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Hash-tables efficiently implement:
Insert: O(1)
Delete: O(1)
Search: Expected O(n/m) (if good hash function)

Cannot avoid collisions without having m ≫ n2

Instead deal with collisions using for example chaining

Hash tables: summary
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Quick Sort

▶ The sorting algorithm of choice in many computer systems

▶ Easy to implement

▶ Fast in practice (and as we will see in theory)

▶ As merge-sort, based on divide-and-conquer paradigm
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DIVIDE-AND-CONQUER
Quick Sort
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Quick Sort Idea
Example ⟨5, 8, 4, 7, 1, 2, 3, 6⟩

5 8 4 7 1 2 3 65 8 4 7 1 2 3 6

5 4 1 2 3 7 85 4 1 2 3 7 86 divides

1 21 2 5 45 43 divides 7 8 divides

52 divides1 4 divides

1 2 3 4 5 6 7 8

combine
1 2 3 4 5 7 8

combine
1 2 4 5
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Quick Sort — Divide-and-Conquer

To sort the subarray A[p . . . r ]:

Divide: Partition A[p . . . r ], into two (possibly empty) subarrays
A[p . . . q − 1] and A[q + 1 . . . r ], such that each element in
the first subarray is ≤ A[q] and each element in the
second subarray is ≥ A[q]

Conquer: Sort the two subarrays by recursive calls to Quicksort

Combine: No work is needed to combine the subarrays, because they
are sorted in place
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Partitioning (divide step)

Partition always selects the last element A[r ] in the subarray A[p . . . r ]
as the pivot — the element around which to partition
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Partitioning (divide step)
Loop Invariant:

1 All entries in A[p . . . i] are ≤ pivot
2 All entries in A[i + 1 . . . j − 1] are > pivot
3 A[r ] = pivot

A:
A[p] A[q] A[r ]

x: 6

8 44 8 55 81 72 183 276 38 67
i i i i i ij j j j j j j
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Correctness of Partitioning
Loop Invariant:

1 All entries in A[p . . . i ] are ≤ pivot

2 All entries in A[i + 1 . . . j − 1] are > pivot

3 A[r ] = pivot

A:

A[p] A[q] A[r ]

4 5 8 7 1 2 3 6

i j

Initialization: Before the loop starts, loop invariant satisfied, because r is the pivot
and the subarrays A[p . . . i] and A[i + 1 . . . j − 1] are empty

Maintenance: If A[j] ≤ pivot, then A[j] and A[i + 1] are swapped and then i and j
are incremented. If A[j] > pivot then increment only j

Termination: When the loop terminates, j = r so all elements in A are partitioned
into A[p . . . i] ≤ pivot, A[i + 1 . . . r − 1] > pivot and A[r ] = pivot

The last two lines of Partition moves the pivot element to the “right” place by
swapping A[i + 1] and A[r ]
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Time for partitioning

▶ for loop runs ≈ n := r − p + 1 times.
▶ Each iteration takes time Θ(1)
▶ Total running time is Θ(n) for an array of length n.
▶ Note that the number of comparisons made is ≈ n
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Quick Sort Algorithm
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Worst case running time of quick sort
1 2 3 4 . . . n-2 n-1 n

1 2 3 4 . . . n-2 n-1

1 2 3 4 . . . n-2

1 2 3

1 2

1 Θ(1)

Θ(2)

Θ(3)

...

Θ(n − 2)

Θ(n − 1)

Θ(n)

Total running time: Θ(n2)
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Best case running time of quick sort

▶ Occurs when the subarrays are completely balanced every time =
the pivots always split the array into two subarrays of equal size

▶ Get the recurrence

T (n) = 2T (n/2) + Θ(n)

= Θ(n lg n)

Lecture 24, 14.05.2025



Average case over all inputs
Intuition

▶ Imagine that Partition always produces a 9-to-1 split.
▶ Get the recurrence T (n) = T (9n/10) + T (n/10) + Θ(n) = Θ(n lg n)

▶ Splits in the recursion tree will not always be good, there will be
usually a mix of good and bad splits

▶ For intuition why this not affect the running time, suppose we
alternate between best-case and worst-case flips

n

0 n − 1

(n-1)/2 -1 (n-1)/2

Θ(n) n

(n-1)/2 -1 (n-1)/2

Θ(n)

Both trees have the same asymptotic running time: Θ(n lg n)
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defeated by

RANDOMIZED VERSION
OF QUICK SORT
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Randomized version of quick sort
Advantages

▶ We saw intuition for good running time when all permutations of
input are equally likely

▶ This is not always true

▶ To correct this and remove the possibilities for enemies we add
randomization

▶ HUGE difference between

Expected running time over all inputs

and

Expected running time for any input

Lecture 24, 14.05.2025



How to use randomization

▶ We could randomly permute input array

▶ Instead we use random sampling or picking one element in random

▶ Don’t always use A[r ] as the pivot. Instead, randomly pick an
element from the subarray that is being sorted
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Randomized quick sort
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Analysis

Time to wake up!
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Example

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]

7 6 2 3 1 5 10 12 9 15 410 107 6 2 3 1 5 12 9 15 4

7 6 2 3 1 5 9 4 15 127 6 2 3 1 5 9 4 15 1212

15

7 6 2 3 1 5 9 47 6 2 3 1 9 455

2 3 1 4 7 6 92 3 1 4 7 966

77 9

9

2 3 1 43 1 42 2

1 3 43

4

Time it takes is number of calls to Partition + total number of
comparisons
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Average-case analysis

▶ The dominant cost of the algorithm is partitioning
▶ Total amount of work of each call to Partition is a constant plus

the number of comparisons that are performed in the for loop
▶ An element is a pivot at most once ⇒ Partition is called at most

n times
▶ Let X = the total number of comparisons performed in all calls to

Partition
▶ Then the total work done over the entire execution is O(n + X )
▶ We proceed by bounding (the expected value of) X
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Bound on the overall number of comparisons

For ease of notation:
▶ Rename elements of A as z1, . . . , zn, with zi being the ith smallest

element
▶ Define the set Zij = {zi , zi+1, . . . , zj}

Random indicator variables:
▶ Let Xij = I{zi is compared to zj}
▶ As each pair is compared at most once (when one of them is the

pivot), the total number of comparisons formed by the algorithm is

X =
n∑

i=1

n∑
j=i+1

Xij
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Applying linearity of expectation

The expected total number of comparisons is

E[X ] = E
[ n∑

i=1

n∑
j=i+1

Xij

]

=
n∑

i=1

n∑
j=i+1

E [Xij ]

=
n∑

i=1

n∑
j=i+1

Pr[zi is compared to zj ]
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Probability that zi is compared to zj

▶ If a pivot x such that zi < x < zj is chosen, then zi and zj will
never be compared at any later time

▶ If either zi or zj is chosen before any other element of Zij , then it
will be compared to all the elements of Zij , except itself

▶ The probability that zi is compared to zj is the probability that
either zi or zj is the element first chosen.

▶ There are j − i + 1 elements and pivots are chosen randomly and
independently. Thus the probability that any particular one of them
is the first one chose is 1/(j − i + 1).

▶ Therefore

Pr[zi is compared to zj ] = 2
j − i + 1
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Wrapping up

E[X ] =
n−1∑
i=1

n∑
j=i+1

Pr[zi is compared to zj ]

=
n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=
n−1∑
i=1

n−i∑
k=1

2
k + 1

<

n−1∑
i=1

n∑
k=1

2
k

=
n−1∑
i=1

O(lg n) = O(n lg n)

Lecture 24, 14.05.2025



Summary of quick sort

▶ We have proved that randomized quick sort has expected running
time O(n lg n) for any input.

▶ The algorithm is in-place

▶ Very efficient and easy to implement in practice
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