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Hash tables: summary

HAsH-tables efficiently implement:

INSERT: O(1)
DELETE: O(1)
SEARCH: Expected O(n/m) (if good hash function)

Cannot avoid collisions without having m > n?

Instead deal with collisions using for example chaining
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v

The sorting algorithm of choice in many computer systems

\4

Easy to implement

> Fast in practice (and as we will see in theory)

v

As merge-sort, based on divide-and-conquer paradigm
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Quick Sort
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Quick Sort ldea

Example (5,8,4,7,1,2,3,6)
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Quick Sort ldea
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Quick Sort ldea

Example (5,8,4,7,1,2,3, 6)
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Quick Sort ldea

Example (5,8,4,7,1,2,3, 6)

712 3 6]

4 1 2 3|$—>m
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Quick Sort — Divide-and-Conquer

To sort the subarray A[p...r]:

Divide: Partition A[p...r], into two (possibly empty) subarrays
Alp...q—1] and A[g+1...r], such that each element in
the first subarray is < A[g] and each element in the

second subarray is > A[q]
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Quick Sort — Divide-and-Conquer

To sort the subarray Alp...r]:

Divide: Partition A[p...r], into two (possibly empty) subarrays
Alp...q—1] and A[g+1...r], such that each element in
the first subarray is < A[g] and each element in the
second subarray is > A[q]

Conquer: Sort the two subarrays by recursive calls to QUICKSORT

Combine: No work is needed to combine the subarrays, because they
are sorted in place
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Partitioning (divide step)

PARTITION always selects the last element A[r] in the subarray A[p...r]
as the pivot — the element around which to partition

PARTITION(A, p,r)

x = Alr]
i=p—1
for j = ptor — 1
if A[j] < x
i=i+1

exchange A[i] with A[]]
exchange A[i + 1] with A[r]
returni + 1
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PARTITION(A4, p,r)

Partitioning (divide step) X = Ar]
Loop Invariant: i = _P -1
All entries in A[p...i] are < pivot forj = ptor —1
All entries in A[i +1...j — 1] are > pivot if A[j] <x
A[r] = pivot i=1i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Al Aldl Alr]
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Alpl Alq] Alr]

Correctness of Partitioning EJE j 112[3]6

Loop Invariant:
All entries in Alp... /] are < pivot
All entries in A[i +1...j — 1] are > pivot
A[r] = pivot
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Alpl Alq] Alr]

Correctness of Partitioning EJE j 11236

Loop Invariant:
All entries in A[p...i] are < pivot
All entries in A[i +1...j — 1] are > pivot
A[r] = pivot

Initialization: Before the loop starts, loop invariant satisfied, because r is the pivot
and the subarrays A[p...i] and A[i +1...j — 1] are empty
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Alpl Alq] Alr]

Correctness of Partitioning EESE: - 11236

Loop Invariant:
All entries in A[p...i] are < pivot
All entries in A[i +1...j — 1] are > pivot
A[r] = pivot

Initialization: Before the loop starts, loop invariant satisfied, because r is the pivot
and the subarrays A[p...i] and A[i +1...j — 1] are empty

Maintenance: If A[j] < pivot, then A[j] and A[i + 1] are swapped and then i and j
are incremented. If A[j] > pivot then increment only j
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Loop Invariant:
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Initialization: Before the loop starts, loop invariant satisfied, because r is the pivot
and the subarrays A[p...i] and A[i +1...j — 1] are empty

Maintenance: If A[j] < pivot, then A[j] and A[i + 1] are swapped and then i and j

are incremented. If A[j] > pivot then increment only j

Termination: When the loop terminates, j = r so all elements in A are partitioned
into Alp...i] < pivot, A[i+1...r—1] > pivot and A[r] = pivot




Alp] Alq] Alr]

Loop Invariant:
All entries in A[p...i] are < pivot
All entries in A[i+1...j— 1] are > pivot
Alr] = pivot

Initialization: Before the loop starts, loop invariant satisfied, because r is the pivot
and the subarrays A[p...i] and A[i +1...j — 1] are empty

Maintenance: If A[j] < pivot, then A[j] and A[i + 1] are swapped and then i and j

are incremented. If A[j] > pivot then increment only j

Termination: When the loop terminates, j = r so all elements in A are partitioned
into Alp...i] < pivot, A[i+1...r—1] > pivot and A[r] = pivot

The last two lines of PARTITION moves the pivot element to the “right” place by
swapping A[i + 1] and A[r]




Time for partitioning

PARTITION(A, p,r)
x = Alr]
i=p—1
forj = ptor —1
if A[j] < x
i=i+1
exchange A[i] with A[}]
exchange A[i + 1] with A[r]
returni + 1
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Time for partitioning

PARTITION(A, p,r)

x = Alr]
i=p—1
for j = ptor —1
if A[j] < x
i=i+1

exchange A[i] with A[]]
exchange A[i + 1] with A[r]
return i + 1

> for loop runs ~ n:=r — p+ 1 times.
> Each iteration takes time ©(1)

> Total running time is ©(n) for an array of length n.
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Time for partitioning

PARTITION(A, p,r)

x = Alr]
i=p—1
for j = ptor —1
if A[j] < x
i=i+1
exchange A[i] with A[}]

exchange A[i + 1] with A[r]
return i + 1

\4

for loop runs ~ n:=r — p+ 1 times.

v

Each iteration takes time ©(1)

v

Total running time is ©(n) for an array of length n.

v

Note that the number of comparisons made is ~ n
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Quick Sort Algorithm

QUICKSORT(4, p, r)
ifp<r
q = PARTITION(A, p,r)
QUICKSORT(4, p,g — 1)
QUICKSORT(A,q + 1,1)
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Worst case running time of quick sort
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Worst case running time of quick sort

1 2 3 o(3)
()
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Worst case running time of quick sort

Total running time: ©(n?)

1 2 3 @ o(3)

()
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Best case running time of quick sort
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Best case running time of quick sort

> Occurs when the subarrays are completely balanced every time =
the pivots always split the array into two subarrays of equal size
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T(n) =2T(n/2) + ©(n)
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Best case running time of quick sort

> Occurs when the subarrays are completely balanced every time =
the pivots always split the array into two subarrays of equal size

> Get the recurrence

T(n) =2T(n/2) + ©(n)

= O(nlgn)
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Average case over all inputs

Intuition

> Imagine that PARTITION always produces a 9-to-1 split.

> Get the recurrence T(n) = T(9n/10) + T(n/10) + ©(n)
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usually a mix of good and bad splits
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Intuition

> Imagine that PARTITION always produces a 9-to-1 split.
> Get the recurrence T(n) = T(9n/10) + T(n/10) + ©(n) = O(nlgn)

> Splits in the recursion tree will not always be good, there will be
usually a mix of good and bad splits

> For intuition why this not affect the running time, suppose we
alternate between best-case and worst-case flips

O/n\ _

((n-1)/2-1] [ (n-1)/2]

1
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Average case over all inputs

Intuition

> |magine that PARTITION always produces a 9-to-1 split.
> Get the recurrence T(n) = T(9n/10) 4 T(n/10) + ©(n) = ©(nlgn)

> Splits in the recursion tree will not always be good, there will be
usually a mix of good and bad splits

> For intuition why this not affect the running time, suppose we
alternate between best-case and worst-case flips
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Average case over all inputs

Intuition

> |magine that PARTITION always produces a 9-to-1 split.
> Get the recurrence T(n) = T(9n/10) 4 T(n/10) + ©(n) = ©(nlgn)

> Splits in the recursion tree will not always be good, there will be
usually a mix of good and bad splits

> For intuition why this not affect the running time, suppose we
alternate between best-case and worst-case flips

<-->0e(  (n )----- > O(n)
((n-1)/2-1] | (n1)/2]

((n-1)/2-1] | (n-1)/2]

Both trees have the same asymptotic running time: ©(nlg n)
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RANDOMIZED VERSION
OF QUICK SORT
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=

RANDOMIZED VERSION
OF QUICK SORT
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5% defeated by
RANDOMIZED VERSION
OF QUICK SORT
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GEBad
[




Randomized version of quick sort

Advantages

> We saw intuition for good running time when all permutations of
input are equally likely

> This is not always true
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Randomized version of quick sort

Advantages

> We saw intuition for good running time when all permutations of
input are equally likely

> This is not always true

> To correct this and remove the possibilities for enemies we add
randomization

» HUGE difference between

Expected running time over all inputs
and

Expected running time for any input
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How to use randomization

> We could randomly permute input array
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How to use randomization

> We could randomly permute input array
> |Instead we use random sampling or picking one element in random

> Don't always use A[r] as the pivot. Instead, randomly pick an
element from the subarray that is being sorted
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Randomized quick sort

RANDOMIZED-PARTITION (4, p, 1)
i = RANDOM(p, 1)
exchange A[r] with A[i]
return PARTITION(A4, p, r)

RANDOMIZED-QUICKSORT (4, p, r)

ifp<r
q = RANDOMIZED-PARTITION (A, p, )
RANDOMIZED-QUICKSORT (A4, p,q — 1)
RANDOMIZED-QUICKSORT(A,q + 1,r)
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Time to wake up!
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Time it takes is number of calls to PARTITION + total number of

comparisons
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> The dominant cost of the algorithm is partitioning
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Average-case analysis

» The dominant cost of the algorithm is partitioning

> Total amount of work of each call to PARTITION is a constant plus
the number of comparisons that are performed in the for loop

> An element is a pivot at most once = PARTITION is called at most
n times

> Let X = the total number of comparisons performed in all calls to
PARTITION

> Then the total work done over the entire execution is O(n + X)
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Average-case analysis

» The dominant cost of the algorithm is partitioning

> Total amount of work of each call to PARTITION is a constant plus
the number of comparisons that are performed in the for loop

> An element is a pivot at most once = PARTITION is called at most
n times

> Let X = the total number of comparisons performed in all calls to
PARTITION

> Then the total work done over the entire execution is O(n + X)

> We proceed by bounding (the expected value of) X
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Bound on the overall number of comparisons

For ease of notation:

> Rename elements of A as z, ..., z,, with z; being the ith smallest
element
> Define the set Z; = {z, zi11,...,z}
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For ease of notation:
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element
> Define the set Z; = {z, zi11,...,z}
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Bound on the overall number of comparisons

For ease of notation:

> Rename elements of A as z, ..., z,, with z; being the ith smallest
element
> Define the set Z; = {z, zi11,...,z}

Random indicator variables:
> Let Xjj = I{z is compared to z;}

> As each pair is compared at most once (when one of them is the
pivot), the total number of comparisons formed by the algorithm is

X=2. 2. %

i=1 j=i+1
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Applying linearity of expectation

The expected total number of comparisons is

B[ = 8 [Z > x]

i=1 j=i+1
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Applying linearity of expectation

The expected total number of comparisons is

B[ = 8 [Z > x]

i=1 j=i+1
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Applying linearity of expectation

The expected total number of comparisons is

B[ = 8 [Z > x]

i=1 j=i+1

= > E[X]

i=1 j=i+1

= Z Z Pr[z; is compared to zj]

i=1 j=i+1
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Probability that z; is compared to z;

> If a pivot x such that z; < x < z; is chosen, then z and z; will
never be compared at any later time
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Probability that z; is compared to z

> If a pivot x such that z; < x < z; is chosen, then z and z; will
never be compared at any later time

> If either z; or z; is chosen before any other element of Zj;, then it
will be compared to all the elements of Zj;, except itself

> The probability that z is compared to z; is the probability that
either z; or z; is the element first chosen.
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If a pivot x such that z; < x < z; is chosen, then z and z; will
never be compared at any later time

If either z; or z; is chosen before any other element of Zj;, then it
will be compared to all the elements of Z;;, except itself

The probability that z; is compared to z; is the probability that
either z; or z; is the element first chosen.

There are j — i + 1 elements and pivots are chosen randomly and
independently. Thus the probability that any particular one of them
is the first one chose is 1/(j — i + 1).



If a pivot x such that z; < x < z; is chosen, then z and z; will
never be compared at any later time

If either z; or z; is chosen before any other element of Zj;, then it
will be compared to all the elements of Z;;, except itself

The probability that z; is compared to z; is the probability that
either z; or z; is the element first chosen.

There are j — i + 1 elements and pivots are chosen randomly and
independently. Thus the probability that any particular one of them
is the first one chose is 1/(j — i + 1).

Therefore

2
Pr[z; is compared to z] = i



Wrapping up

n—1 n
E[X] =) _ > Prlz is compared to zj]

i=1 j=i+1
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Wrapping up

n—1 n
E[X] =) _ > Prlz is compared to zj]

i=1 j=i+1
n—1 n 2
- iz:;j;-i:-lj —itl1
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Wrapping up

n—1 n
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Wrapping up

n—=1 n

E[X] =) _ > Prlz is compared to zj]

i=1 j=i+1

= Z O(lg n) = O(nlgn)
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Summary of quick sort

> We have proved that randomized quick sort has expected running
time O(nlg n) for any input.

Lecture 24, 14.05.2025



Summary of quick sort

> We have proved that randomized quick sort has expected running
time O(nlg n) for any input.

> The algorithm is in-place

Lecture 24, 14.05.2025



Summary of quick sort

> We have proved that randomized quick sort has expected running
time O(nlg n) for any input.

> The algorithm is in-place

> Very efficient and easy to implement in practice

Lecture 24, 14.05.2025



