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Motivation

• Worst case does not usually happen

• Average case analysis

• Amortized analysis

• Randomization helps avoid worst-case and attacks by evil users

• Choosing the pivot in quick-sort at random

• Randomization necessary in cryptography

• Can we get randomness? 

• How to extract randomness (extractors)

• Longer “random behaving” strings from small seed (pseudorandom 

generators)



Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player 

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate
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Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player 

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

hired
hired

= 2

Question: how many players did we (temporarily) hire?
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Worst-case analysis

In the worst case: how many players/candidates do we temporarily hire?

. . . 
hired hired hired hired

hired

hired
hired

n candidates

Answer: in the worst case we hire all n candidates



Worst-case unlikely to happen

• We only hire all candidates if they arrive in a specific order

• They are likely to arrive in a random order

• More interesting question (probabilistic analysis): 

 

 What is the expected number of hires we make over all the 

permutations of the candidates?



Example

3 2

22

1 1

Expected number of hires=

which equals 1+5/6
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Calculating the expectation in general 1st trial

• n! permutations each equally likely

• Expectation = sum of hires in each permutation divided by n!

• For n=5 we have 120 terms

• For n=10 we have 3 628 800 terms

NEED A MORE CLEVER METHOD
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Indicator Random Variables

DEFINITION:  Given a sample space and an event A, we define the  

         indicator random variable 

LEMMA: For an event A, let XA = I{A}. Then E[XA] = Pr[A]

PROOF:  E[XA] = 1* Pr{A} + 0 * Pr{A}  = Pr{A}
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Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

• Sample space is {H,T}

• Pr{H} = Pr{T} = ½

• Define indicator variable XH = I{H}

• XH counts the number of heads in one flip

• Since Pr{H} = 1/2, previous lemma says  that E[XH] = 1/2
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Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

• Let X be a random variable for the number of heads in n flips

• For i = 1, …, n, define Xi = I{the i’th flip results in event H}

• Then E[X] = E[X1 + X2 + … + Xn]

• By linearity of expectation i.e., that  E[aX + bY] = aE[X] + bE[Y] 

E[X] = E[X1 + X2 + … + Xn] = E[X1] + E[X2] + … + E[Xn]

         

     = n/2 

holds even if X and Y are dependent

By Lemma equals Pr{H} = 1/2
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• Candidates arrive in random order

• Let X be a random variable that equals the number of times we hire a player
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E[X] =

which equals 1+5/6



Probabilistic Analysis of Hiring Problem

• Candidates arrive in random order

• Let X be a random variable that equals the number of time we hire a player

• Define indicator variables X1, X2, …, Xn where

 Xi = I{candidate i is hired}

X1 = 1

X1 = 1

X1 = 1

X1 = 1

X1 = 1

X1 = 1

X2 = 1 X2 = 1

X2 = 1

X3 = 1

X3 = 1X2 = 0

X2 = 0 X2 = 0X3 = 0

X3 = 0

X3 = 0

X3 = 0

E[X] = E[X1+X2+X3]

    

 =  E[X1] + E[X2] + E[X3]

 = 1 + 1/2 + 1/3 = 1 + 5/6 
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Probabilistic Analysis of Hiring Problem

• Candidates arrive in random order

• Let X be a random variable that equals the number of time we hire a player

• Define indicator variables X1, X2, …, Xn where

 Xi = I{candidate i is hired}

• Note that X = X1 + X2 + … + Xn and E[Xi] = Pr{candidate i is hired}

• By linearity of expectation,

 E[X] = E[X1 + X2 + … + Xn]= E[X1] + E[X2] + … + E[Xn]

which equals 

Pr{candidate 1 is hired} + Pr{candidate 2 is hired} + … + Pr{candidate n is hired}



Probability of Hiring i’th Candidate 

Pr{candidate 1 is hired} = 1 
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Probability of Hiring i’th Candidate 

Pr{candidate 1 is hired} = 1 Pr{candidate 2 is hired} = 1/2 

Pr{candidate 3 is hired} = 1/3 



Probability of Hiring i’th Candidate 

• i’th candidate hired iff he is tallest among the first i candidates

• Since they arrive in random order, any one of these first i candidates are 

equally likely to be the tallest =>

Pr{candidate 3 is hired} = 1/3 

Pr{candidate i is hired}  = 1/i
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Expected Number of Hires

Recall that E[number of hires] = E[X] = 

Pr{candidate 1 is hired} + Pr{candidate 2 is hired} + … + Pr{candidate n is hired}

which equals

1/1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n = Hn      = ln n + O(1)

n: th harmonic number

Examples:

• Expected number of hires for n=6 is 2.45

• Expected number of hires for n=100 is 5.1874

• Expected number of hires for n=10000 is  9.7876 
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• What is the probability that we hire only one candidate? 

• What is the probability that we hire n candidates?



Questions

• What is the probability that we hire only one candidate? 1/n (tallest first)

• What is the probability that we hire n candidates? 1/n! (worst case order)

. . . 
hired hiredhired hired hired

hired hired

. . . 

hired
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• We/the algorithm pick a random order and call the candidates in this 
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Randomized Algorithm 

• Instead of assuming that the candidates arrive in random order

• We/the algorithm pick a random order and call the candidates in this 

order

• In this way we can foul malicious users

. . . 
hiredhiredhiredhiredhired

hired
hired
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• Given a function RANDOM that returns 1 with probability p and 0 with 

probability 1-p

• How to use RANDOM for generating an unbiased bit?



Question

• Given a function RANDOM that returns 1 with probability p and 0 with 

probability 1-p

• How to use RANDOM for generating an unbiased bit?

• Pick a pair (a,b) of random numbers: a = RANDOM and b = RANDOM

• If a≠b return a

• Otherwise pick a new pair



BIRTHDAY PARADOX

Two students in class have the same birthday with overwhelming 

probability
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• Trivially: if we have 366 students then two of them has the same birthday 

with probability 1
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Birthday Paradox

• How many students in  a room do we need so that the probability that 

two of them has the same birthday is at least 50%?

(assuming each of the 365 days is equally likely)

• Trivially: if we have 366 students then two of them has the same birthday 

with probability 1

• Surprisingly: 50% probability reached with 23 students and 99% probability 

reached with just 57 students
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Birthday Lemma

If q > 1.78√|M| then the probability that a function chosen uniformly at 

random f: {1, 2, …, q} -> M is injective is at most ½

Proof.

Let m = |M|.  The probability that the function is injective is

Since e-x > 1-x  we have that this is less than

which is less than ½ if



HASH FUNCTIONS AND 

TABLES



Design a Computer System for a Library



Design a Computer System for a Library

• Insert a new book 

• Delete book

• Search book

• All operations in (expected) constant time!



Direct-Address Tables

• Simple technique that allows for simple implementation of  constant-time 

insertion, deletion, and search 

• Every book has one unique number (ISBN)

• Construct an array/table T with a position for each book

book



Direct-Address Tables

book

Direct-Address-Search(T,k):

 return T[k]

Direct-Address-Insert(T,x):

 T[x.key] = x

Direct-Address-Delete(T,x):

 T[x.key]= NIL



Direct-Address Tables

• Running time of each operation: O(1)

• Space: O(|U|)

book

Direct-Address-Search(T,k):

 return T[k]

Direct-Address-Insert(T,x):

 T[x.key] = x

Direct-Address-Delete(T,x):

 T[x.key]= NIL



Direct-Address Tables

Positives Negatives



Direct-Address Tables

Positives

• Running time of each 

operation: O(1)

• Easy implementation

Negatives

• Space: O(|U|)

• For most applications (like a 

Library) we only store a 

small fraction of all possible 

items

• Wish to use space 

proportional to the amount 

of information stored  
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Hash Tables

• Uses space proportional to the number K of keys stored, i.e., Θ(K)

• Implement search, insertion, deletion in time O(1) in the average case

• In direct-address table an element with key k was stored in slot k

• In hash tables an element with key k is stored in slot h(k)

• h: U -> {0,1, …, m-1} is called the hash function

0

m-1

U



Desired Properties of a Hash Function

• Efficiently computable

• Distributes keys uniformly (to minimize collisions)

• Deterministic: h(k) is always equal to h(k)

“to hash =Informal to make a mess of; mangle”

Simple uniform hashing:

h hashes a new key equally likely to any of the m slots independently of 

where any other has hashed to
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Collisions

• Collision: when two items with keys ki and kj have h(ki) = h(kj)

• How big table do we need to have so as to avoid collisions with high 

probability?

Birthday Lemma says that for h to be injective with good probability then 

we need m > K2
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Collisions

• Collision: when two items with keys ki and kj have h(ki) = h(kj)

• How big table do we need to have so as to avoid collisions with high 

probability?

Birthday Lemma says that for h to be injective with good probability then 

we need m > K2 => if library has 10 000 books need array of size 108

0

m-1

U
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You can’t avoid them but you can deal with them

CHAINING: 

 place all elements that hash to the same slot into the same linked list
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Collisions

0

m-1

U

Chained-Hash-Search(T,k):

 search for an element with key k in list T[h(k)]

Chained-Hash-Insert(T,x):

 insert x at the head of list T[h(x.key)]

Chained-Hash-Delete(T,x):

 delete x from the list T[h(x.key)]



Collisions

Running time? 

Space? 

0

m-1

U

Chained-Hash-Search(T,k):

 search for an element with key k in list T[h(k)]

Chained-Hash-Insert(T,x):

 insert x at the head of list T[h(x.key)]

Chained-Hash-Delete(T,x):

 delete x from the list T[h(x.key)]



Collisions

Running time? O(1) for insertion, deletion

Space? O(m+K)

0

m-1

U

Chained-Hash-Search(T,k):
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Deletion in time O(1) since 

• list is doubly linked

• and we are given a pointer to element and not the key
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Running Time of Search 

• Worst case all n elements are hashed to same slot

• Search takes θ(n) time in worst case (worse than linked list since we also compute h(k) )

• Analyze average-case behavior 

• We assume we use simple uniform hashing

• Let nj denote the length of the list T[j]

• Note that n= n0 + n1 + n2 + … + nm-1

• And E[nj] = Pr[h(k1) = j] + Pr[h(k2) = j] + … Pr[h(kn) = j] = α = n/m
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Running Time of Unsuccessful Search

THEOREM: An unsuccessful search takes expected time θ(1+α) 

PROOF:

• Simple uniform hashing => any key not in the table equally likely to hash to any of 

the m slots

• To  search unsuccessfully for any key k, need to search till the end of list T[h(k)]. 

• This list has expected length E[n_{h(k)}] = α

• Therefore, the expected number of elements examined in an unsuccessful 

search is α

• Adding in the cost for computing the hash function, the total expected time 

needed is Θ(1+α)



Running Time of Successful Search

• Circumstances are slightly different from unsuccessful search

• The probability that each list is searched is proportional to its length

• (we assume that each element is equally likely to be searched for)
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Running Time of Successful Search

THEOREM: A successful search takes expected time θ(1+α) 

PROOF:

• Let x be the element we search for (picked uniformly at random)

• The number of elements examined during a successful search for x is 1 more than 

the number of elements that appear before x in its list

• These are the elements inserted after x was inserted

• So we need to find the average, over the n elements x in the table, of how many 

elements were inserted into x’s list after x was inserted
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Running Time of Successful Search

THEOREM: A successful search takes expected time θ(1+α) 

PROOF:

• For i = 1, 2, …, n, let xi be the I’th element inserted into the table and let ki = key[xi]

• For all i and j, define indicator variable

• Xij = I{h(ki) = h(kj)}

• Simple uniform hashing => E[Xij] = 1/m

• Expected number of elements examined in a successful search is 



Consequence of Analysis 

• Recall that α = n/m 

• So if we choose the size our hash table to be proportional to the number 

of elements stored.

• m = Θ(n)

• Then insertion, deletion O(1) time and search expected O(1) time



Examples of Hash Functions

• Big area of research

• Depends on data distribution and other properties

• We give two basic examples
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Division method

h(k) = k mod m 

m often selected to be a prime not too close to a power of 2



Examples of Hash Functions

Division method

h(k) = k mod m 

m often selected to be a prime not too close to a power of 2

Multiplicative method

h(k) = floor[m * FractionalPartOf(Ak) ]

Knut suggests to chose 



Summary 

• Probabilistic analysis (the hiring problem)

• Random indicator variables

• Linearity of expectation:

• Hash tables

• Very practical method with fast insertion, deletion, and search

• Performance depends on choice of hash function

• Resolve conflicts by for example using chaining

holds even if X and Y are dependent

E[aX + bY] = aE[X] + bE[Y] 
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