Algorithms: Hashing and Quick Sort

Alessandro Chiesa, Ola Svensson

=PrFL School of Computer and Communication Sciences

Lecture 24, 14.05.2025

Hash tables: summary

HAsH-tables efficiently implement:

INSERT: O(1)
DELETE: O(1)
SEARCH: Expected O(n/m) (if good hash function)

Cannot avoid collisions without having m > n?

Instead deal with collisions using for example chaining

Lecture 24, 14.05.2025

v

The sorting algorithm of choice in many computer systems

v

Easy to implement

v

Fast in practice (and as we will see in theory)

\4

As merge-sort, based on divide-and-conquer paradigm

Lecture 24, 14.05.2025

DIVIDE-AND-CONQUER

Quick Sort

Lecture 24, 14.05.2025

Quick Sort ldea

Example (5,8,4,7,1,2,3,6)

5 7 1 2 3 6]

|5 4 1 2 3|<J6ddL_>m

3 divides

%ides 4 m?

-

o1

\“’:b'::_g
(1 2 3 4 L5|/—{"“b

11 4 5 6 7

Lecture 24, 14.05.2025

Quick Sort — Divide-and-Conquer

To sort the subarray A[p...r]:

Divide: Partition A[p...r], into two (possibly empty) subarrays
Alp...q—1] and A[g+1...r], such that each element in
the first subarray is < A[g] and each element in the
second subarray is > A[q]

Conquer: Sort the two subarrays by recursive calls to QUICKSORT

Combine: No work is needed to combine the subarrays, because they
are sorted in place

Lecture 24, 14.05.2025

Partitioning (divide step)

PARTITION always selects the last element A[r] in the subarray Ap...r]
as the pivot — the element around which to partition

PARTITION(A, p,r)

x = Alr]
i=p—1
for j = ptor —1
if A[j] < x
i=i+1

exchange A[i] with A[j]
exchange A[i + 1] with A[r]
return i + 1

Lecture 24, 14.05.2025

Partitioning (divide step) PARTITION(4, p. 7)

Loop Invariant: x = A[r]
All entries in A[p...i] are < pivot I = .P -1
All entries in A[i +1...j — 1] are > pivot for j = ptor —1
Alr] = pivot ifA[j] <x
i=i+1

exchange A[i] with A[J]
exchange A[i + 1] with A[r]
return; + 1

Lecture 24, 14.05.2025

Loop Invariant:
All entries in A[p...i] are < pivot
All entries in A[i +1...j — 1] are > pivot
A[r] = pivot

Initialization: Before the loop starts, loop invariant satisfied, because r is the pivot
and the subarrays A[p...i] and A[i +1...j — 1] are empty

Maintenance: If A[j] < pivot, then A[j] and A[i 4 1] are swapped and then i and j

are incremented. If A[j] > pivot then increment only j
Termination: When the loop terminates, j = r so all elements in A are partitioned

into A[p...i] < pivot, A[i +1...r — 1] > pivot and A[r] = pivot

The last two lines of PARTITION moves the pivot element to the “right” place by
swapping A[i + 1] and A[r]

Time for partitioning

PARTITION(A, p,r)

x = Alr]
i=p—1
for j = ptor —1
if A[j] < x
i=i+1

exchange A[i] with A[]]
exchange A[i + 1] with A[r]
returni + 1

v

for loop runs &~ n:=r — p+ 1 times.

\4

Each iteration takes time ©(1)

v

Total running time is ©(n) for an array of length n.

v

Note that the number of comparisons made is ~ n

Lecture 24, 14.05.2025

Quick Sort Algorithm

QUICKSORT(A, p, 1)
ifp<r
g = PARTITION(A, p, 1)
QUICKSORT(4, p,q — 1)
QUICKSORT(4,q + 1,7)

Lecture 24, 14.05.2025

Worst case running time of quick sort

1 2 3 4 n-2 nl1 n| ©(n)
1 2 3 4 n-2 n-1| O(n—1)
1 2 3 4 ... n2 O(n—2)

Total running time: ©(n?)

T3 @ o(3)

()

Lecture 24, 14.05.2025

Best case running time of quick sort

> Occurs when the subarrays are completely balanced every time =
the pivots always split the array into two subarrays of equal size

> Get the recurrence

T(n)=2T(n/2) + ©(n)

= O(nlgn)

Lecture 24, 14.05.2025

Average case over all inputs

Intuition

> Imagine that PARTITION always produces a 9-to-1 split.
> Get the recurrence T(n) = T(9n/10) + T(n/10) + ©(n) = O(nlgn)

> Splits in the recursion tree will not always be good, there will be
usually a mix of good and bad splits

> For intuition why this not affect the running time, suppose we
alternate between best-case and worst-case flips

<-->0(m (n)----- > O(n)
((n-1)/2-1] [(n-1)/2]

((n-1)/2-1] [(n-1)/2]

Both trees have the same asymptotic running time: ©(nlgn)

Lecture 24, 14.05.2025

Ll
[

Randomized version of quick sort

Advantages

> We saw intuition for good running time when all permutations of
input are equally likely

> This is not always true

> To correct this and remove the possibilities for enemies we add
randomization

» HUGE difference between

Expected running time over all inputs
and

Expected running time for any input

Lecture 24, 14.05.2025

How to use randomization

> We could randomly permute input array
> |Instead we use random sampling or picking one element in random

> Don't always use A[r] as the pivot. Instead, randomly pick an
element from the subarray that is being sorted

Lecture 24, 14.05.2025

Randomized quick sort

RANDOMIZED-PARTITION (4, p, 1)
i = RANDOM(p,)
exchange A[r] with A[i]
return PARTITION(A, p, 1)

RANDOMIZED-QUICKSORT (4, p,r)
ifp<r
¢ = RANDOMIZED-PARTITION (4, p,r)
RANDOMIZED-QUICKSORT (4, p,q — 1)
RANDOMIZED-QUICKSORT(A4,q + 1,r)

Lecture 24, 14.05.2025

Time to wake up!

What A WEEK! Thank It's FRIDAY

9
o
S
()
X

LL

t takes is number of calls to PARTITION + total number of

comparisons

Lecture 24, 14.05.2025

Average-case analysis

> The dominant cost of the algorithm is partitioning

> Total amount of work of each call to PARTITION is a constant plus
the number of comparisons that are performed in the for loop

> An element is a pivot at most once = PARTITION is called at most
n times

> Let X = the total number of comparisons performed in all calls to
PARTITION

> Then the total work done over the entire execution is O(n + X)

> We proceed by bounding (the expected value of) X

Lecture 24, 14.05.2025

Bound on the overall number of comparisons

For ease of notation:

> Rename elements of A as zi, ..., z,, with z; being the ith smallest
element
> Define the set Z; = {z;, zi41,..., 2}

Random indicator variables:
> Let Xj = I{z is compared to z;}

> As each pair is compared at most once (when one of them is the
pivot), the total number of comparisons formed by the algorithm is

X=2_ 2%

i=1 j=i+1

Lecture 24, 14.05.2025

Applying linearity of expectation

The expected total number of comparisons is

-a 5 5

i=1 j=i+1

=> > E[Xj]

i=1 j=i+1

= Z Z Pr[z; is compared to z]

i=1 j=i+1

Lecture 24, 14.05.2025

If a pivot x such that z; < x < z; is chosen, then z and z will
never be compared at any later time

If either z; or z; is chosen before any other element of Zj;, then it
will be compared to all the elements of Z;, except itself

The probability that z; is compared to z; is the probability that
either z; or z; is the element first chosen.

There are j — i + 1 elements and pivots are chosen randomly and
independently. Thus the probability that any particular one of them
is the first one chose is 1/(j — i + 1).

Therefore

2
Pr(z; is compared to zj] =)

Wrapping up

n—1 n
E[X] = Z Z Pr[z; is compared to z]
i=1 j=i+1

n—1 n 2
:ZZj—i—i—l

i=1 j=i+1

n—1 i

E]
|

2
+1

3‘
Tl
- =
= =
I s
= =
x| N =

N
LI

= O(lg n) = O(nlgn)

i=

Lecture 24, 14.05.2025

Summary of quick sort

> We have proved that randomized quick sort has expected running
time O(nlg n) for any input.

> The algorithm is in-place

> Very efficient and easy to implement in practice

Lecture 24, 14.05.2025

