ar ) 1900,
"'Tl, ‘l: e

R

Algorithms

Dec 13,2021



PROBABILISTIC ANALYSIS AND
RANDOMIZED ALGORITHMS



Motivation

* Worst case does not usually happen
* Average case analysis

* Amortized analysis



Motivation

* Worst case does not usually happen
* Average case analysis

* Amortized analysis

* Randomization helps avoid worst-case and attacks by evil users

* Choosing the pivot in quick-sort at random



Motivation

* Worst case does not usually happen
* Average case analysis

* Amortized analysis

* Randomization helps avoid worst-case and attacks by evil users

* Choosing the pivot in quick-sort at random



Motivation

* Worst case does not usually happen
* Average case analysis

* Amortized analysis

* Randomization helps avoid worst-case and attacks by evil users

* Choosing the pivot in quick-sort at random

* Randomization necessary in cryptography



Motivation

Worst case does not usually happen
* Average case analysis

* Amortized analysis

Randomization helps avoid worst-case and attacks by evil users

* Choosing the pivot in quick-sort at random

Randomization necessary in cryptography

Can we get randomness?
* How to extract randomness (extractors)

* Longer “random behaving” strings from small seed (pseudorandom
generators)



Probabilistic Analysis: The Hiring Problem

NY Khnicks are going to hire one new basketball player
* the taller the better
They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate



Probabilistic Analysis: The Hiring Problem

NY Khnicks are going to hire one new basketball player
* the taller the better
They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate



Probabilistic Analysis: The Hiring Problem

NY Khnicks are going to hire one new basketball player
* the taller the better
They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate



Probabilistic Analysis: The Hiring Problem

NY Khnicks are going to hire one new basketball player
* the taller the better
They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate



Probabilistic Analysis: The Hiring Problem

NY Khnicks are going to hire one new basketball player
* the taller the better
They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate



Probabilistic Analysis: The Hiring Problem

NY Khnicks are going to hire one new basketball player
* the taller the better
They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate



Probabilistic Analysis: The Hiring Problem

NY Khnicks are going to hire one new basketball player
* the taller the better
They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate



Probabilistic Analysis: The Hiring Problem

NY Khnicks are going to hire one new basketball player
* the taller the better
They have n candidates that they call for interview
Strategy: each candidate is hired that is taller than the current best/tallest
Question: how many players did we (temporarily) hire?

Example:

current best candidate



Probabilistic Analysis: The Hiring Problem

NY Khnicks are going to hire one new basketball player
* the taller the better
They have n candidates that they call for interview
Strategy: each candidate is hired that is taller than the current best/tallest
Question: how many players did we (temporarily) hire?

Example:




Worst-case analysis

In the worst case: how many players/candidates do we temporarily hire?



Worst-case analysis

In the worst case: how many players/candidates do we temporarily hire?

hired llics
: hired
. hired
: hired
hired hII‘Ed
| J
|

n candidates

Answer: in the worst case we hire all n candidates



Worst-case unlikely to happen

* We only hire all candidates if they arrive in a specific order

* They are likely to arrive in a random order

* More interesting question (probabilistic analysis):

What is the expected number of hires we make over all the
permutations of the candidates?



Example

No
3
;-33
3

(‘?]

Expected number of hires=

3+2+2+2+1+1

6
which equals [+5/6

-
m
u“-

o
e

=

S

T
o e ep®
T =D




Calculating the expectation in general |** trial

* n! permutations each equally likely

* Expectation = sum of hires in each permutation divided by n!

Ay + Ay + -+ + Ay
n!




Calculating the expectation in general |** trial

* n! permutations each equally likely

* Expectation = sum of hires in each permutation divided by n!

Ay + Ay + -+ + Ay
n!

* For n=5 we have 120 terms



Calculating the expectation in general |** trial

* n! permutations each equally likely

* Expectation = sum of hires in each permutation divided by n!

Ay + Ay + -+ + Ay
n!

* For n=5 we have 120 terms

* For n=10 we have 3 628 800 terms



Calculating the expectation in general |** trial

* n! permutations each equally likely

* Expectation = sum of hires in each permutation divided by n!

Ay + Ay + -+ + Ay
n!

* For n=5 we have 120 terms

* For n=10 we have 3 628 800 terms

NEED A MORE CLEVER METHOD



Indicator Random Variables

* Simple yet powerful technique for computing the expected value

* |n particular, in situations in which there may be dependence



Indicator Random Variables

* Simple yet powerful technique for computing the expected value

* |n particular, in situations in which there may be dependence

DEFINITION: Given a sample space and an event A, we define the
indicator random variable

)
1 if A occurs,

\O if A does not occur

I{A} = ¢




Indicator Random Variables

DEFINITION: Given a sample space and an event A, we define the
indicator random variable

)
1 if A occurs,

T{A} = «

0 if A does not occur

\




Indicator Random Variables

DEFINITION: Given a sample space and an event A, we define the
indicator random variable

T{A} = «

)
1 if A occurs,

\O if A does not occur

LEMMA: For an event A, let X, = I{A}.Then E[X,] = Pr[A]




Indicator Random Variables

DEFINITION: Given a sample space and an event A, we define the
indicator random variable

)
1 if A occurs,

T{A} = «

\O if A does not occur

LEMMA: For an event A, let X, = I{A}.Then E[X,] = Pr[A]

PROOF: E[X,] = I* Pr{A} + 0 * Pr{A} = Pr{A}




Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time



Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

° Sample space is {H)T}
* Pr{H}=Pr{T}="2



Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

° Sample space is {H’T}
* Pr{H}=Pr{T}="2

* Define indicator variable X, = I{H}



Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

° Sample space is {H’T}
* Pr{H}=Pr{T}="2

* Define indicator variable X, = I{H}

* X, counts the number of heads in one flip



Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

Sample space is {H,T}
Pr{H} = Pr{T} = %

Define indicator variable Xy, = I{H}

* X, counts the number of heads in one flip

Since Pr{H} = 1/2, previous lemma says that E[Xy] = 1/2



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips

e Could calculate
E[X]=) k- Pr{X =k}
k=0

e ... but cumbersome

* |nstead use indicator variables



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips

* Fori=I,...,n,define X, = I{the i’th flip results in event H}



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips

* Fori=I,...,n,define X, = I{the i’th flip results in event H}
* Then E[X] =E[X, + X, + ...+ X ]



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

Let X be a random variable for the number of heads in n flips

Fori=1,..., n, define X, = I{the i’th flip results in event H}

» Then E[X] = E[X, + X, + ...

By linearity of expectation i.e., that

+ Xl

E[aX + bY] = aE[X] + bE[Y]

holds even if X and Y are dependent




Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips

* Fori=I,...,n,define X, = I{the i’th flip results in event H}
* Then E[X] =E[X, + X, + ...+ X ]

* By linearity of expectation i.e., that |E[aX + bY] = aE[X] + bE[Y]

holds even if X and Y are dependent

E[X] = E[X, + X, + ... + X.] = E[X,] + E[X,] + ... + E[X,]



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips

* Fori=I,...,n,define X, = I{the i’th flip results in event H}
* Then E[X] =E[X, + X, + ...+ X ]

* By linearity of expectation i.e., that |E[aX + bY] = aE[X] + bE[Y]

holds even if X and Y are dependent

E[X] = E[X, + X, + ... + X.] = E[X,] + E[X,] + ... + E[X,]

—

By Lemma equals Pr{H} = /2



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips

* Fori=I,...,n,define X, = I{the i’th flip results in event H}
* Then E[X] =E[X, + X, + ...+ X ]

* By linearity of expectation i.e., that |E[aX + bY] = aE[X] + bE[Y]

holds even if X and Y are dependent

E[X] = E[X, + X, + ... + X.] = E[X,] + E[X,] + ... + E[X,]

—

By Lemma equals Pr{H} = /2

= n/2



Probabilistic Analysis of Hiring Problem

 (Candidates arrive in random order

* Let X be a random variable that equals the number of time we hire a player



Probabilistic Analysis of Hiring Problem

Candidates arrive in random order

Let X be a random variable that equals the number of times we hire a player

@ ' @ @ @ ' 3+2+2+241+1

E[X] 5 ;

@ @ @ @ which equals [+5/6




Probabilistic Analysis of Hiring Problem

* Candidates arrive in random order
* Let X be a random variable that equals the number of time we hire a player
* Define indicator variables X;, X,, ..., X,, where

= l{candidate i is hired}

X, =1 X,=1 X;=1 X, =1 X,= I x3

]

Ml N E[X] = E[X,+X;+X;]
Xi=1 X=0 X;= I Xi=1 Xp=1 Xy= = E[X,] + E[X,] + E[X;]
'@@ '@@ =1 +1/2+13=1+5/6

boo B0



Probabilistic Analysis of Hiring Problem

* Candidates arrive in random order
* Let X be a random variable that equals the number of time we hire a player
* Define indicator variables X;, X,, ..., X,, where
X, = l{candidate i is hired}
* Note that X =X, + X, + ... + X and E[X.] = Pr{candidate i is hired}



Probabilistic Analysis of Hiring Problem

* Candidates arrive in random order
* Let X be a random variable that equals the number of time we hire a player
* Define indicator variables X;, X,, ..., X,, where
X, = l{candidate i is hired}
* Note that X =X, + X, + ... + X and E[X.] = Pr{candidate i is hired}

* By linearity of expectation,

E[X] = E[X, + X, + ... + X.]= E[X,] + E[X,] * ... + E[X.]



Probabilistic Analysis of Hiring Problem

* Candidates arrive in random order
* Let X be a random variable that equals the number of time we hire a player
* Define indicator variables X;, X,, ..., X,, where
X, = l{candidate i is hired}
* Note that X =X, + X, + ... + X and E[X.] = Pr{candidate i is hired}

* By linearity of expectation,

E[X] =E[X, + X, +... + X ]= E[X,] + E[X,] + ... + E[X]
which equals

Pr{candidate | is hired} + Pr{candidate 2 is hired} + ... + Pr{candidate n is hired}



Probability of Hiring i*th Candidate

Pr{candidate | is hired} = I

(-
m
. “.



Probability of Hiring i*th Candidate

Pr{candidate | is hired} = I Pr{candidate 2 is hired} = 1/2

)
I

- P




Probability of Hiring i*th Candidate

Pr{candidate | is hired} = I Pr{candidate 2 is hired} = 1/2

)
I

- P

Pr{candidate 3 is hired} = 1/3




Probability of Hiring i*th Candidate

* i’'th candidate hired iff he is tallest among the first i candidates

* Since they arrive in random order, any one of these first i candidates are
equally likely to be the tallest =>

Pr{candidate i is hired} = l/i

Pr{candidate 3 is hired} = 1/3

af aab @06

] = \




Expected Number of Hires

Recall that E[number of hires] = E[X] =
Pr{candidate | is hired} + Pr{candidate 2 is hired} + ... + Pr{candidate n is hired}



Expected Number of Hires

Recall that E[number of hires] = E[X] =
Pr{candidate | is hired} + Pr{candidate 2 is hired} + ... + Pr{candidate n is hired}

which equals

1M+ 12+ 113+1/4+1/5+...+ 1/n



Expected Number of Hires

Recall that E[number of hires] = E[X] =
Pr{candidate | is hired} + Pr{candidate 2 is hired} + ... + Pr{candidate n is hired}

which equals

UL+ 1/2+ 13+ 1/4+1/5+... + |/n@

n:th harmonic number



Expected Number of Hires

Recall that E[number of hires] = E[X] =
Pr{candidate | is hired} + Pr{candidate 2 is hired} + ... + Pr{candidate n is hired}

which equals

1M+ 1/2+113+1/4+1/5+...+1/n=H,) =lnn+ O(l)



Expected Number of Hires

Recall that E[number of hires] = E[X] =
Pr{candidate | is hired} + Pr{candidate 2 is hired} + ... + Pr{candidate n is hired}

which equals
1M+ 12+ 1/3+1/4+1/5+...+ Iln@ =Inn+ O(l)

n:th harmonic number

Examples:
* Expected number of hires for n=6 is 2.45
* Expected number of hires for n=100 is 5.1874

* Expected number of hires for n=10000 is 9.7876



Questions

*  What is the probability that we hire only one candidate!?

*  What is the probability that we hire n candidates!?



Questions

*  What is the probability that we hire only one candidate? 1/n (tallest first)
hired

* What is the probability that we hire n candidates? I/n! (worst case order)

hired hired

hired hired hired hired hIed

TR




Randomized Algorithm

* Instead of assuming that the candidates arrive in random order

* Welthe algorithm pick a random order and call the candidates in this
order



Randomized Algorithm

* Instead of assuming that the candidates arrive in random order

* Welthe algorithm pick a random order and call the candidates in this
order

hired hlredhlredhlred hired

AR




Randomized Algorithm

* Instead of assuming that the candidates arrive in random order

* Welthe algorithm pick a random order and call the candidates in this
order

* In this way we can foul malicious users




Question

* Given a function RANDOM that returns | with probability p and 0 with
probability |-p

* How to use RANDOM for generating an unbiased bit?



Question

* Given a function RANDOM that returns | with probability p and 0 with
probability |-p

* How to use RANDOM for generating an unbiased bit?

* Pick a pair (a,b) of random numbers:a = RANDOM and b = RANDOM
* Ifa#b return a

* Otherwise pick a new pair



Two students in class have the same birthday with overwhelming
probability

BIRTHDAY PARADOX



Birthday Paradox

* How many students in a room do we need so that the probability that
two of them has the same birthday is at least 50%!?

(assuming each of the 365 days is equally likely)



Birthday Paradox

* How many students in a room do we need so that the probability that
two of them has the same birthday is at least 50%!?

(assuming each of the 365 days is equally likely)

* Trivially: if we have 366 students then two of them has the same birthday
with probability |



lllustrative Example

2013 YEAR CALENDAR
JANUARY FEBRUARY MARCH APRIL

SIM|T|(W|T|F|S SIM|T|W|T|F|S SIM|T|W|[T|F S(M|T(W|T|F|S
112 |3|4(5 1|2 1 1112|3456
6(7|8[9]|10|11]12 3(4(5|6|7|8(9 3|14|5|6|7|8 718[9|10(11]12(13
13|14 (15|16 (17|18 |19 10(11(12]13]|14 (15|16 10]11(12|13|14(15|16 14(15|16 17|18 (19| 20
20(21)|122|23 |24 (25|26 17 (1819|2021 (22|23 17118 (19|20 (21|22 |23 21(22)|23 (2425|2627

27(28)129|30 |31 24125(26| 27|28 24 (25|26 (27|28 |29 |30 28 (2930

31
MAY JUNE JULY AUGUST
SIM|T|W|T|[F|S SIM|T|W[T|F|[S SIM|T|W F|S S(M|T(W|T|[F|S
11234 1 112|3[4|5]|6 112(3
5(6|7(8|9|10|1 3(4|5(6 |7 |8 7|8 10111213 415|6|7(8|9]10
12(13|14(15|16 |17 |18 10(11|12(13 |14 (15 1411516 |17 (18|19 |20 1M12(13|14|15|16 (17
19(20(21(22 |23 | 24|25 16 (1718|1920 (21|22 21(22(23|24|25|26 |27 181192021 (22|23 (24
26(27)28|29|30 (31 23|24 (25|26(27 |28 |29 28(29|30 (31 25(26|27 (28|29 (30| 31
30
SEPTEMBER OCTOBER OVEMBER DECEMBER

SIM|T|W|T|[F|S SIM|T|W|T|F|S SIM[{T|W[T|F|[S S(M|T(W|T|[F|S
112|3(4|5]|6]|7 112(3|4(5 1|2 112(3|4|5]|6(7
8(9(10(11|12(13|14 6(7)8|9]|10(11]12 J|4|5|6(7)|8](9 8§19(10(11(12(13|14
15(16 (1718|1920 | 21 13(14]15[16|17 (18|19 101111213 (141516 15|16 (17|18 |19| 20 21
22(23|124|25|26 (27|28 2021(22|23(24 (25|26 17118 (19|20 (21|22 |23 2223|124 (25|26(27|28

2930 27128(29|30( 31 24 (25|26 (27|28 |29 |30 29(30| 31




Birthday Paradox

* How many students in a room do we need so that the probability that
two of them has the same birthday is at least 50%!?

(assuming each of the 365 days is equally likely)

* Trivially: if we have 366 students then two of them has the same birthday
with probability |

* Surprisingly: 50% probability reached with 23 students and 99% probability
reached with just 57 students



Birthday Lemma

If q > 1.78V|M| then the probability that a function chosen uniformly at
random f: {l, 2, ..., q} -> M is injective is at most Y2



Birthday Lemma

If q > 1.78V|M| then the probability that a function chosen uniformly at
random f: {l, 2, ..., q} -> M is injective is at most Y2

Proof.

Let m = |[M|. The probability that the function is injective is



Birthday Lemma

If q > 1.78V|M| then the probability that a function chosen uniformly at
random f: {l, 2, ..., q} -> M is injective is at most Y2

Proof.

Let m = |[M|. The probability that the function is injective is



Birthday Lemma

If q > 1.78V|M| then the probability that a function chosen uniformly at
random f: {l, 2, ..., q} -> M is injective is at most Y2

Proof.

Let m = |[M|. The probability that the function is injective is

m—1 m—2 m—(¢g—1)

m
m m m m

Since e*> |-x we have that this is less than

6_0 . e_l/m 5 e_z/m 5o o e_(q_l)/m — G_Q(q_l)/(2m)



Birthday Lemma

If q > 1.78V|M| then the probability that a function chosen uniformly at
random f: {l, 2, ..., q} -> M is injective is at most Y2

Proof.

Let m = |M|. The probability that the function is injective is

m—1 m—2 m—(¢g—1)

m
m m m m

Since e*> |-x we have that this is less than

6_0 . e_l/m 5 e_z/m 5o o e_(q_l)/m — G_Q(q_l)/(Qm)

1++v1+8In2
)

vm ~ 1.78y/m

which is less than 2 if g >



Birthday Lemma

If q > 1.78V|M| then the probability that a function chosen uniformly at
random f: {l, 2, ..., q} -> M is injective is at most Y2

Proof.

Let m = |M|. The probability that the function is injective is

m—1 m—2 m—(¢g—1)

m
m m m m

Since e*> |-x we have that this is less than

6_0 . e_l/m 5 e_z/m 5o o e_(q_l)/m — G_Q(q_l)/(Qm)

1++v1+8In2
)

vm ~ 1.78y/m

which is less than 2 if g >



HASH FUNCTIONS AND
TABLES



Design a Computer System for a Library




Design a Computer System for a Library

Insert a new book

Delete book

Search book

* All operations in (expected) constant time!



Direct-Address Tables

* Simple technique that allows for simple implementation of constant-time
insertion, deletion, and search

* Every book has one unique number (ISBN)

* Construct an array/table T with a position for each book

T
. key book data
-
- —

N/
2
=3

-
o

91

K 2
(actual
keys)

\DOO\JO\U‘I-P-UJ[\)'—‘O




Direct-Address-Search(T,k):

Direct-Address Tables resrn T

Direct-Address-Insert(T,x):

T[x.key] = x
Direct-Address-Delete(T,x):

T[x.key]= NIL

T

. key book data
\ _/
2
—> 3
-
- —

-
o

91

K 2
(actual
keys)

@OO\JO\U‘I-P-M[\)




Direct-Address-Search(T,k):

Direct-Address Tables resrn T

Direct-Address-Insert(T,x):

T[x.key] = x
* Running time of each operation: O(1) Direct-Address-Delete(T,x):

T[x.key]= NIL

* Space: O(JU))

T
. key book data
-
]

N/
2
=3

-
o

k 2 = 5
(actual
keys)
8

\DOO\JO\U‘I-P-M[\)'—‘D




Direct-Address Tables

Positives Negatives



Direct-Address Tables

Positives Negatives

* Running time of each * Space: O(JU))
operation: O(1)

* For most applications (like a

* Easy implementation Library) we only store a
small fraction of all possible

items

* Wish to use space
proportional to the amount
of information stored



Hash Tables

* Uses space proportional to the number K of keys stored, i.e., O(K)

* Implement search, insertion, deletion in time O(1) in the average case



Hash Tables

* Uses space proportional to the number K of keys stored, i.e., O(K)
* Implement search, insertion, deletion in time O(1) in the average case
* In direct-address table an element with key k was stored in slot k

* In hash tables an element with key k is stored in slot h(k)



Hash Tables

* Uses space proportional to the number K of keys stored, i.e., O(K)
* Implement search, insertion, deletion in time O(1) in the average case
* In direct-address table an element with key k was stored in slot k

* In hash tables an element with key k is stored in slot h(k)

h:U ->{0,1,...,m-1} is called the hash function



Hash Tables

* Uses space proportional to the number K of keys stored, i.e., O(K)
* Implement search, insertion, deletion in time O(1) in the average case
* In direct-address table an element with key k was stored in slot k

* In hash tables an element with key k is stored in slot h(k)

h:U ->{0,1,...,m-1} is called the hash function

U




Hash Tables

* Uses space proportional to the number K of keys stored, i.e., O(K)
* Implement search, insertion, deletion in time O(1) in the average case
* In direct-address table an element with key k was stored in slot k

* In hash tables an element with key k is stored in slot h(k)

h:U ->{0,1,...,m-1} is called the hash function

U

k1
o




Hash Tables

* Uses space proportional to the number K of keys stored, i.e., O(K)
* Implement search, insertion, deletion in time O(1) in the average case
* In direct-address table an element with key k was stored in slot k

* In hash tables an element with key k is stored in slot h(k)

h:U ->{0,1,...,m-1} is called the hash function

U h(k1)
fl//




Hash Tables

* Uses space proportional to the number K of keys stored, i.e., O(K)
* Implement search, insertion, deletion in time O(1) in the average case
* In direct-address table an element with key k was stored in slot k

* In hash tables an element with key k is stored in slot h(k)

h:U ->{0,1,...,m-1} is called the hash function

U h(k1)
fl//




Hash Tables

* Uses space proportional to the number K of keys stored, i.e., O(K)
* Implement search, insertion, deletion in time O(1) in the average case
* In direct-address table an element with key k was stored in slot k

* In hash tables an element with key k is stored in slot h(k)

h:U ->{0,1,...,m-1} is called the hash function

0

U h(k1)
fl//

ks —»  |h(k2)




Hash Tables

* Uses space proportional to the number K of keys stored, i.e., O(K)
* Implement search, insertion, deletion in time O(1) in the average case
* In direct-address table an element with key k was stored in slot k

* In hash tables an element with key k is stored in slot h(k)

h:U ->{0,1,...,m-1} is called the hash function

0

U h(k1)
fl//

ks —»  |h(k2)




Hash Tables

* Uses space proportional to the number K of keys stored, i.e., O(K)
* Implement search, insertion, deletion in time O(1) in the average case
* In direct-address table an element with key k was stored in slot k

* In hash tables an element with key k is stored in slot h(k)

h:U ->{0,1,...,m-1} is called the hash function

0
= h(k1)
s
ks —>  [7(k2)
‘.7
k3 ® —> h(kg)
m- |




Desired Properties of a Hash Function

“to hash =Informal to make a mess of; mangle”
* Efficiently computable
* Distributes keys uniformly (to minimize collisions)

* Deterministic: h(k) is always equal to h(k)

Simple uniform hashing:

h hashes a new key equally likely to any of the m slots independently of
where any other has hashed to



Collisions

* Collision: when two items with keys k; and k; have h(k;) = h(k;)



Collisions

* Collision: when two items with keys k; and k; have h(k;) = h(k;)

0
= h(k1)
s
ks —>  [7(k2)
‘.7
k3 ® —> h(kg)
m- |




Collisions

* Collision: when two items with keys k; and k; have h(k;) = h(k;)

0
= h(k1)
fl//
ko s —p  |1(k2) = h(ky)




Collisions

* Collision: when two items with keys k; and k; have h(k;) = h(k;)

* How big table do we need to have so as to avoid collisions with high
probability?

0
~ h(k1)
fl//
[
W ——p  |i(ko) = D(ky)
‘_—
k3 ® —> h(kg)
m-|




Collisions

* Collision: when two items with keys k; and k; have h(k;) = h(k;)

* How big table do we need to have so as to avoid collisions with high
probability?




Collisions

* Collision: when two items with keys k; and k; have h(k;) = h(k;)

* How big table do we need to have so as to avoid collisions with high
probability?




Collisions

* Collision: when two items with keys k; and k; have h(k;) = h(k;)

* How big table do we need to have so as to avoid collisions with high
probability?




Collisions

* Collision: when two items with keys k; and k; have h(k;) = h(k;)

* How big table do we need to have so as to avoid collisions with high
probability?

Birthday Lemma says that for h to be injective with good probability then
we need m > K2




Collisions

* Collision: when two items with keys k; and k; have h(k;) = h(k;)

* How big table do we need to have so as to avoid collisions with high
probability?

Birthday Lemma says that for h to be injective with good probability then
we need m > K2 => if library has 10 000 books need array of size 102

0
~ h(k1)
fl//
[
W ——  |A(ka) = D(ky)
‘.7
k3 ® —P h(kg)
m-|




Collisions

You can’t avoid them but you can deal with them



Collisions

You can’t avoid them but you can deal with them

Y VY )



Collisions

You can’t avoid them but you can deal with them

CHAINING:

place all elements that hash to the same slot into the same linked list



Collisions

You can’t avoid them but you can deal with them

CHAINING:

place all elements that hash to the same slot into the same linked list

/ 0
U VL4
k’l /
ks @ /
k2 —p __'/k2 <
— /
ks @ —> k3|
/
/ m-|




Chained-Hash-Search(T,k):

search for an element with key k in list T[h(k)]

Collisions

Chained-Hash-Insert(T,x):

insert x at the head of list T[h(x.key)]
Chained-Hash-Delete(T,x):

delete x from the list T[h(x.key)]

/ 0
U k1|
kq >
o /
ko = =P | |k2| T |k3|/
Qo /
ks @ —P o |ka| /
/
/ m- |




Chained-Hash-Search(T,k):

search for an element with key k in list T[h(k)]

Collisions

Chained-Hash-Insert(T,x):

insert x at the head of list T[h(x.key)]

Runnlng time!? Chained-Hash-Delete(T,x):

Space? delete x from the list T[h(x.key)]
U /P
/| k1] /
k1 >
ka /
ko - =P |/ |k2| L k3]
— /
k3 @ —> TR/
/
/| m-1




Chained-Hash-Search(T,k):

search for an element with key k in list T[h(k)]

Collisions

Chained-Hash-Insert(T,x):

insert x at the head of list T[h(x.key)]

Running time? O(l) for insertion, deletion Chained-Hash-Delete(Tx):
Space? 0(m+K) delete x from the list T[h(x.key)]
/ 0
U
k1] /
k1 »
ka /
ko - = .o e VA L2 i e I 1
— /
ks @ —> TR/
/
/| m-1




Chained-Hash-Search(T,k):
C I I o o search for an element with key k in list T[h(k)]
O I s IO n s Chained-Hash-Insert(T,x):
insert x at the head of list T[h(x.key)]
Running time? O(l) for insertion, deletion Chained-Hash-Delete(Tx):
Space? 0(m+K) delete x from the list T[h(x.key)]

Deletion in time O(1) since
* list is doubly linked

* and we are given a pointer to element and not the key

/ 0
U k1|
kq >
ks @ /
ko —p | |k T k3|
Qo /
ks @ —P o |ka| /
/
/ m- |




Running Time of Search




Running Time of Search

*  Worst case all n elements are hashed to same slot
» Search takes G(n) time in worst case (worse than linked list since we also compute h(k) ®)
* Analyze average-case behavior

* We assume we use simple uniform hashing



Running Time of Search

*  Worst case all n elements are hashed to same slot
» Search takes G(n) time in worst case (worse than linked list since we also compute h(k) ®)
* Analyze average-case behavior

* We assume we use simple uniform hashing

* Let n; denote the length of the list T[j]

* Notethatn=ng+n,+n,+...+n_

* And E[n] = Pr[h(k)) =j] + Pr[h(k;) =j] + ... Pr[h(k,) =j] =a=n/m



Running Time of Unsuccessful Search

THEOREM: An unsuccessful search takes expected time 0(1+a)

PROOF:



Running Time of Unsuccessful Search

THEOREM: An unsuccessful search takes expected time 0(1+a)

PROOF:

* Simple uniform hashing => any key not in the table equally likely to hash to any of
the m slots



Running Time of Unsuccessful Search

THEOREM: An unsuccessful search takes expected time 0(1+a)

PROOF:

* Simple uniform hashing => any key not in the table equally likely to hash to any of
the m slots

* To search unsuccessfully for any key k, need to search till the end of list T[h(k)].

* This list has expected length E[n_{h(k)}] = a

* Therefore, the expected number of elements examined in an unsuccessful
search is a



Running Time of Unsuccessful Search

THEOREM: An unsuccessful search takes expected time 0(1+a)

PROOF:
* Simple uniform hashing => any key not in the table equally likely to hash to any of
the m slots

* To search unsuccessfully for any key k, need to search till the end of list T[h(k)].

* This list has expected length E[n_{h(k)}] = a

* Therefore, the expected number of elements examined in an unsuccessful
search is a

* Adding in the cost for computing the hash function, the total expected time
needed is O(1+a) Y



Running Time of Successful Search

* Circumstances are slightly different from unsuccessful search

* The probability that each list is searched is proportional to its length

* (we assume that each element is equally likely to be searched for)



Running Time of Successful Search

THEOREM: A successful search takes expected time 6(1+a)
PROOF:



Running Time of Successful Search

THEOREM: A successful search takes expected time 6(1+a)
PROOF:

* Let x be the element we search for (picked uniformly at random)



Running Time of Successful Search

THEOREM: A successful search takes expected time 6(1+a)
PROOF:

* Let x be the element we search for (picked uniformly at random)

* The number of elements examined during a successful search for x is | more than
the number of elements that appear before x in its list

* These are the elements inserted after x was inserted



Running Time of Successful Search

THEOREM: A successful search takes expected time 6(1+a)
PROOF:

* Let x be the element we search for (picked uniformly at random)

* The number of elements examined during a successful search for x is | more than
the number of elements that appear before x in its list

* These are the elements inserted after x was inserted

* So we need to find the average, over the n elements x in the table, of how many
elements were inserted into X’s list after x was inserted



Running Time of Successful Search

THEOREM: A successful search takes expected time 6(1+a)
PROOF:

e Fori=1,2,...,n,let x; be the i’th element inserted into the table and let k; = key[x;]



Running Time of Successful Search

THEOREM: A successful search takes expected time 6(1+a)
PROOF:

e Fori=1,2,...,n,let x; be the i’th element inserted into the table and let k; = key[x;]
* For all i and j, define indicator variable

* X; = Kh(k;) = h(k)}

* Simple uniform hashing => E[X;;] = I/m



Running Time of Successful Search

THEOREM: A successful search takes expected time 6(1+a)
PROOF:
e Fori=1,2,...,n,let x; be the i’th element inserted into the table and let k; = key[x;]
* For all i and j, define indicator variable
* X; = Kh(k;) = h(k)}
* Simple uniform hashing => E[Xij] = |l/m

* Expected number of elements examined in a successful search is

n

1 n
E EZ 1+ ) Xy

i=1 j=i+1



Running Time of Successful Search

THEOREM: A successful search takes expected time 6(1+a)
PROOF:
e Fori=1,2,...,n,let x; be the i’th element inserted into the table and let k; = key[x;]
* For all i and j, define indicator variable
* X; = Kh(k;) = h(k)}
* Simple uniform hashing => E[Xij] = |l/m

* Expected number of elements examined in a successful search is

n n

E %Z 1+ ZXz’j Z%Z 1+ ZE[XZ’J']

i=1 j=i+1 i=1 j=i+1



Running Time of Successful Search

THEOREM: A successful search takes expected time 6(1+a)
PROOF:
e Fori=1,2,...,n,let x; be the i’th element inserted into the table and let k; = key[x;]
* For all i and j, define indicator variable
* X; = Kh(k;) = h(k)}
* Simple uniform hashing => E[Xij] = |l/m

* Expected number of elements examined in a successful search is

n

1 - 1 1
E EZ 1+ ) Xy :EZ 1+ ) E[Xy] == 1+ —

i=1 j=i+1 i=1 j=i+1 i=1 j=i+1



Running Time of Successful Search

THEOREM: A successful search takes expected time 6(1+a)
PROOF:
e Fori=1,2,...,n,let x; be the I'th element inserted into the table and let k; = key[x;]
* For all i and j, define indicator variable
* X; = Kh(k;) = h(k)}
* Simple uniform hashing => E[Xij] = |l/m

* Expected number of elements examined in a successful search is

E E; 1+'_Z Xij =EZ 1+._Z BlXqgl | =32 H._ZE
= J=14+1 =l Jj=1+1 1=1 Jj=1+1
« (07
= =145 - o X



Consequence of Analysis

e Recall thata = n/m

* So if we choose the size our hash table to be proportional to the number
of elements stored.

* m=0(n)

* Then insertion, deletion O( 1) time and search expected O( 1) time



Examples of Hash Functions

* Big area of research

* Depends on data distribution and other properties

* We give two basic examples



Examples of Hash Functions

Division method
h(k) =k mod m

m often selected to be a prime not too close to a power of 2



Examples of Hash Functions

Division method
h(k) =k mod m

m often selected to be a prime not too close to a power of 2

Multiplicative method

h(k) = floor[m * FractionalPartOf(Ak) ]

Knut suggests to chose A ~ (v/5 —1)/2



Summary

* Probabilistic analysis (the hiring problem)

e Random indicator variables

* Linearity of expectation:
E[aX + bY] = aE[X] + bE[Y]

holds even if X and Y are dependent

* Hash tables
* Very practical method with fast insertion, deletion, and search
* Performance depends on choice of hash function

* Resolve conflicts by for example using chaining



	Slide 1: Algorithms
	Slide 2: Probabilistic analysis and randomized algorithms
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Motivation
	Slide 8: Probabilistic Analysis: The Hiring Problem
	Slide 9: Probabilistic Analysis: The Hiring Problem
	Slide 10: Probabilistic Analysis: The Hiring Problem
	Slide 11: Probabilistic Analysis: The Hiring Problem
	Slide 12: Probabilistic Analysis: The Hiring Problem
	Slide 13: Probabilistic Analysis: The Hiring Problem
	Slide 14: Probabilistic Analysis: The Hiring Problem
	Slide 15: Probabilistic Analysis: The Hiring Problem
	Slide 16: Probabilistic Analysis: The Hiring Problem
	Slide 17: Worst-case analysis
	Slide 18: Worst-case analysis
	Slide 19: Worst-case unlikely to happen
	Slide 20: Example
	Slide 21: Calculating the expectation in general 1st trial
	Slide 22: Calculating the expectation in general 1st trial
	Slide 23: Calculating the expectation in general 1st trial
	Slide 24: Calculating the expectation in general 1st trial
	Slide 25: Indicator Random Variables
	Slide 26: Indicator Random Variables
	Slide 27: Indicator Random Variables
	Slide 28: Indicator Random Variables
	Slide 29: Indicator Random Variables
	Slide 30: Simple Example: Coin Flip
	Slide 31: Simple Example: Coin Flip
	Slide 32: Simple Example: Coin Flip
	Slide 33: Simple Example: Coin Flip
	Slide 34: Simple Example: Coin Flip
	Slide 35: Slightly More Complex: n Coin Flips
	Slide 36: Slightly More Complex: n Coin Flips
	Slide 37: Slightly More Complex: n Coin Flips
	Slide 38: Slightly More Complex: n Coin Flips
	Slide 39: Slightly More Complex: n Coin Flips
	Slide 40: Slightly More Complex: n Coin Flips
	Slide 41: Slightly More Complex: n Coin Flips
	Slide 42: Slightly More Complex: n Coin Flips
	Slide 43: Probabilistic Analysis of Hiring Problem
	Slide 44: Probabilistic Analysis of Hiring Problem
	Slide 45: Probabilistic Analysis of Hiring Problem
	Slide 46: Probabilistic Analysis of Hiring Problem
	Slide 47: Probabilistic Analysis of Hiring Problem
	Slide 48: Probabilistic Analysis of Hiring Problem
	Slide 49: Probability of Hiring i’th Candidate 
	Slide 50: Probability of Hiring i’th Candidate 
	Slide 51: Probability of Hiring i’th Candidate 
	Slide 52: Probability of Hiring i’th Candidate 
	Slide 53: Expected Number of Hires
	Slide 54: Expected Number of Hires
	Slide 55: Expected Number of Hires
	Slide 56: Expected Number of Hires
	Slide 57: Expected Number of Hires
	Slide 58: Questions
	Slide 59: Questions
	Slide 60: Randomized Algorithm 
	Slide 61: Randomized Algorithm 
	Slide 62: Randomized Algorithm 
	Slide 63: Question
	Slide 64: Question
	Slide 65: Birthday PARADOX
	Slide 66: Birthday Paradox
	Slide 67: Birthday Paradox
	Slide 68: Illustrative Example
	Slide 69: Birthday Paradox
	Slide 70: Birthday Lemma
	Slide 71: Birthday Lemma
	Slide 72: Birthday Lemma
	Slide 73: Birthday Lemma
	Slide 74: Birthday Lemma
	Slide 75: Birthday Lemma
	Slide 76: HASH FUNCTIONS AND TABLES
	Slide 77: Design a Computer System for a Library
	Slide 78: Design a Computer System for a Library
	Slide 79: Direct-Address Tables
	Slide 80: Direct-Address Tables
	Slide 81: Direct-Address Tables
	Slide 82: Direct-Address Tables
	Slide 83: Direct-Address Tables
	Slide 84: Hash Tables
	Slide 85: Hash Tables
	Slide 86: Hash Tables
	Slide 87: Hash Tables
	Slide 88: Hash Tables
	Slide 89: Hash Tables
	Slide 90: Hash Tables
	Slide 91: Hash Tables
	Slide 92: Hash Tables
	Slide 93: Hash Tables
	Slide 94: Desired Properties of a Hash Function
	Slide 95: Collisions
	Slide 96: Collisions
	Slide 97: Collisions
	Slide 98: Collisions
	Slide 99: Collisions
	Slide 100: Collisions
	Slide 101: Collisions
	Slide 102: Collisions
	Slide 103: Collisions
	Slide 104: Collisions
	Slide 105: Collisions
	Slide 106: Collisions
	Slide 107: Collisions
	Slide 108: Collisions
	Slide 109: Collisions
	Slide 110: Collisions
	Slide 111: Collisions
	Slide 112: Running Time of Search
	Slide 113: Running Time of Search 
	Slide 114: Running Time of Search 
	Slide 115: Running Time of Unsuccessful Search
	Slide 116: Running Time of Unsuccessful Search
	Slide 117: Running Time of Unsuccessful Search
	Slide 118: Running Time of Unsuccessful Search
	Slide 119: Running Time of Successful Search
	Slide 120: Running Time of Successful Search
	Slide 121: Running Time of Successful Search
	Slide 122: Running Time of Successful Search
	Slide 123: Running Time of Successful Search
	Slide 124: Running Time of Successful Search
	Slide 125: Running Time of Successful Search
	Slide 126: Running Time of Successful Search
	Slide 127: Running Time of Successful Search
	Slide 128: Running Time of Successful Search
	Slide 129: Running Time of Successful Search
	Slide 130: Consequence of Analysis 
	Slide 131: Examples of Hash Functions
	Slide 132: Examples of Hash Functions
	Slide 133: Examples of Hash Functions
	Slide 134: Summary 

