED VERSION
OF QUICK SORT

Lecture 24, 14.05.2025

=

RANDOMIZED VERSION
OF QUICK SORT

Lecture 24, 14.05.2025

5% defeated by
RANDOMIZED VERSION
OF QUICK SORT

Lecture 24, 14.05.2025

GEBad
[

Randomized version of quick sort

Advantages

> We saw intuition for good running time when all permutations of
input are equally likely

> This is not always true

Lecture 24, 14.05.2025

Randomized version of quick sort

Advantages

> We saw intuition for good running time when all permutations of
input are equally likely

> This is not always true

> To correct this and remove the possibilities for enemies we add
randomization

Lecture 24, 14.05.2025

Randomized version of quick sort

Advantages

> We saw intuition for good running time when all permutations of
input are equally likely

> This is not always true

> To correct this and remove the possibilities for enemies we add
randomization

» HUGE difference between

Expected running time over all inputs
and

Expected running time for any input

Lecture 24, 14.05.2025

How to use randomization

> We could randomly permute input array

Lecture 24, 14.05.2025

How to use randomization

> We could randomly permute input array

> |Instead we use random sampling or picking one element in random

Lecture 24, 14.05.2025

How to use randomization

> We could randomly permute input array
> |Instead we use random sampling or picking one element in random

> Don't always use A[r] as the pivot. Instead, randomly pick an
element from the subarray that is being sorted

Lecture 24, 14.05.2025

Randomized quick sort

RANDOMIZED-PARTITION (4, p, 1)
i = RANDOM(p, 1)
exchange A[r] with A[i]
return PARTITION(A4, p, r)

RANDOMIZED-QUICKSORT (4, p, r)

ifp<r
q = RANDOMIZED-PARTITION (A, p,)
RANDOMIZED-QUICKSORT (A4, p,q — 1)
RANDOMIZED-QUICKSORT(A,q + 1,r)

Lecture 24, 14.05.2025

Lecture 24, 14.05.2025

Time to wake up!

Q
o
£
%
X

L

ST}
!
>
Ng
© N
R |
- o
S
©
- 0
o
,m_l
=
- ™
™
— N
N
- ©
= M~

Lecture 24, 14.05.2025

Q
o
£
%
X

L

ST}
!
>
Ng
© N
R |
- o
An
©
- 0
o
,m_l
=
- ™
™
— N
N
- ©
= M~

Lecture 24, 14.05.2025

Q
o
£
%
X

L

=) Lo
< —
o
AE

0

) <
~

g o
=)

€ o
i

< —
<

.Alﬂ. 3
™

z o~
N

.Alﬂ. 6
= N~

Lecture 24, 14.05.2025

Q
o
£
%
X

L

=) Lo
< —
o
AE

0

) <
~

g o
=)

€ o
i

< —
<

.Alﬂ. 3
™

z o~
N

.Alﬂ. 6
= N~

Lecture 24, 14.05.2025

Q
o
£
%
X

L

z <

S
W
s -
e
o~
e
o~

Lecture 24, 14.05.2025

Q
o
£
%
X

L

z <

S
G
s -
e
o~
e
o~

Lecture 24, 14.05.2025

Q
o
£
%
X

L

g o

e
S~
)
s
-
e
S

Lecture 24, 14.05.2025

Q
o
£
%
X

L

g o
= o]
5 N~
)
s
-
e
S

Lecture 24, 14.05.2025

Q
o
£
%
X

L

= <
-
g o™
g 9V

Lecture 24, 14.05.2025

Q
o
£
%
X

L

=
= <
©
< i
~
< o™

Lecture 24, 14.05.2025

Q
o
£
%
X

L

Lecture 24, 14.05.2025

Q
o
£
%
X

L

Lecture 24, 14.05.2025

Q
o
£
%
X

L

Lecture 24, 14.05.2025

9
o
S
L)
X

LLI

Time it takes is number of calls to PARTITION + total number of

comparisons

Lecture 24, 14.05.2025

9
o
S
L)
X

LLI

Time it takes is number of calls to PARTITION + total number of

comparisons

Lecture 24, 14.05.2025

Average-case analysis

> The dominant cost of the algorithm is partitioning

Lecture 24, 14.05.2025

Average-case analysis

> The dominant cost of the algorithm is partitioning

> Total amount of work of each call to PARTITION is a constant plus
the number of comparisons that are performed in the for loop

Lecture 24, 14.05.2025

Average-case analysis

> The dominant cost of the algorithm is partitioning

> Total amount of work of each call to PARTITION is a constant plus
the number of comparisons that are performed in the for loop

> An element is a pivot at most once = PARTITION is called at most
n times

Lecture 24, 14.05.2025

Average-case analysis

» The dominant cost of the algorithm is partitioning

> Total amount of work of each call to PARTITION is a constant plus
the number of comparisons that are performed in the for loop

> An element is a pivot at most once = PARTITION is called at most
n times

> Let X = the total number of comparisons performed in all calls to
PARTITION

Lecture 24, 14.05.2025

Average-case analysis

» The dominant cost of the algorithm is partitioning

> Total amount of work of each call to PARTITION is a constant plus
the number of comparisons that are performed in the for loop

> An element is a pivot at most once = PARTITION is called at most
n times

> Let X = the total number of comparisons performed in all calls to
PARTITION

> Then the total work done over the entire execution is O(n + X)

Lecture 24, 14.05.2025

Average-case analysis

» The dominant cost of the algorithm is partitioning

> Total amount of work of each call to PARTITION is a constant plus
the number of comparisons that are performed in the for loop

> An element is a pivot at most once = PARTITION is called at most
n times

> Let X = the total number of comparisons performed in all calls to
PARTITION

> Then the total work done over the entire execution is O(n + X)

> We proceed by bounding (the expected value of) X

Lecture 24, 14.05.2025

Bound on the overall number of comparisons

For ease of notation:

> Rename elements of A as z, ..., z,, with z; being the ith smallest
element
> Define the set Z; = {z, zi11,...,z}

Lecture 24, 14.05.2025

Bound on the overall number of comparisons

For ease of notation:

> Rename elements of A as z, ..., z,, with z; being the ith smallest
element
> Define the set Z; = {z, zi11,...,z}

Random indicator variables:

> Let Xjj = I{z is compared to z;}

Lecture 24, 14.05.2025

Bound on the overall number of comparisons

For ease of notation:

> Rename elements of A as z, ..., z,, with z; being the ith smallest
element
> Define the set Z; = {z, zi11,...,z}

Random indicator variables:
> Let Xjj = I{z is compared to z;}

> As each pair is compared at most once (when one of them is the
pivot), the total number of comparisons formed by the algorithm is

X=2. 2. %

i=1 j=i+1

Lecture 24, 14.05.2025

Applying linearity of expectation

The expected total number of comparisons is

B[= 8 [Z > x]

i=1 j=i+1

Lecture 24, 14.05.2025

Applying linearity of expectation

The expected total number of comparisons is

B[= 8 [Z > x]

i=1 j=i+1

= > E[X]

i=1 j=i+1

Lecture 24, 14.05.2025

Applying linearity of expectation

The expected total number of comparisons is

B[= 8 [Z > x]

i=1 j=i+1

= > E[X]

i=1 j=i+1

= Z Z Pr[z; is compared to zj]

i=1 j=i+1

Lecture 24, 14.05.2025

Probability that z; is compared to z;

> If a pivot x such that z; < x < z; is chosen, then z and z; will
never be compared at any later time

Lecture 24, 14.05.2025

Probability that z; is compared to z;

> If a pivot x such that z; < x < z; is chosen, then z and z; will
never be compared at any later time

> If either z; or z; is chosen before any other element of Zj;, then it
will be compared to all the elements of Zj;, except itself

Lecture 24, 14.05.2025

Probability that z; is compared to z

> If a pivot x such that z; < x < z; is chosen, then z and z; will
never be compared at any later time

> If either z; or z; is chosen before any other element of Zj;, then it
will be compared to all the elements of Zj;, except itself

> The probability that z is compared to z; is the probability that
either z; or z; is the element first chosen.

Lecture 24, 14.05.2025

If a pivot x such that z; < x < z; is chosen, then z and z; will
never be compared at any later time

If either z; or z; is chosen before any other element of Zj;, then it
will be compared to all the elements of Z;;, except itself

The probability that z; is compared to z; is the probability that
either z; or z; is the element first chosen.

There are j — i + 1 elements and pivots are chosen randomly and
independently. Thus the probability that any particular one of them
is the first one chose is 1/(j — i + 1).

If a pivot x such that z; < x < z; is chosen, then z and z; will
never be compared at any later time

If either z; or z; is chosen before any other element of Zj;, then it
will be compared to all the elements of Z;;, except itself

The probability that z; is compared to z; is the probability that
either z; or z; is the element first chosen.

There are j — i + 1 elements and pivots are chosen randomly and
independently. Thus the probability that any particular one of them
is the first one chose is 1/(j — i + 1).

Therefore

2
Pr[z; is compared to z] = i

Wrapping up

n—1 n
E[X] =) _ > Prlz is compared to zj]

i=1 j=i+1

Lecture 24, 14.05.2025

Wrapping up

n—1 n
E[X] =) _ > Prlz is compared to zj]

i=1 j=i+1
n—1 n 2
- iz:;j;-i:-lj —itl1

Lecture 24, 14.05.2025

Wrapping up

n—1 n
E[X] =) _ > Prlz is compared to zj]

i=1 j=i+1

Lecture 24, 14.05.2025

Wrapping up

n—1 n
E[X] =) _ > Prlz is compared to zj]

i=1 j=i+1

Lecture 24, 14.05.2025

Wrapping up

n—=1 n

E[X] =) _ > Prlz is compared to zj]

i=1 j=i+1

= Z O(lg n) = O(nlgn)

Lecture 24, 14.05.2025

Summary of quick sort

> We have proved that randomized quick sort has expected running
time O(nlg n) for any input.

Lecture 24, 14.05.2025

Summary of quick sort

> We have proved that randomized quick sort has expected running
time O(nlg n) for any input.

> The algorithm is in-place

Lecture 24, 14.05.2025

Summary of quick sort

> We have proved that randomized quick sort has expected running
time O(nlg n) for any input.

> The algorithm is in-place

> Very efficient and easy to implement in practice

Lecture 24, 14.05.2025

