
Algorithms: Hashing and Quick Sort

Alessandro Chiesa, Ola Svensson

School of Computer and Communication Sciences

Lecture 24, 14.05.2025

Hash-tables efficiently implement:
Insert: O(1)
Delete: O(1)
Search: Expected O(n/m) (if good hash function)

Cannot avoid collisions without having m ≫ n2

Instead deal with collisions using for example chaining

Hash tables: summary

Lecture 24, 14.05.2025

Quick Sort

▶ The sorting algorithm of choice in many computer systems

▶ Easy to implement

▶ Fast in practice (and as we will see in theory)

▶ As merge-sort, based on divide-and-conquer paradigm

Lecture 24, 14.05.2025

DIVIDE-AND-CONQUER
Quick Sort

Lecture 24, 14.05.2025

Quick Sort Idea
Example ⟨5, 8, 4, 7, 1, 2, 3, 6⟩

5 8 4 7 1 2 3 65 8 4 7 1 2 3 6

5 4 1 2 3 7 85 4 1 2 3 7 86 divides

1 21 2 5 45 43 divides 7 8 divides

52 divides1 4 divides

1 2 3 4 5 6 7 8

combine
1 2 3 4 5 7 8

combine
1 2 4 5

Lecture 24, 14.05.2025

Quick Sort — Divide-and-Conquer

To sort the subarray A[p . . . r]:

Divide: Partition A[p . . . r], into two (possibly empty) subarrays
A[p . . . q − 1] and A[q + 1 . . . r], such that each element in
the first subarray is ≤ A[q] and each element in the
second subarray is ≥ A[q]

Conquer: Sort the two subarrays by recursive calls to Quicksort

Combine: No work is needed to combine the subarrays, because they
are sorted in place

Lecture 24, 14.05.2025

Partitioning (divide step)

Partition always selects the last element A[r] in the subarray A[p . . . r]
as the pivot — the element around which to partition

Lecture 24, 14.05.2025

Partitioning (divide step)
Loop Invariant:

1 All entries in A[p . . . i] are ≤ pivot
2 All entries in A[i + 1 . . . j − 1] are > pivot
3 A[r] = pivot

A:
A[p] A[q] A[r]

x: 6

8 44 8 55 81 72 183 276 38 67
i i i i i ij j j j j j j

Lecture 24, 14.05.2025

Correctness of Partitioning
Loop Invariant:

1 All entries in A[p . . . i] are ≤ pivot

2 All entries in A[i + 1 . . . j − 1] are > pivot

3 A[r] = pivot

A:

A[p] A[q] A[r]

4 5 8 7 1 2 3 6

i j

Initialization: Before the loop starts, loop invariant satisfied, because r is the pivot
and the subarrays A[p . . . i] and A[i + 1 . . . j − 1] are empty

Maintenance: If A[j] ≤ pivot, then A[j] and A[i + 1] are swapped and then i and j
are incremented. If A[j] > pivot then increment only j

Termination: When the loop terminates, j = r so all elements in A are partitioned
into A[p . . . i] ≤ pivot, A[i + 1 . . . r − 1] > pivot and A[r] = pivot

The last two lines of Partition moves the pivot element to the “right” place by
swapping A[i + 1] and A[r]

Lecture 24, 14.05.2025

Time for partitioning

▶ for loop runs ≈ n := r − p + 1 times.
▶ Each iteration takes time Θ(1)
▶ Total running time is Θ(n) for an array of length n.
▶ Note that the number of comparisons made is ≈ n

Lecture 24, 14.05.2025

Quick Sort Algorithm

Lecture 24, 14.05.2025

Worst case running time of quick sort
1 2 3 4 . . . n-2 n-1 n

1 2 3 4 . . . n-2 n-1

1 2 3 4 . . . n-2

1 2 3

1 2

1 Θ(1)

Θ(2)

Θ(3)

...

Θ(n − 2)

Θ(n − 1)

Θ(n)

Total running time: Θ(n2)

Lecture 24, 14.05.2025

Best case running time of quick sort

▶ Occurs when the subarrays are completely balanced every time =
the pivots always split the array into two subarrays of equal size

▶ Get the recurrence

T (n) = 2T (n/2) + Θ(n)

= Θ(n lg n)

Lecture 24, 14.05.2025

Average case over all inputs
Intuition

▶ Imagine that Partition always produces a 9-to-1 split.
▶ Get the recurrence T (n) = T (9n/10) + T (n/10) + Θ(n) = Θ(n lg n)

▶ Splits in the recursion tree will not always be good, there will be
usually a mix of good and bad splits

▶ For intuition why this not affect the running time, suppose we
alternate between best-case and worst-case flips

n

0 n − 1

(n-1)/2 -1 (n-1)/2

Θ(n) n

(n-1)/2 -1 (n-1)/2

Θ(n)

Both trees have the same asymptotic running time: Θ(n lg n)

Lecture 24, 14.05.2025

defeated by

RANDOMIZED VERSION
OF QUICK SORT

Lecture 24, 14.05.2025

Randomized version of quick sort
Advantages

▶ We saw intuition for good running time when all permutations of
input are equally likely

▶ This is not always true

▶ To correct this and remove the possibilities for enemies we add
randomization

▶ HUGE difference between

Expected running time over all inputs

and

Expected running time for any input

Lecture 24, 14.05.2025

How to use randomization

▶ We could randomly permute input array

▶ Instead we use random sampling or picking one element in random

▶ Don’t always use A[r] as the pivot. Instead, randomly pick an
element from the subarray that is being sorted

Lecture 24, 14.05.2025

Randomized quick sort

Lecture 24, 14.05.2025

Analysis

Time to wake up!

Lecture 24, 14.05.2025

Example

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

7 6 2 3 1 5 10 12 9 15 410 107 6 2 3 1 5 12 9 15 4

7 6 2 3 1 5 9 4 15 127 6 2 3 1 5 9 4 15 1212

15

7 6 2 3 1 5 9 47 6 2 3 1 9 455

2 3 1 4 7 6 92 3 1 4 7 966

77 9

9

2 3 1 43 1 42 2

1 3 43

4

Time it takes is number of calls to Partition + total number of
comparisons

Lecture 24, 14.05.2025

Average-case analysis

▶ The dominant cost of the algorithm is partitioning
▶ Total amount of work of each call to Partition is a constant plus

the number of comparisons that are performed in the for loop
▶ An element is a pivot at most once ⇒ Partition is called at most

n times
▶ Let X = the total number of comparisons performed in all calls to

Partition
▶ Then the total work done over the entire execution is O(n + X)
▶ We proceed by bounding (the expected value of) X

Lecture 24, 14.05.2025

Bound on the overall number of comparisons

For ease of notation:
▶ Rename elements of A as z1, . . . , zn, with zi being the ith smallest

element
▶ Define the set Zij = {zi , zi+1, . . . , zj}

Random indicator variables:
▶ Let Xij = I{zi is compared to zj}
▶ As each pair is compared at most once (when one of them is the

pivot), the total number of comparisons formed by the algorithm is

X =
n∑

i=1

n∑
j=i+1

Xij

Lecture 24, 14.05.2025

Applying linearity of expectation

The expected total number of comparisons is

E[X] = E
[n∑

i=1

n∑
j=i+1

Xij

]

=
n∑

i=1

n∑
j=i+1

E [Xij]

=
n∑

i=1

n∑
j=i+1

Pr[zi is compared to zj]

Lecture 24, 14.05.2025

Probability that zi is compared to zj

▶ If a pivot x such that zi < x < zj is chosen, then zi and zj will
never be compared at any later time

▶ If either zi or zj is chosen before any other element of Zij , then it
will be compared to all the elements of Zij , except itself

▶ The probability that zi is compared to zj is the probability that
either zi or zj is the element first chosen.

▶ There are j − i + 1 elements and pivots are chosen randomly and
independently. Thus the probability that any particular one of them
is the first one chose is 1/(j − i + 1).

▶ Therefore

Pr[zi is compared to zj] = 2
j − i + 1

Lecture 24, 14.05.2025

Wrapping up

E[X] =
n−1∑
i=1

n∑
j=i+1

Pr[zi is compared to zj]

=
n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=
n−1∑
i=1

n−i∑
k=1

2
k + 1

<

n−1∑
i=1

n∑
k=1

2
k

=
n−1∑
i=1

O(lg n) = O(n lg n)

Lecture 24, 14.05.2025

Summary of quick sort

▶ We have proved that randomized quick sort has expected running
time O(n lg n) for any input.

▶ The algorithm is in-place

▶ Very efficient and easy to implement in practice

Lecture 24, 14.05.2025

