

Algorithms: Hashing and Quick Sort

Alessandro Chiesa, Ola Svensson

 EPFL School of Computer and Communication Sciences

Lecture 24, 14.05.2025

Hash tables: summary

HASH-tables efficiently implement:

INSERT: $O(1)$

DELETE: $O(1)$

SEARCH: Expected $O(n/m)$ (if good hash function)

Cannot avoid collisions without having $m \gg n^2$

Instead deal with collisions using for example chaining

Quick Sort

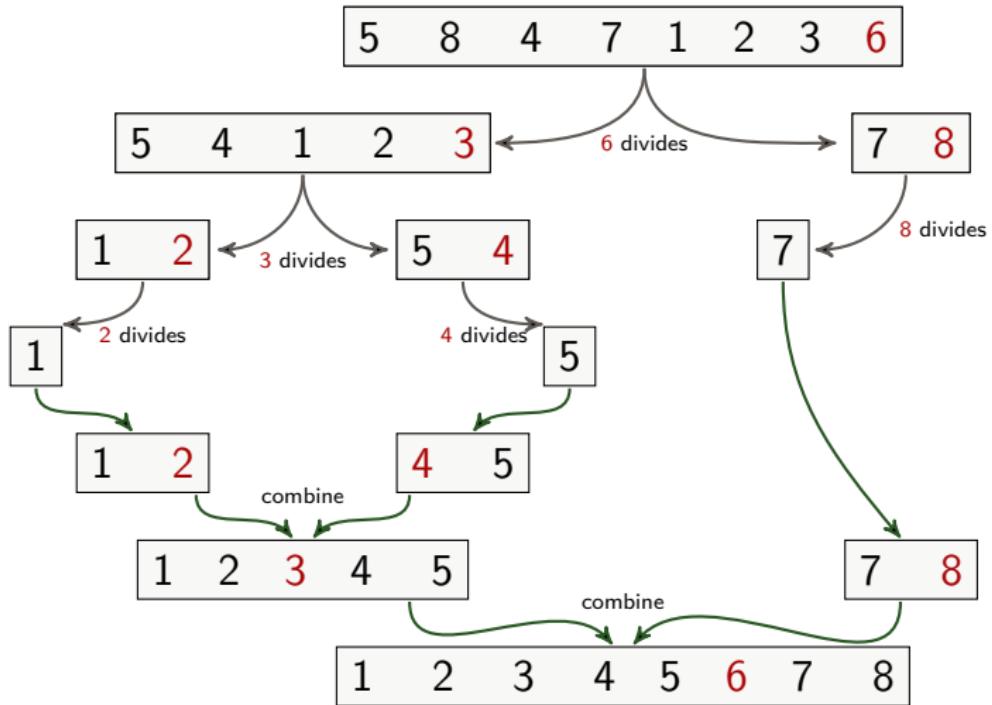
- ▶ The sorting algorithm of choice in many computer systems
- ▶ Easy to implement
- ▶ Fast in practice (and as we will see in theory)
- ▶ As merge-sort, based on divide-and-conquer paradigm

DIVIDE-AND-CONQUER

Quick Sort

Quick Sort Idea

Example $\langle 5, 8, 4, 7, 1, 2, 3, 6 \rangle$



Quick Sort — Divide-and-Conquer

To sort the subarray $A[p \dots r]$:

Divide: Partition $A[p \dots r]$, into two (possibly empty) subarrays $A[p \dots q - 1]$ and $A[q + 1 \dots r]$, such that each element in the first subarray is $\leq A[q]$ and each element in the second subarray is $\geq A[q]$

Conquer: Sort the two subarrays by recursive calls to `QUICKSORT`

Combine: No work is needed to combine the subarrays, because they are sorted in place

Partitioning (divide step)

PARTITION always selects the last element $A[r]$ in the subarray $A[p \dots r]$ as the **pivot** — the element around which to partition

PARTITION(A, p, r)

$x = A[r]$

$i = p - 1$

for $j = p$ **to** $r - 1$

if $A[j] \leq x$

$i = i + 1$

 exchange $A[i]$ with $A[j]$

 exchange $A[i + 1]$ with $A[r]$

return $i + 1$

Partitioning (divide step)

Loop Invariant:

- 1 All entries in $A[p \dots i]$ are \leq pivot
- 2 All entries in $A[i + 1 \dots j - 1]$ are $>$ pivot
- 3 $A[r] = \text{pivot}$

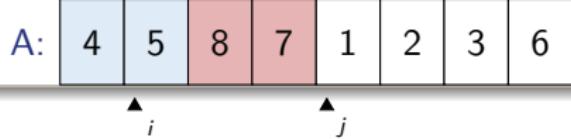
PARTITION(A, p, r)

```
x = A[r]
i = p - 1
for j = p to r - 1
    if A[j] ≤ x
        i = i + 1
        exchange A[i] with A[j]
exchange A[i + 1] with A[r]
return i + 1
```

x: 6

	$A[p]$		$A[q]$		$A[r]$			
$A:$	8	8	8	2	8	6	8	6
	\blacktriangle_i	\blacktriangle_j						

Correctness of Partitioning



Loop Invariant:

- 1 All entries in $A[p \dots i]$ are \leq pivot
- 2 All entries in $A[i + 1 \dots j - 1]$ are $>$ pivot
- 3 $A[r] =$ pivot

Initialization: Before the loop starts, loop invariant satisfied, because r is the pivot and the subarrays $A[p \dots i]$ and $A[i + 1 \dots j - 1]$ are empty

Maintenance: If $A[j] \leq$ pivot, then $A[j]$ and $A[i + 1]$ are swapped and then i and j are incremented. If $A[j] >$ pivot then increment only j

Termination: When the loop terminates, $j = r$ so all elements in A are partitioned into $A[p \dots i] \leq$ pivot, $A[i + 1 \dots r - 1] >$ pivot and $A[r] =$ pivot

The last two lines of PARTITION moves the pivot element to the “right” place by swapping $A[i + 1]$ and $A[r]$

Time for partitioning

```
PARTITION( $A, p, r$ )
```

```
     $x = A[r]$ 
```

```
     $i = p - 1$ 
```

```
    for  $j = p$  to  $r - 1$ 
```

```
        if  $A[j] \leq x$ 
```

```
             $i = i + 1$ 
```

```
            exchange  $A[i]$  with  $A[j]$ 
```

```
        exchange  $A[i + 1]$  with  $A[r]$ 
```

```
    return  $i + 1$ 
```

- ▶ **for** loop runs $\approx n := r - p + 1$ times.
- ▶ Each iteration takes time $\Theta(1)$
- ▶ Total running time is $\Theta(n)$ for an array of length n .
- ▶ Note that the number of comparisons made is $\approx n$

Quick Sort Algorithm

```
QUICKSORT( $A, p, r$ )
```

```
    if  $p < r$ 
```

```
         $q = \text{PARTITION}(A, p, r)$ 
```

```
         $\text{QUICKSORT}(A, p, q - 1)$ 
```

```
         $\text{QUICKSORT}(A, q + 1, r)$ 
```

Worst case running time of quick sort

1	2	3	4	...	$n-2$	$n-1$	n
---	---	---	---	-----	-------	-------	-----

 $\Theta(n)$

1	2	3	4	...	$n-2$	$n-1$
---	---	---	---	-----	-------	-------

 $\Theta(n-1)$

1	2	3	4	...	$n-2$
---	---	---	---	-----	-------

 $\Theta(n-2)$

Total running time: $\Theta(n^2)$

⋮

1	2	3
---	---	---

 $\Theta(3)$

1	2
---	---

 $\Theta(2)$

1

 $\Theta(1)$

Best case running time of quick sort

- ▶ Occurs when the subarrays are completely balanced every time = the pivots always split the array into two subarrays of equal size
- ▶ Get the recurrence

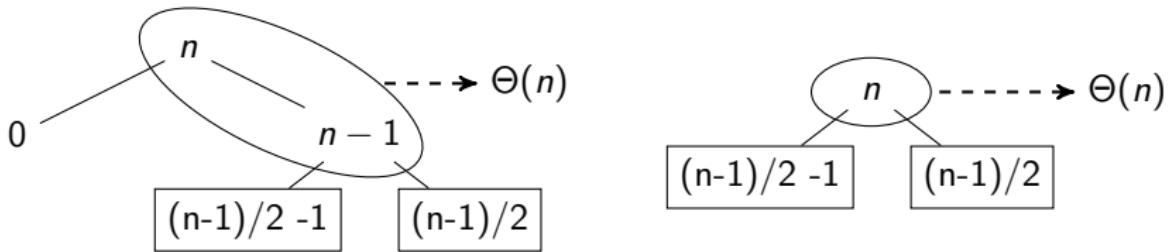
$$T(n) = 2T(n/2) + \Theta(n)$$

$$= \Theta(n \lg n)$$

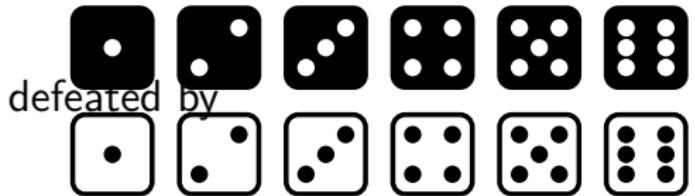
Average case over all inputs

Intuition

- ▶ Imagine that PARTITION always produces a 9-to-1 split.
- ▶ Get the recurrence $T(n) = T(9n/10) + T(n/10) + \Theta(n) = \Theta(n \lg n)$
- ▶ Splits in the recursion tree will not always be good, there will be usually a mix of good and bad splits
- ▶ For intuition why this not affect the running time, suppose we alternate between best-case and worst-case splits



Both trees have the same asymptotic running time: $\Theta(n \lg n)$



defeated by

RANDOMIZED VERSION OF QUICK SORT

Randomized version of quick sort

Advantages

- ▶ We saw intuition for good running time when all permutations of input are equally likely
- ▶ This is not always true
- ▶ To correct this and remove the possibilities for enemies we add randomization
- ▶ **HUGE difference between**

Expected running time over all inputs

and

Expected running time for any input

How to use randomization

- ▶ We could randomly permute input array
- ▶ Instead we use **random sampling** or picking one element in random
- ▶ Don't always use $A[r]$ as the pivot. Instead, randomly pick an element from the subarray that is being sorted

Randomized quick sort

```
RANDOMIZED-PARTITION( $A, p, r$ )
```

```
 $i = \text{RANDOM}(p, r)$ 
```

```
exchange  $A[r]$  with  $A[i]$ 
```

```
return PARTITION( $A, p, r$ )
```

```
RANDOMIZED-QUICKSORT( $A, p, r$ )
```

```
if  $p < r$ 
```

```
 $q = \text{RANDOMIZED-PARTITION}(A, p, r)$ 
```

```
RANDOMIZED-QUICKSORT( $A, p, q - 1$ )
```

```
RANDOMIZED-QUICKSORT( $A, q + 1, r$ )
```

Analysis

Time to wake up!

Example

$A[1]$	$A[2]$	$A[3]$	$A[4]$	$A[5]$	$A[6]$	$A[7]$	$A[8]$	$A[9]$	$A[10]$	$A[11]$
7	6	2	3	1	5	10	12	19	15	4
7	6	2	3	5	5	9	4	12	12	
2	3	1	4		6	6	9		15	
1		3	4			7	9			
			4				9			

Time it takes is number of calls to PARTITION + total number of comparisons

Average-case analysis

- ▶ The dominant cost of the algorithm is partitioning
- ▶ Total amount of work of each call to PARTITION is a constant plus the number of comparisons that are performed in the **for** loop
- ▶ An element is a pivot at most once \Rightarrow PARTITION is called at most n times
- ▶ Let $X =$ the total number of comparisons performed in *all calls* to PARTITION
- ▶ Then the total work done over the entire execution is $O(n + X)$
- ▶ We proceed by bounding (the expected value of) X

Bound on the overall number of comparisons

For ease of notation:

- ▶ Rename elements of A as z_1, \dots, z_n , with z_i being the i th smallest element
- ▶ Define the set $Z_{ij} = \{z_i, z_{i+1}, \dots, z_j\}$

Random indicator variables:

- ▶ Let $X_{ij} = I\{z_i \text{ is compared to } z_j\}$
- ▶ As each pair is compared at most once (when one of them is the pivot), the total number of comparisons formed by the algorithm is

$$X = \sum_{i=1}^n \sum_{j=i+1}^n X_{ij}$$

Applying linearity of expectation

The expected total number of comparisons is

$$\begin{aligned}\mathbb{E}[X] &= \mathbb{E} \left[\sum_{i=1}^n \sum_{j=i+1}^n X_{ij} \right] \\ &= \sum_{i=1}^n \sum_{j=i+1}^n \mathbb{E}[X_{ij}] \\ &= \sum_{i=1}^n \sum_{j=i+1}^n \Pr[z_i \text{ is compared to } z_j]\end{aligned}$$

Probability that z_i is compared to z_j

- ▶ If a pivot x such that $z_i < x < z_j$ is chosen, then z_i and z_j will never be compared at any later time
- ▶ If either z_i or z_j is chosen before any other element of Z_{ij} , then it will be compared to all the elements of Z_{ij} , except itself
- ▶ The probability that z_i is compared to z_j is the probability that either z_i or z_j is the element first chosen.
- ▶ There are $j - i + 1$ elements and pivots are chosen randomly and independently. Thus the probability that any particular one of them is the first one chose is $1/(j - i + 1)$.
- ▶ Therefore

$$\Pr[z_i \text{ is compared to } z_j] = \frac{2}{j - i + 1}$$

Wrapping up

$$\begin{aligned}\mathbb{E}[X] &= \sum_{i=1}^{n-1} \sum_{j=i+1}^n \Pr[z_i \text{ is compared to } z_j] \\ &= \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{2}{j-i+1} \\ &= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \\ &< \sum_{i=1}^{n-1} \sum_{k=1}^n \frac{2}{k} \\ &= \sum_{i=1}^{n-1} O(\lg n) = O(n \lg n)\end{aligned}$$

Summary of quick sort

- ▶ We have proved that randomized quick sort has expected running time $O(n \lg n)$ for any input.
- ▶ The algorithm is in-place
- ▶ Very efficient and easy to implement in practice