
Algorithms

Dec 13, 2021

PROBABILISTIC ANALYSIS AND

RANDOMIZED ALGORITHMS

Motivation

• Worst case does not usually happen

• Average case analysis

• Amortized analysis

Motivation

• Worst case does not usually happen

• Average case analysis

• Amortized analysis

• Randomization helps avoid worst-case and attacks by evil users

• Choosing the pivot in quick-sort at random

Motivation

• Worst case does not usually happen

• Average case analysis

• Amortized analysis

• Randomization helps avoid worst-case and attacks by evil users

• Choosing the pivot in quick-sort at random

Motivation

• Worst case does not usually happen

• Average case analysis

• Amortized analysis

• Randomization helps avoid worst-case and attacks by evil users

• Choosing the pivot in quick-sort at random

• Randomization necessary in cryptography

Motivation

• Worst case does not usually happen

• Average case analysis

• Amortized analysis

• Randomization helps avoid worst-case and attacks by evil users

• Choosing the pivot in quick-sort at random

• Randomization necessary in cryptography

• Can we get randomness?

• How to extract randomness (extractors)

• Longer “random behaving” strings from small seed (pseudorandom

generators)

Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate

Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate

hired

Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate

Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate

not hired

Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate

Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate

hiredfired

Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate

Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate

Question: how many players did we (temporarily) hire?

Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

hired
hired

= 2

Question: how many players did we (temporarily) hire?

Worst-case analysis

In the worst case: how many players/candidates do we temporarily hire?

Worst-case analysis

In the worst case: how many players/candidates do we temporarily hire?

. . .
hired hired hired hired

hired

hired
hired

n candidates

Answer: in the worst case we hire all n candidates

Worst-case unlikely to happen

• We only hire all candidates if they arrive in a specific order

• They are likely to arrive in a random order

• More interesting question (probabilistic analysis):

 What is the expected number of hires we make over all the

permutations of the candidates?

Example

3 2

22

1 1

Expected number of hires=

which equals 1+5/6

Calculating the expectation in general 1st trial

• n! permutations each equally likely

• Expectation = sum of hires in each permutation divided by n!

Calculating the expectation in general 1st trial

• n! permutations each equally likely

• Expectation = sum of hires in each permutation divided by n!

• For n=5 we have 120 terms

Calculating the expectation in general 1st trial

• n! permutations each equally likely

• Expectation = sum of hires in each permutation divided by n!

• For n=5 we have 120 terms

• For n=10 we have 3 628 800 terms

Calculating the expectation in general 1st trial

• n! permutations each equally likely

• Expectation = sum of hires in each permutation divided by n!

• For n=5 we have 120 terms

• For n=10 we have 3 628 800 terms

NEED A MORE CLEVER METHOD

Indicator Random Variables

• Simple yet powerful technique for computing the expected value

• In particular, in situations in which there may be dependence

Indicator Random Variables

• Simple yet powerful technique for computing the expected value

• In particular, in situations in which there may be dependence

DEFINITION: Given a sample space and an event A, we define the

 indicator random variable

Indicator Random Variables

DEFINITION: Given a sample space and an event A, we define the

 indicator random variable

Indicator Random Variables

DEFINITION: Given a sample space and an event A, we define the

 indicator random variable

LEMMA: For an event A, let XA = I{A}. Then E[XA] = Pr[A]

Indicator Random Variables

DEFINITION: Given a sample space and an event A, we define the

 indicator random variable

LEMMA: For an event A, let XA = I{A}. Then E[XA] = Pr[A]

PROOF: E[XA] = 1* Pr{A} + 0 * Pr{A} = Pr{A}

Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

• Sample space is {H,T}

• Pr{H} = Pr{T} = ½

Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

• Sample space is {H,T}

• Pr{H} = Pr{T} = ½

• Define indicator variable XH = I{H}

Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

• Sample space is {H,T}

• Pr{H} = Pr{T} = ½

• Define indicator variable XH = I{H}

• XH counts the number of heads in one flip

Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

• Sample space is {H,T}

• Pr{H} = Pr{T} = ½

• Define indicator variable XH = I{H}

• XH counts the number of heads in one flip

• Since Pr{H} = 1/2, previous lemma says that E[XH] = 1/2

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

• Let X be a random variable for the number of heads in n flips

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

• Let X be a random variable for the number of heads in n flips

• Could calculate

• … but cumbersome

• Instead use indicator variables

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

• Let X be a random variable for the number of heads in n flips

• For i = 1, …, n, define Xi = I{the i’th flip results in event H}

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

• Let X be a random variable for the number of heads in n flips

• For i = 1, …, n, define Xi = I{the i’th flip results in event H}

• Then E[X] = E[X1 + X2 + … + Xn]

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

• Let X be a random variable for the number of heads in n flips

• For i = 1, …, n, define Xi = I{the i’th flip results in event H}

• Then E[X] = E[X1 + X2 + … + Xn]

• By linearity of expectation i.e., that E[aX + bY] = aE[X] + bE[Y]

holds even if X and Y are dependent

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

• Let X be a random variable for the number of heads in n flips

• For i = 1, …, n, define Xi = I{the i’th flip results in event H}

• Then E[X] = E[X1 + X2 + … + Xn]

• By linearity of expectation i.e., that E[aX + bY] = aE[X] + bE[Y]

E[X] = E[X1 + X2 + … + Xn] = E[X1] + E[X2] + … + E[Xn]

holds even if X and Y are dependent

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

• Let X be a random variable for the number of heads in n flips

• For i = 1, …, n, define Xi = I{the i’th flip results in event H}

• Then E[X] = E[X1 + X2 + … + Xn]

• By linearity of expectation i.e., that E[aX + bY] = aE[X] + bE[Y]

E[X] = E[X1 + X2 + … + Xn] = E[X1] + E[X2] + … + E[Xn]

holds even if X and Y are dependent

By Lemma equals Pr{H} = 1/2

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

• Let X be a random variable for the number of heads in n flips

• For i = 1, …, n, define Xi = I{the i’th flip results in event H}

• Then E[X] = E[X1 + X2 + … + Xn]

• By linearity of expectation i.e., that E[aX + bY] = aE[X] + bE[Y]

E[X] = E[X1 + X2 + … + Xn] = E[X1] + E[X2] + … + E[Xn]

 = n/2

holds even if X and Y are dependent

By Lemma equals Pr{H} = 1/2

Probabilistic Analysis of Hiring Problem

• Candidates arrive in random order

• Let X be a random variable that equals the number of time we hire a player

Probabilistic Analysis of Hiring Problem

• Candidates arrive in random order

• Let X be a random variable that equals the number of times we hire a player

3 2

22

1 1

E[X] =

which equals 1+5/6

Probabilistic Analysis of Hiring Problem

• Candidates arrive in random order

• Let X be a random variable that equals the number of time we hire a player

• Define indicator variables X1, X2, …, Xn where

 Xi = I{candidate i is hired}

X1 = 1

X1 = 1

X1 = 1

X1 = 1

X1 = 1

X1 = 1

X2 = 1 X2 = 1

X2 = 1

X3 = 1

X3 = 1X2 = 0

X2 = 0 X2 = 0X3 = 0

X3 = 0

X3 = 0

X3 = 0

E[X] = E[X1+X2+X3]

 = E[X1] + E[X2] + E[X3]

 = 1 + 1/2 + 1/3 = 1 + 5/6

Probabilistic Analysis of Hiring Problem

• Candidates arrive in random order

• Let X be a random variable that equals the number of time we hire a player

• Define indicator variables X1, X2, …, Xn where

 Xi = I{candidate i is hired}

• Note that X = X1 + X2 + … + Xn and E[Xi] = Pr{candidate i is hired}

Probabilistic Analysis of Hiring Problem

• Candidates arrive in random order

• Let X be a random variable that equals the number of time we hire a player

• Define indicator variables X1, X2, …, Xn where

 Xi = I{candidate i is hired}

• Note that X = X1 + X2 + … + Xn and E[Xi] = Pr{candidate i is hired}

• By linearity of expectation,

 E[X] = E[X1 + X2 + … + Xn]= E[X1] + E[X2] + … + E[Xn]

Probabilistic Analysis of Hiring Problem

• Candidates arrive in random order

• Let X be a random variable that equals the number of time we hire a player

• Define indicator variables X1, X2, …, Xn where

 Xi = I{candidate i is hired}

• Note that X = X1 + X2 + … + Xn and E[Xi] = Pr{candidate i is hired}

• By linearity of expectation,

 E[X] = E[X1 + X2 + … + Xn]= E[X1] + E[X2] + … + E[Xn]

which equals

Pr{candidate 1 is hired} + Pr{candidate 2 is hired} + … + Pr{candidate n is hired}

Probability of Hiring i’th Candidate

Pr{candidate 1 is hired} = 1

Probability of Hiring i’th Candidate

Pr{candidate 1 is hired} = 1 Pr{candidate 2 is hired} = 1/2

Probability of Hiring i’th Candidate

Pr{candidate 1 is hired} = 1 Pr{candidate 2 is hired} = 1/2

Pr{candidate 3 is hired} = 1/3

Probability of Hiring i’th Candidate

• i’th candidate hired iff he is tallest among the first i candidates

• Since they arrive in random order, any one of these first i candidates are

equally likely to be the tallest =>

Pr{candidate 3 is hired} = 1/3

Pr{candidate i is hired} = 1/i

Expected Number of Hires

Recall that E[number of hires] = E[X] =

Pr{candidate 1 is hired} + Pr{candidate 2 is hired} + … + Pr{candidate n is hired}

Expected Number of Hires

Recall that E[number of hires] = E[X] =

Pr{candidate 1 is hired} + Pr{candidate 2 is hired} + … + Pr{candidate n is hired}

which equals

1/1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n

Expected Number of Hires

Recall that E[number of hires] = E[X] =

Pr{candidate 1 is hired} + Pr{candidate 2 is hired} + … + Pr{candidate n is hired}

which equals

1/1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n = Hn

n: th harmonic number

Expected Number of Hires

Recall that E[number of hires] = E[X] =

Pr{candidate 1 is hired} + Pr{candidate 2 is hired} + … + Pr{candidate n is hired}

which equals

1/1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n = Hn = ln n + O(1)

n: th harmonic number

Expected Number of Hires

Recall that E[number of hires] = E[X] =

Pr{candidate 1 is hired} + Pr{candidate 2 is hired} + … + Pr{candidate n is hired}

which equals

1/1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n = Hn = ln n + O(1)

n: th harmonic number

Examples:

• Expected number of hires for n=6 is 2.45

• Expected number of hires for n=100 is 5.1874

• Expected number of hires for n=10000 is 9.7876

Questions

• What is the probability that we hire only one candidate?

• What is the probability that we hire n candidates?

Questions

• What is the probability that we hire only one candidate? 1/n (tallest first)

• What is the probability that we hire n candidates? 1/n! (worst case order)

. . .
hired hiredhired hired hired

hired hired

. . .

hired

Randomized Algorithm

• Instead of assuming that the candidates arrive in random order

• We/the algorithm pick a random order and call the candidates in this

order

Randomized Algorithm

• Instead of assuming that the candidates arrive in random order

• We/the algorithm pick a random order and call the candidates in this

order

. . .
hiredhiredhiredhiredhired

hired
hired

Randomized Algorithm

• Instead of assuming that the candidates arrive in random order

• We/the algorithm pick a random order and call the candidates in this

order

• In this way we can foul malicious users

. . .
hiredhiredhiredhiredhired

hired
hired

Question

• Given a function RANDOM that returns 1 with probability p and 0 with

probability 1-p

• How to use RANDOM for generating an unbiased bit?

Question

• Given a function RANDOM that returns 1 with probability p and 0 with

probability 1-p

• How to use RANDOM for generating an unbiased bit?

• Pick a pair (a,b) of random numbers: a = RANDOM and b = RANDOM

• If a≠b return a

• Otherwise pick a new pair

BIRTHDAY PARADOX

Two students in class have the same birthday with overwhelming

probability

Birthday Paradox

• How many students in a room do we need so that the probability that

two of them has the same birthday is at least 50%?

(assuming each of the 365 days is equally likely)

Birthday Paradox

• How many students in a room do we need so that the probability that

two of them has the same birthday is at least 50%?

(assuming each of the 365 days is equally likely)

• Trivially: if we have 366 students then two of them has the same birthday

with probability 1

Illustrative Example

Birthday Paradox

• How many students in a room do we need so that the probability that

two of them has the same birthday is at least 50%?

(assuming each of the 365 days is equally likely)

• Trivially: if we have 366 students then two of them has the same birthday

with probability 1

• Surprisingly: 50% probability reached with 23 students and 99% probability

reached with just 57 students

Birthday Lemma

If q > 1.78√|M| then the probability that a function chosen uniformly at

random f: {1, 2, …, q} -> M is injective is at most ½

Birthday Lemma

If q > 1.78√|M| then the probability that a function chosen uniformly at

random f: {1, 2, …, q} -> M is injective is at most ½

Proof.

Let m = |M|. The probability that the function is injective is

Birthday Lemma

If q > 1.78√|M| then the probability that a function chosen uniformly at

random f: {1, 2, …, q} -> M is injective is at most ½

Proof.

Let m = |M|. The probability that the function is injective is

Birthday Lemma

If q > 1.78√|M| then the probability that a function chosen uniformly at

random f: {1, 2, …, q} -> M is injective is at most ½

Proof.

Let m = |M|. The probability that the function is injective is

Since e-x > 1-x we have that this is less than

Birthday Lemma

If q > 1.78√|M| then the probability that a function chosen uniformly at

random f: {1, 2, …, q} -> M is injective is at most ½

Proof.

Let m = |M|. The probability that the function is injective is

Since e-x > 1-x we have that this is less than

which is less than ½ if

Birthday Lemma

If q > 1.78√|M| then the probability that a function chosen uniformly at

random f: {1, 2, …, q} -> M is injective is at most ½

Proof.

Let m = |M|. The probability that the function is injective is

Since e-x > 1-x we have that this is less than

which is less than ½ if

HASH FUNCTIONS AND

TABLES

Design a Computer System for a Library

Design a Computer System for a Library

• Insert a new book

• Delete book

• Search book

• All operations in (expected) constant time!

Direct-Address Tables

• Simple technique that allows for simple implementation of constant-time

insertion, deletion, and search

• Every book has one unique number (ISBN)

• Construct an array/table T with a position for each book

book

Direct-Address Tables

book

Direct-Address-Search(T,k):

 return T[k]

Direct-Address-Insert(T,x):

 T[x.key] = x

Direct-Address-Delete(T,x):

 T[x.key]= NIL

Direct-Address Tables

• Running time of each operation: O(1)

• Space: O(|U|)

book

Direct-Address-Search(T,k):

 return T[k]

Direct-Address-Insert(T,x):

 T[x.key] = x

Direct-Address-Delete(T,x):

 T[x.key]= NIL

Direct-Address Tables

Positives Negatives

Direct-Address Tables

Positives

• Running time of each

operation: O(1)

• Easy implementation

Negatives

• Space: O(|U|)

• For most applications (like a

Library) we only store a

small fraction of all possible

items

• Wish to use space

proportional to the amount

of information stored

Hash Tables

• Uses space proportional to the number K of keys stored, i.e., Θ(K)

• Implement search, insertion, deletion in time O(1) in the average case

Hash Tables

• Uses space proportional to the number K of keys stored, i.e., Θ(K)

• Implement search, insertion, deletion in time O(1) in the average case

• In direct-address table an element with key k was stored in slot k

• In hash tables an element with key k is stored in slot h(k)

Hash Tables

• Uses space proportional to the number K of keys stored, i.e., Θ(K)

• Implement search, insertion, deletion in time O(1) in the average case

• In direct-address table an element with key k was stored in slot k

• In hash tables an element with key k is stored in slot h(k)

• h: U -> {0,1, …, m-1} is called the hash function

table size

Hash Tables

• Uses space proportional to the number K of keys stored, i.e., Θ(K)

• Implement search, insertion, deletion in time O(1) in the average case

• In direct-address table an element with key k was stored in slot k

• In hash tables an element with key k is stored in slot h(k)

• h: U -> {0,1, …, m-1} is called the hash function

0

m-1

U

Hash Tables

• Uses space proportional to the number K of keys stored, i.e., Θ(K)

• Implement search, insertion, deletion in time O(1) in the average case

• In direct-address table an element with key k was stored in slot k

• In hash tables an element with key k is stored in slot h(k)

• h: U -> {0,1, …, m-1} is called the hash function

0

m-1

U

Hash Tables

• Uses space proportional to the number K of keys stored, i.e., Θ(K)

• Implement search, insertion, deletion in time O(1) in the average case

• In direct-address table an element with key k was stored in slot k

• In hash tables an element with key k is stored in slot h(k)

• h: U -> {0,1, …, m-1} is called the hash function

0

m-1

U

Hash Tables

• Uses space proportional to the number K of keys stored, i.e., Θ(K)

• Implement search, insertion, deletion in time O(1) in the average case

• In direct-address table an element with key k was stored in slot k

• In hash tables an element with key k is stored in slot h(k)

• h: U -> {0,1, …, m-1} is called the hash function

0

m-1

U

Hash Tables

• Uses space proportional to the number K of keys stored, i.e., Θ(K)

• Implement search, insertion, deletion in time O(1) in the average case

• In direct-address table an element with key k was stored in slot k

• In hash tables an element with key k is stored in slot h(k)

• h: U -> {0,1, …, m-1} is called the hash function

0

m-1

U

Hash Tables

• Uses space proportional to the number K of keys stored, i.e., Θ(K)

• Implement search, insertion, deletion in time O(1) in the average case

• In direct-address table an element with key k was stored in slot k

• In hash tables an element with key k is stored in slot h(k)

• h: U -> {0,1, …, m-1} is called the hash function

0

m-1

U

Hash Tables

• Uses space proportional to the number K of keys stored, i.e., Θ(K)

• Implement search, insertion, deletion in time O(1) in the average case

• In direct-address table an element with key k was stored in slot k

• In hash tables an element with key k is stored in slot h(k)

• h: U -> {0,1, …, m-1} is called the hash function

0

m-1

U

Desired Properties of a Hash Function

• Efficiently computable

• Distributes keys uniformly (to minimize collisions)

• Deterministic: h(k) is always equal to h(k)

“to hash =Informal to make a mess of; mangle”

Simple uniform hashing:

h hashes a new key equally likely to any of the m slots independently of

where any other has hashed to

Collisions

• Collision: when two items with keys ki and kj have h(ki) = h(kj)

Collisions

• Collision: when two items with keys ki and kj have h(ki) = h(kj)

0

m-1

U

Collisions

• Collision: when two items with keys ki and kj have h(ki) = h(kj)

0

m-1

U

Collisions

• Collision: when two items with keys ki and kj have h(ki) = h(kj)

• How big table do we need to have so as to avoid collisions with high

probability?

0

m-1

U

Collisions

• Collision: when two items with keys ki and kj have h(ki) = h(kj)

• How big table do we need to have so as to avoid collisions with high

probability?

0

m-1

U

Collisions

• Collision: when two items with keys ki and kj have h(ki) = h(kj)

• How big table do we need to have so as to avoid collisions with high

probability?

0

m-1

U

Collisions

• Collision: when two items with keys ki and kj have h(ki) = h(kj)

• How big table do we need to have so as to avoid collisions with high

probability?

0

m-1

U

Collisions

• Collision: when two items with keys ki and kj have h(ki) = h(kj)

• How big table do we need to have so as to avoid collisions with high

probability?

Birthday Lemma says that for h to be injective with good probability then

we need m > K2

0

m-1

U

Collisions

• Collision: when two items with keys ki and kj have h(ki) = h(kj)

• How big table do we need to have so as to avoid collisions with high

probability?

Birthday Lemma says that for h to be injective with good probability then

we need m > K2 => if library has 10 000 books need array of size 108

0

m-1

U

Collisions

You can’t avoid them but you can deal with them

Collisions

You can’t avoid them but you can deal with them

Collisions

You can’t avoid them but you can deal with them

CHAINING:

 place all elements that hash to the same slot into the same linked list

Collisions

You can’t avoid them but you can deal with them

CHAINING:

 place all elements that hash to the same slot into the same linked list

0

m-1

U

Collisions

0

m-1

U

Chained-Hash-Search(T,k):

 search for an element with key k in list T[h(k)]

Chained-Hash-Insert(T,x):

 insert x at the head of list T[h(x.key)]

Chained-Hash-Delete(T,x):

 delete x from the list T[h(x.key)]

Collisions

Running time?

Space?

0

m-1

U

Chained-Hash-Search(T,k):

 search for an element with key k in list T[h(k)]

Chained-Hash-Insert(T,x):

 insert x at the head of list T[h(x.key)]

Chained-Hash-Delete(T,x):

 delete x from the list T[h(x.key)]

Collisions

Running time? O(1) for insertion, deletion

Space? O(m+K)

0

m-1

U

Chained-Hash-Search(T,k):

 search for an element with key k in list T[h(k)]

Chained-Hash-Insert(T,x):

 insert x at the head of list T[h(x.key)]

Chained-Hash-Delete(T,x):

 delete x from the list T[h(x.key)]

Collisions

Running time? O(1) for insertion, deletion

Space? O(m+K)

Deletion in time O(1) since

• list is doubly linked

• and we are given a pointer to element and not the key

0

m-1

U

Chained-Hash-Search(T,k):

 search for an element with key k in list T[h(k)]

Chained-Hash-Insert(T,x):

 insert x at the head of list T[h(x.key)]

Chained-Hash-Delete(T,x):

 delete x from the list T[h(x.key)]

Running Time of Search

Running Time of Search

• Worst case all n elements are hashed to same slot

• Search takes θ(n) time in worst case (worse than linked list since we also compute h(k) )

• Analyze average-case behavior

• We assume we use simple uniform hashing

Running Time of Search

• Worst case all n elements are hashed to same slot

• Search takes θ(n) time in worst case (worse than linked list since we also compute h(k) )

• Analyze average-case behavior

• We assume we use simple uniform hashing

• Let nj denote the length of the list T[j]

• Note that n= n0 + n1 + n2 + … + nm-1

• And E[nj] = Pr[h(k1) = j] + Pr[h(k2) = j] + … Pr[h(kn) = j] = α = n/m

Running Time of Unsuccessful Search

THEOREM: An unsuccessful search takes expected time θ(1+α)

PROOF:

Running Time of Unsuccessful Search

THEOREM: An unsuccessful search takes expected time θ(1+α)

PROOF:

• Simple uniform hashing => any key not in the table equally likely to hash to any of

the m slots

Running Time of Unsuccessful Search

THEOREM: An unsuccessful search takes expected time θ(1+α)

PROOF:

• Simple uniform hashing => any key not in the table equally likely to hash to any of

the m slots

• To search unsuccessfully for any key k, need to search till the end of list T[h(k)].

• This list has expected length E[n_{h(k)}] = α

• Therefore, the expected number of elements examined in an unsuccessful

search is α

Running Time of Unsuccessful Search

THEOREM: An unsuccessful search takes expected time θ(1+α)

PROOF:

• Simple uniform hashing => any key not in the table equally likely to hash to any of

the m slots

• To search unsuccessfully for any key k, need to search till the end of list T[h(k)].

• This list has expected length E[n_{h(k)}] = α

• Therefore, the expected number of elements examined in an unsuccessful

search is α

• Adding in the cost for computing the hash function, the total expected time

needed is Θ(1+α)

Running Time of Successful Search

• Circumstances are slightly different from unsuccessful search

• The probability that each list is searched is proportional to its length

• (we assume that each element is equally likely to be searched for)

Running Time of Successful Search

THEOREM: A successful search takes expected time θ(1+α)

PROOF:

Running Time of Successful Search

THEOREM: A successful search takes expected time θ(1+α)

PROOF:

• Let x be the element we search for (picked uniformly at random)

Running Time of Successful Search

THEOREM: A successful search takes expected time θ(1+α)

PROOF:

• Let x be the element we search for (picked uniformly at random)

• The number of elements examined during a successful search for x is 1 more than

the number of elements that appear before x in its list

• These are the elements inserted after x was inserted

Running Time of Successful Search

THEOREM: A successful search takes expected time θ(1+α)

PROOF:

• Let x be the element we search for (picked uniformly at random)

• The number of elements examined during a successful search for x is 1 more than

the number of elements that appear before x in its list

• These are the elements inserted after x was inserted

• So we need to find the average, over the n elements x in the table, of how many

elements were inserted into x’s list after x was inserted

Running Time of Successful Search

THEOREM: A successful search takes expected time θ(1+α)

PROOF:

• For i = 1, 2, …, n, let xi be the i’th element inserted into the table and let ki = key[xi]

Running Time of Successful Search

THEOREM: A successful search takes expected time θ(1+α)

PROOF:

• For i = 1, 2, …, n, let xi be the i’th element inserted into the table and let ki = key[xi]

• For all i and j, define indicator variable

• Xij = I{h(ki) = h(kj)}

• Simple uniform hashing => E[Xij] = 1/m

Running Time of Successful Search

THEOREM: A successful search takes expected time θ(1+α)

PROOF:

• For i = 1, 2, …, n, let xi be the i’th element inserted into the table and let ki = key[xi]

• For all i and j, define indicator variable

• Xij = I{h(ki) = h(kj)}

• Simple uniform hashing => E[Xij] = 1/m

• Expected number of elements examined in a successful search is

Running Time of Successful Search

THEOREM: A successful search takes expected time θ(1+α)

PROOF:

• For i = 1, 2, …, n, let xi be the i’th element inserted into the table and let ki = key[xi]

• For all i and j, define indicator variable

• Xij = I{h(ki) = h(kj)}

• Simple uniform hashing => E[Xij] = 1/m

• Expected number of elements examined in a successful search is

Running Time of Successful Search

THEOREM: A successful search takes expected time θ(1+α)

PROOF:

• For i = 1, 2, …, n, let xi be the i’th element inserted into the table and let ki = key[xi]

• For all i and j, define indicator variable

• Xij = I{h(ki) = h(kj)}

• Simple uniform hashing => E[Xij] = 1/m

• Expected number of elements examined in a successful search is

Running Time of Successful Search

THEOREM: A successful search takes expected time θ(1+α)

PROOF:

• For i = 1, 2, …, n, let xi be the I’th element inserted into the table and let ki = key[xi]

• For all i and j, define indicator variable

• Xij = I{h(ki) = h(kj)}

• Simple uniform hashing => E[Xij] = 1/m

• Expected number of elements examined in a successful search is

Consequence of Analysis

• Recall that α = n/m

• So if we choose the size our hash table to be proportional to the number

of elements stored.

• m = Θ(n)

• Then insertion, deletion O(1) time and search expected O(1) time

Examples of Hash Functions

• Big area of research

• Depends on data distribution and other properties

• We give two basic examples

Examples of Hash Functions

Division method

h(k) = k mod m

m often selected to be a prime not too close to a power of 2

Examples of Hash Functions

Division method

h(k) = k mod m

m often selected to be a prime not too close to a power of 2

Multiplicative method

h(k) = floor[m * FractionalPartOf(Ak)]

Knut suggests to chose

Summary

• Probabilistic analysis (the hiring problem)

• Random indicator variables

• Linearity of expectation:

• Hash tables

• Very practical method with fast insertion, deletion, and search

• Performance depends on choice of hash function

• Resolve conflicts by for example using chaining

holds even if X and Y are dependent

E[aX + bY] = aE[X] + bE[Y]

	Slide 1: Algorithms
	Slide 2: Probabilistic analysis and randomized algorithms
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Motivation
	Slide 8: Probabilistic Analysis: The Hiring Problem
	Slide 9: Probabilistic Analysis: The Hiring Problem
	Slide 10: Probabilistic Analysis: The Hiring Problem
	Slide 11: Probabilistic Analysis: The Hiring Problem
	Slide 12: Probabilistic Analysis: The Hiring Problem
	Slide 13: Probabilistic Analysis: The Hiring Problem
	Slide 14: Probabilistic Analysis: The Hiring Problem
	Slide 15: Probabilistic Analysis: The Hiring Problem
	Slide 16: Probabilistic Analysis: The Hiring Problem
	Slide 17: Worst-case analysis
	Slide 18: Worst-case analysis
	Slide 19: Worst-case unlikely to happen
	Slide 20: Example
	Slide 21: Calculating the expectation in general 1st trial
	Slide 22: Calculating the expectation in general 1st trial
	Slide 23: Calculating the expectation in general 1st trial
	Slide 24: Calculating the expectation in general 1st trial
	Slide 25: Indicator Random Variables
	Slide 26: Indicator Random Variables
	Slide 27: Indicator Random Variables
	Slide 28: Indicator Random Variables
	Slide 29: Indicator Random Variables
	Slide 30: Simple Example: Coin Flip
	Slide 31: Simple Example: Coin Flip
	Slide 32: Simple Example: Coin Flip
	Slide 33: Simple Example: Coin Flip
	Slide 34: Simple Example: Coin Flip
	Slide 35: Slightly More Complex: n Coin Flips
	Slide 36: Slightly More Complex: n Coin Flips
	Slide 37: Slightly More Complex: n Coin Flips
	Slide 38: Slightly More Complex: n Coin Flips
	Slide 39: Slightly More Complex: n Coin Flips
	Slide 40: Slightly More Complex: n Coin Flips
	Slide 41: Slightly More Complex: n Coin Flips
	Slide 42: Slightly More Complex: n Coin Flips
	Slide 43: Probabilistic Analysis of Hiring Problem
	Slide 44: Probabilistic Analysis of Hiring Problem
	Slide 45: Probabilistic Analysis of Hiring Problem
	Slide 46: Probabilistic Analysis of Hiring Problem
	Slide 47: Probabilistic Analysis of Hiring Problem
	Slide 48: Probabilistic Analysis of Hiring Problem
	Slide 49: Probability of Hiring i’th Candidate
	Slide 50: Probability of Hiring i’th Candidate
	Slide 51: Probability of Hiring i’th Candidate
	Slide 52: Probability of Hiring i’th Candidate
	Slide 53: Expected Number of Hires
	Slide 54: Expected Number of Hires
	Slide 55: Expected Number of Hires
	Slide 56: Expected Number of Hires
	Slide 57: Expected Number of Hires
	Slide 58: Questions
	Slide 59: Questions
	Slide 60: Randomized Algorithm
	Slide 61: Randomized Algorithm
	Slide 62: Randomized Algorithm
	Slide 63: Question
	Slide 64: Question
	Slide 65: Birthday PARADOX
	Slide 66: Birthday Paradox
	Slide 67: Birthday Paradox
	Slide 68: Illustrative Example
	Slide 69: Birthday Paradox
	Slide 70: Birthday Lemma
	Slide 71: Birthday Lemma
	Slide 72: Birthday Lemma
	Slide 73: Birthday Lemma
	Slide 74: Birthday Lemma
	Slide 75: Birthday Lemma
	Slide 76: HASH FUNCTIONS AND TABLES
	Slide 77: Design a Computer System for a Library
	Slide 78: Design a Computer System for a Library
	Slide 79: Direct-Address Tables
	Slide 80: Direct-Address Tables
	Slide 81: Direct-Address Tables
	Slide 82: Direct-Address Tables
	Slide 83: Direct-Address Tables
	Slide 84: Hash Tables
	Slide 85: Hash Tables
	Slide 86: Hash Tables
	Slide 87: Hash Tables
	Slide 88: Hash Tables
	Slide 89: Hash Tables
	Slide 90: Hash Tables
	Slide 91: Hash Tables
	Slide 92: Hash Tables
	Slide 93: Hash Tables
	Slide 94: Desired Properties of a Hash Function
	Slide 95: Collisions
	Slide 96: Collisions
	Slide 97: Collisions
	Slide 98: Collisions
	Slide 99: Collisions
	Slide 100: Collisions
	Slide 101: Collisions
	Slide 102: Collisions
	Slide 103: Collisions
	Slide 104: Collisions
	Slide 105: Collisions
	Slide 106: Collisions
	Slide 107: Collisions
	Slide 108: Collisions
	Slide 109: Collisions
	Slide 110: Collisions
	Slide 111: Collisions
	Slide 112: Running Time of Search
	Slide 113: Running Time of Search
	Slide 114: Running Time of Search
	Slide 115: Running Time of Unsuccessful Search
	Slide 116: Running Time of Unsuccessful Search
	Slide 117: Running Time of Unsuccessful Search
	Slide 118: Running Time of Unsuccessful Search
	Slide 119: Running Time of Successful Search
	Slide 120: Running Time of Successful Search
	Slide 121: Running Time of Successful Search
	Slide 122: Running Time of Successful Search
	Slide 123: Running Time of Successful Search
	Slide 124: Running Time of Successful Search
	Slide 125: Running Time of Successful Search
	Slide 126: Running Time of Successful Search
	Slide 127: Running Time of Successful Search
	Slide 128: Running Time of Successful Search
	Slide 129: Running Time of Successful Search
	Slide 130: Consequence of Analysis
	Slide 131: Examples of Hash Functions
	Slide 132: Examples of Hash Functions
	Slide 133: Examples of Hash Functions
	Slide 134: Summary

