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PROBABILISTIC ANALYSIS AND
RANDOMIZED ALGORITHMS



Motivation

Worst case does not usually happen
* Average case analysis

* Amortized analysis

Randomization helps avoid worst-case and attacks by evil users

* Choosing the pivot in quick-sort at random

Randomization necessary in cryptography

Can we get randomness?
* How to extract randomness (extractors)

* Longer “random behaving” strings from small seed (pseudorandom
generators)



Probabilistic Analysis: The Hiring Problem

NY Khnicks are going to hire one new basketball player
* the taller the better
They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate
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Worst-case analysis

In the worst case: how many players/candidates do we temporarily hire?



Worst-case analysis

In the worst case: how many players/candidates do we temporarily hire?

hired e

n candidates

Answer: in the worst case we hire all n candidates



Worst-case unlikely to happen

* We only hire all candidates if they arrive in a specific order

* They are likely to arrive in a random order

* More interesting question (probabilistic analysis):

What is the expected number of hires we make over all the
permutations of the candidates?



Example

3+2+2+2+1+1

"@ } G| e
m which equals [+5/6
.n.

y i

0:3)

(‘?\J

Expected number of hires=

o |ep” ep®
T =D




Calculating the expectation in general |** trial

* n! permutations each equally likely

* Expectation = sum of hires in each permutation divided by n!
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Calculating the expectation in general |** trial

* n! permutations each equally likely

* Expectation = sum of hires in each permutation divided by n!

Ay + Ay + -+ + Ay
n!

* For n=5 we have 120 terms

* For n=10 we have 3 628 800 terms

NEED A MORE CLEVER METHOD
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* |n particular, in situations in which there may be dependence
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Indicator Random Variables

DEFINITION: Given a sample space and an event A, we define the
indicator random variable

)
1 if A occurs,

T{A} = «

\O if A does not occur

LEMMA: For an event A, let X, = I{A}.Then E[X,] = Pr[A]

PROOF: E[X,] = I* Pr{A} + 0 * Pr{A} = Pr{A}
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Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

Sample space is {H,T}
Pr{H} = Pr{T} = %

Define indicator variable Xy, = I{H}

* X, counts the number of heads in one flip

Since Pr{H} = 1/2, previous lemma says that E[Xy] = 1/2



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips

e Could calculate
E[X]=) k- Pr{X =k}
k=0

e ... but cumbersome

* |nstead use indicator variables



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips

* Fori=I,...,n,define X, = I{the i’th flip results in event H}



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips

* Fori=I,...,n,define X, = I{the i’th flip results in event H}
* Then E[X] =E[X, + X, + ...+ X ]



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

Let X be a random variable for the number of heads in n flips

Fori=1,..., n, define X, = I{the i’th flip results in event H}

» Then E[X] = E[X, + X, + ...

By linearity of expectation i.e., that

+ Xl

E[aX + bY] = aE[X] + bE[Y]

holds even if X and Y are dependent




Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips

* Fori=I,...,n,define X, = I{the i’th flip results in event H}
* Then E[X] =E[X, + X, + ...+ X ]

* By linearity of expectation i.e., that |E[aX + bY] = aE[X] + bE[Y]

holds even if X and Y are dependent

E[X] = E[X, + X, + ... + X.] = E[X,] + E[X,] + ... + E[X,]



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips

* Fori=I,...,n,define X, = I{the i’th flip results in event H}
* Then E[X] =E[X, + X, + ...+ X ]

* By linearity of expectation i.e., that |E[aX + bY] = aE[X] + bE[Y]

holds even if X and Y are dependent

E[X] = E[X, + X, + ... + X.] = E[X,] + E[X,] + ... + E[X,]

—

By Lemma equals Pr{H} = /2



Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

* Let X be a random variable for the number of heads in n flips

* Fori=I,...,n,define X, = I{the i’th flip results in event H}
* Then E[X] =E[X, + X, + ...+ X ]

* By linearity of expectation i.e., that |E[aX + bY] = aE[X] + bE[Y]

holds even if X and Y are dependent

E[X] = E[X, + X, + ... + X.] = E[X,] + E[X,] + ... + E[X,]

—

By Lemma equals Pr{H} = /2

= n/2
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 (Candidates arrive in random order

* Let X be a random variable that equals the number of times we hire a player
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Probabilistic Analysis of Hiring Problem

* Candidates arrive in random order
* Let X be a random variable that equals the number of time we hire a player
* Define indicator variables X;, X,, ..., X,, where

= l{candidate i is hired}

X, =1 X,=1 X;=1 X, =1 X,=1 X;=0

W o 0 &

gl 1 E[X] = E[X,+X;+X;]

X, =1 X,=0 X3—| X, =1 Xz I X;=0 — E[X|] + E[Xz] + E[X3]
Iﬁl =1+1/2+1/3=1+5/6
Xi=1 X;=0 X;= X, =1 X,=
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Probabilistic Analysis of Hiring Problem

* Candidates arrive in random order
* Let X be a random variable that equals the number of time we hire a player
* Define indicator variables X;, X,, ..., X,, where
X, = l{candidate i is hired}
* Note that X =X, + X, + ... + X and E[X.] = Pr{candidate i is hired}

* By linearity of expectation,

E[X] =E[X, + X, +... + X ]= E[X,] + E[X,] + ... + E[X]
which equals

Pr{candidate | is hired} + Pr{candidate 2 is hired} + ... + Pr{candidate n is hired}



Probability of Hiring i*th Candidate

Pr{candidate | is hired} = I
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Probability of Hiring i*th Candidate

Pr{candidate | is hired} = I Pr{candidate 2 is hired} = 1/2




Probability of Hiring i*th Candidate

Pr{candidate | is hired} = I Pr{candidate 2 is hired} = 1/2

Pr{candidate 3 is hired} = 1/3

g e




Probability of Hiring i*th Candidate

* i’'th candidate hired iff he is tallest among the first i candidates

* Since they arrive in random order, any one of these first i candidates are
equally likely to be the tallest =>

Pr{candidate i is hired} = l/i

Pr{candidate 3 is hired} = 1/3
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Expected Number of Hires

Recall that E[number of hires] = E[X] =
Pr{candidate | is hired} + Pr{candidate 2 is hired} + ... + Pr{candidate n is hired}
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Expected Number of Hires

Recall that E[number of hires] = E[X] =
Pr{candidate | is hired} + Pr{candidate 2 is hired} + ... + Pr{candidate n is hired}

which equals

1M+ 1/2+113+1/4+1/5+...+1/n=H,) =lnn+ O(l)



Expected Number of Hires

Recall that E[number of hires] = E[X] =
Pr{candidate | is hired} + Pr{candidate 2 is hired} + ... + Pr{candidate n is hired}

which equals
1M+ 12+ 1/3+1/4+1/5+...+ Iln@ =Inn+ O(l)

n:th harmonic number

Examples:
* Expected number of hires for n=6 is 2.45
* Expected number of hires for n=100 is 5.1874

* Expected number of hires for n=10000 is 9.7876



Questions

*  What is the probability that we hire only one candidate!?

*  What is the probability that we hire n candidates!?



Questions

*  What is the probability that we hire only one candidate? 1/n (tallest first)
hired

* What is the probability that we hire n candidates? I/n! (worst case order)

hired hired

hireq hiredhired hired Y : ﬁ
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Randomized Algorithm

* Instead of assuming that the candidates arrive in random order

* Welthe algorithm pick a random order and call the candidates in this
order



Randomized Algorithm

* Instead of assuming that the candidates arrive in random order

* Welthe algorithm pick a random order and call the candidates in this
order




Randomized Algorithm

* Instead of assuming that the candidates arrive in random order

* Welthe algorithm pick a random order and call the candidates in this
order

* In this way we can foul malicious users




Question

* Given a function RANDOM that returns | with probability p and 0 with
probability |-p

* How to use RANDOM for generating an unbiased bit?



Question

* Given a function RANDOM that returns | with probability p and 0 with
probability |-p

* How to use RANDOM for generating an unbiased bit?

* Pick a pair (a,b) of random numbers:a = RANDOM and b = RANDOM
* Ifa#b return a

* Otherwise pick a new pair
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