

Algorithms

May 7, 2025

PROBABILISTIC ANALYSIS AND RANDOMIZED ALGORITHMS

Motivation

- Worst case does not usually happen
 - Average case analysis
 - Amortized analysis
- Randomization helps avoid worst-case and attacks by evil users
 - Choosing the pivot in quick-sort at random
- Randomization necessary in cryptography
- Can we get randomness?
 - How to extract randomness (extractors)
 - Longer “random behaving” strings from small seed (pseudorandom generators)

Probabilistic Analysis: The Hiring Problem

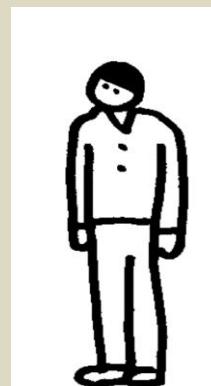
NY Knicks are going to hire one new basketball player

- the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:



current best

candidate

Probabilistic Analysis: The Hiring Problem

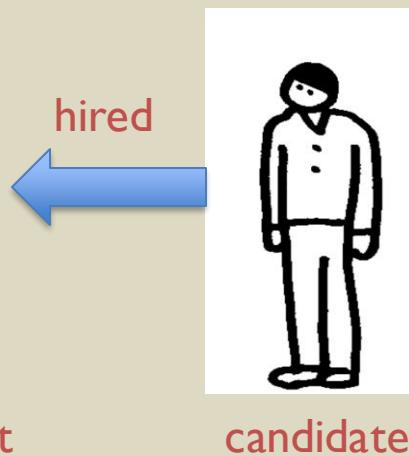
NY Knicks are going to hire one new basketball player

- the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:



Probabilistic Analysis: The Hiring Problem

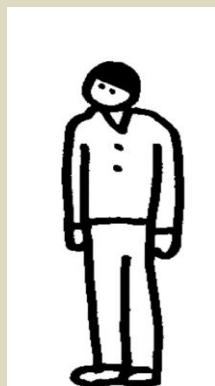
NY Knicks are going to hire one new basketball player

- the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:



current best

candidate

Probabilistic Analysis: The Hiring Problem

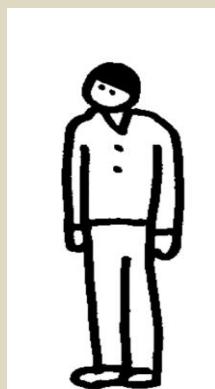
NY Knicks are going to hire one new basketball player

- the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:



current best

candidate

not hired

Probabilistic Analysis: The Hiring Problem

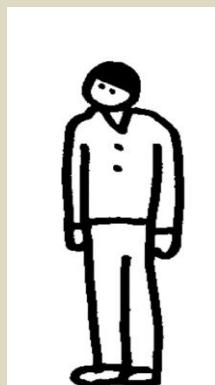
NY Knicks are going to hire one new basketball player

- the taller the better

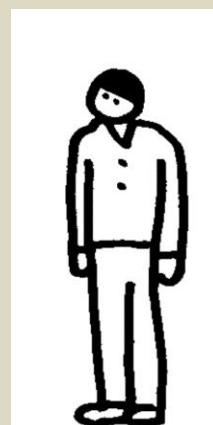
They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:



current best



candidate

Probabilistic Analysis: The Hiring Problem

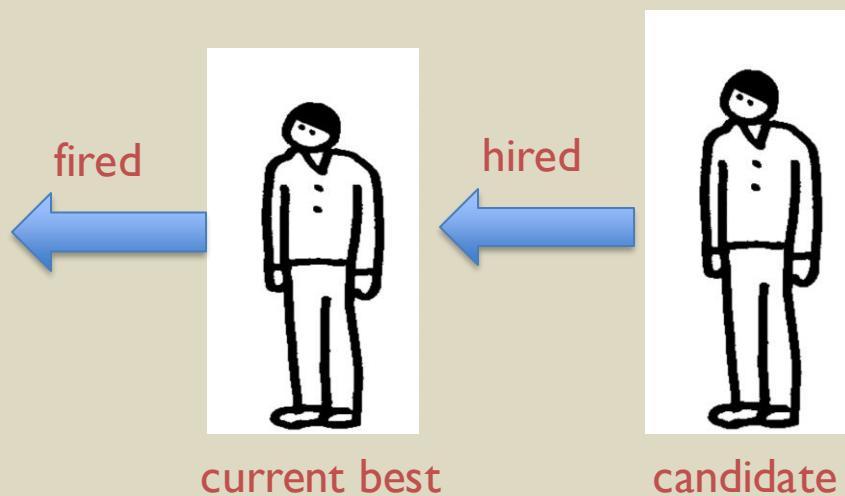
NY Knicks are going to hire one new basketball player

- the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:



Probabilistic Analysis: The Hiring Problem

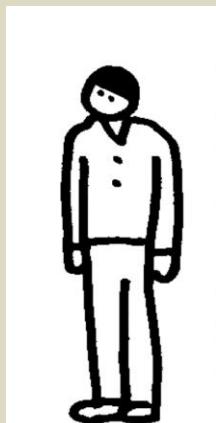
NY Knicks are going to hire one new basketball player

- the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:



current best

candidate

Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player

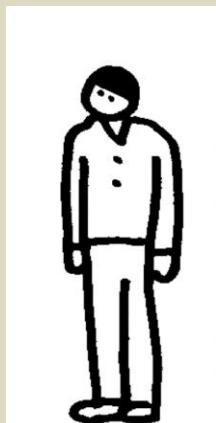
- the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Question: how many players did we (temporarily) hire?

Example:



current best

candidate

Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player

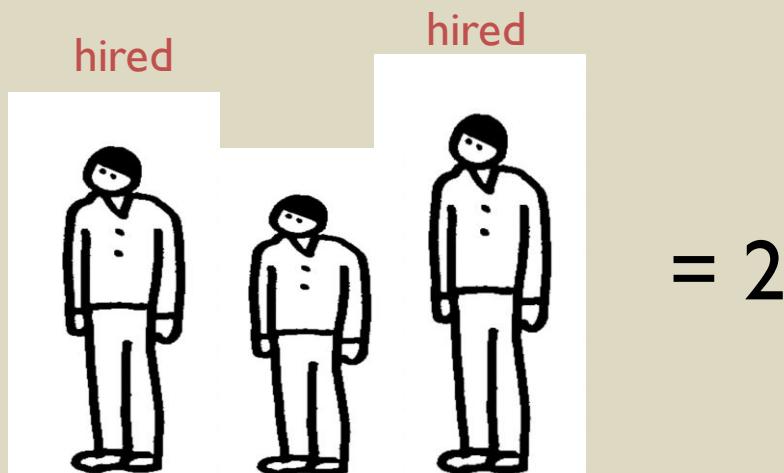
- the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Question: how many players did we (temporarily) hire?

Example:

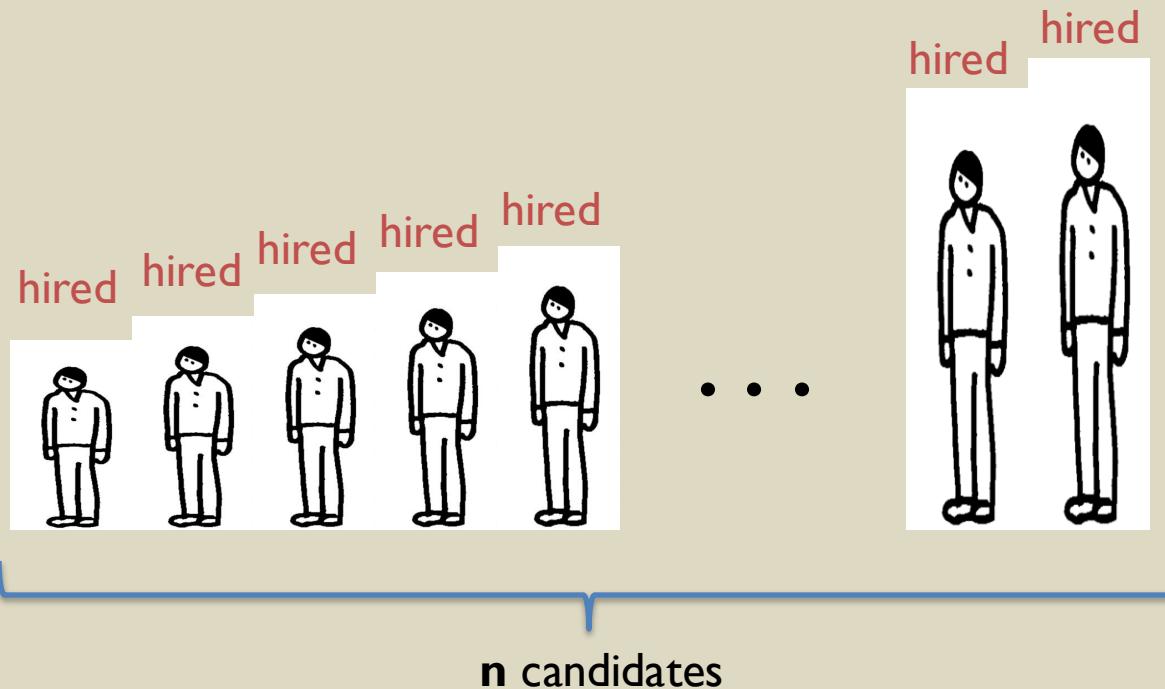


Worst-case analysis

In the **worst case**: how many players/candidates do we temporarily hire?

Worst-case analysis

In the **worst case**: how many players/candidates do we temporarily hire?



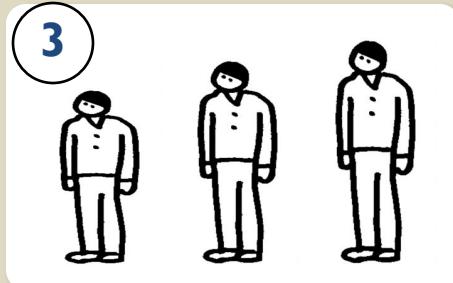
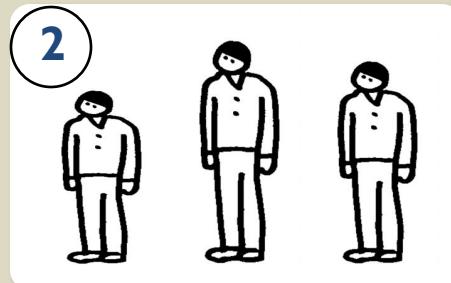
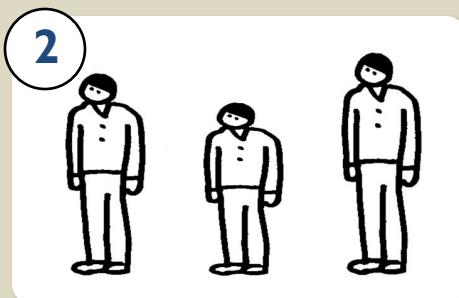
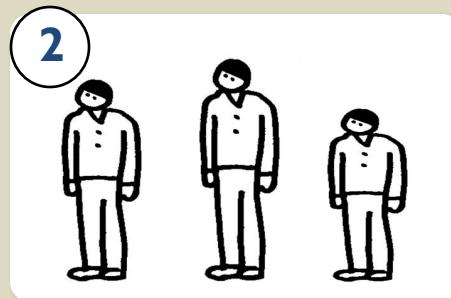
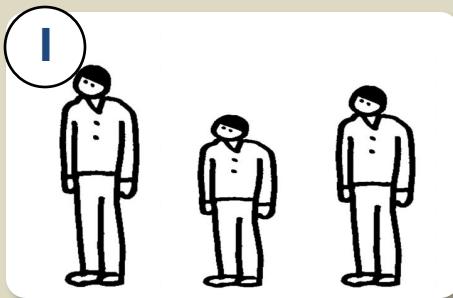
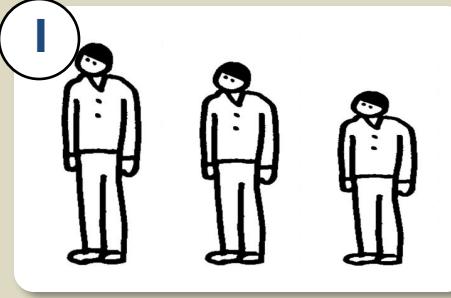
Answer: in the worst case we hire all n candidates

Worst-case unlikely to happen

- We only hire all candidates if they arrive in a specific order
- They are likely to arrive in a random order
- More interesting question (probabilistic analysis):

What is the expected number of hires we make over all the permutations of the candidates?

Example



Expected number of hires =

$$\frac{3 + 2 + 2 + 2 + 1 + 1}{6}$$

which equals 1 + 5/6

Calculating the expectation in general 1st trial

- $n!$ permutations each equally likely
- Expectation = sum of hires in each permutation divided by $n!$

$$\frac{A_1 + A_2 + \cdots + A_{n!}}{n!}$$

Calculating the expectation in general 1st trial

- $n!$ permutations each equally likely
- Expectation = sum of hires in each permutation divided by $n!$

$$\frac{A_1 + A_2 + \cdots + A_{n!}}{n!}$$

- For $n=5$ we have 120 terms

Calculating the expectation in general 1st trial

- $n!$ permutations each equally likely
- Expectation = sum of hires in each permutation divided by $n!$

$$\frac{A_1 + A_2 + \cdots + A_{n!}}{n!}$$

- For $n=5$ we have **120** terms
- For $n=10$ we have **3 628 800** terms

Calculating the expectation in general 1st trial

- $n!$ permutations each equally likely
- Expectation = sum of hires in each permutation divided by $n!$

$$\frac{A_1 + A_2 + \cdots + A_{n!}}{n!}$$

- For $n=5$ we have **120** terms
- For $n=10$ we have **3 628 800** terms

NEED A MORE CLEVER METHOD

Indicator Random Variables

- Simple yet powerful technique for computing the expected value
- In particular, in situations in which there may be dependence

Indicator Random Variables

- Simple yet powerful technique for computing the expected value
- In particular, in situations in which there may be dependence

DEFINITION: Given a sample space and an event **A**, we define the **indicator random variable**

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs,} \\ 0 & \text{if } A \text{ does not occur} \end{cases}$$

Indicator Random Variables

DEFINITION: Given a sample space and an event **A**, we define the **indicator random variable**

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs,} \\ 0 & \text{if } A \text{ does not occur} \end{cases}$$

Indicator Random Variables

DEFINITION: Given a sample space and an event \mathbf{A} , we define the **indicator random variable**

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs,} \\ 0 & \text{if } A \text{ does not occur} \end{cases}$$

LEMMA: For an event \mathbf{A} , let $\mathbf{X}_A = I\{A\}$. Then $E[\mathbf{X}_A] = \Pr[A]$

Indicator Random Variables

DEFINITION: Given a sample space and an event \mathbf{A} , we define the **indicator random variable**

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs,} \\ 0 & \text{if } A \text{ does not occur} \end{cases}$$

LEMMA: For an event \mathbf{A} , let $\mathbf{X}_A = I\{A\}$. Then $E[X_A] = \Pr[A]$

PROOF: $E[X_A] = 1 * \Pr\{A\} + 0 * \Pr\{\overline{A}\} = \Pr\{A\}$

Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

- Sample space is $\{H, T\}$
- $Pr\{H\} = Pr\{T\} = \frac{1}{2}$

Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

- Sample space is $\{H, T\}$
- $Pr\{H\} = Pr\{T\} = \frac{1}{2}$
- Define indicator variable $X_H = I\{H\}$

Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

- Sample space is $\{H, T\}$
- $\Pr\{H\} = \Pr\{T\} = \frac{1}{2}$
- Define indicator variable $X_H = I\{H\}$
 - X_H counts the number of heads in one flip

Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

- Sample space is $\{H, T\}$
- $\Pr\{H\} = \Pr\{T\} = 1/2$
- Define indicator variable $X_H = I\{H\}$
 - X_H counts the number of heads in one flip
- Since $\Pr\{H\} = 1/2$, previous lemma says that $E[X_H] = 1/2$

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

- Let X be a random variable for the number of heads in n flips

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

- Let X be a random variable for the number of heads in n flips

- Could calculate

$$E[X] = \sum_{k=0}^n k \cdot \Pr\{X = k\}$$

- ... but cumbersome

- Instead use indicator variables

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

- Let X be a random variable for the number of heads in n flips
- For $i = 1, \dots, n$, define $X_i = I\{\text{the } i\text{'th flip results in event } H\}$

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

- Let \mathbf{X} be a random variable for the number of heads in n flips
- For $i = 1, \dots, n$, define $\mathbf{X}_i = \mathbf{I}\{\text{the } i\text{'th flip results in event } H\}$
 - Then $E[\mathbf{X}] = E[\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n]$

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

- Let \mathbf{X} be a random variable for the number of heads in n flips
- For $i = 1, \dots, n$, define $\mathbf{X}_i = \mathbf{I}\{\text{the } i\text{'th flip results in event } H\}$
 - Then $\mathbf{E}[\mathbf{X}] = \mathbf{E}[\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n]$
- By linearity of expectation i.e., that $\mathbf{E}[a\mathbf{X} + b\mathbf{Y}] = a\mathbf{E}[\mathbf{X}] + b\mathbf{E}[\mathbf{Y}]$
holds even if \mathbf{X} and \mathbf{Y} are dependent

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

- Let \mathbf{X} be a random variable for the number of heads in n flips

- For $i = 1, \dots, n$, define $\mathbf{X}_i = \mathbf{I}\{\text{the } i\text{'th flip results in event } H\}$

- Then $\mathbf{E}[\mathbf{X}] = \mathbf{E}[\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n]$

- By linearity of expectation i.e., that $\mathbf{E}[a\mathbf{X} + b\mathbf{Y}] = a\mathbf{E}[\mathbf{X}] + b\mathbf{E}[\mathbf{Y}]$

holds even if \mathbf{X} and \mathbf{Y} are dependent

$$\mathbf{E}[\mathbf{X}] = \mathbf{E}[\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n] = \mathbf{E}[\mathbf{X}_1] + \mathbf{E}[\mathbf{X}_2] + \dots + \mathbf{E}[\mathbf{X}_n]$$

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

- Let \mathbf{X} be a random variable for the number of heads in n flips

- For $i = 1, \dots, n$, define $\mathbf{X}_i = I\{\text{the } i\text{'th flip results in event } H\}$

- Then $E[\mathbf{X}] = E[\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n]$

- By linearity of expectation i.e., that

$$E[a\mathbf{X} + b\mathbf{Y}] = aE[\mathbf{X}] + bE[\mathbf{Y}]$$

holds even if \mathbf{X} and \mathbf{Y} are dependent

$$E[\mathbf{X}] = E[\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n] = E[\mathbf{X}_1] + E[\mathbf{X}_2] + \dots + E[\mathbf{X}_n]$$

By Lemma equals $Pr\{H\} = 1/2$

Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

- Let \mathbf{X} be a random variable for the number of heads in n flips

- For $i = 1, \dots, n$, define $\mathbf{X}_i = \mathbf{I}\{\text{the } i\text{'th flip results in event } H\}$

- Then $\mathbf{E}[\mathbf{X}] = \mathbf{E}[\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n]$

- By linearity of expectation i.e., that

$$\mathbf{E}[a\mathbf{X} + b\mathbf{Y}] = a\mathbf{E}[\mathbf{X}] + b\mathbf{E}[\mathbf{Y}]$$

holds even if \mathbf{X} and \mathbf{Y} are dependent

$$\mathbf{E}[\mathbf{X}] = \mathbf{E}[\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n] = \mathbf{E}[\mathbf{X}_1] + \mathbf{E}[\mathbf{X}_2] + \dots + \mathbf{E}[\mathbf{X}_n]$$

By Lemma equals $\Pr\{H\} = 1/2$

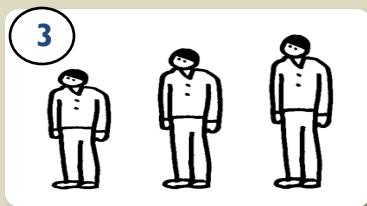
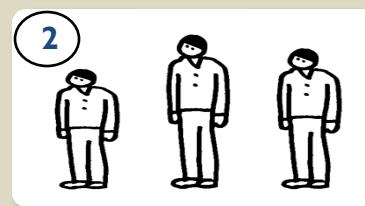
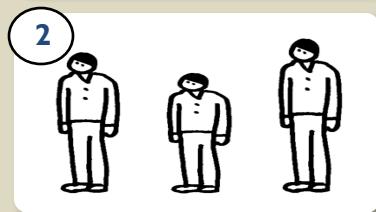
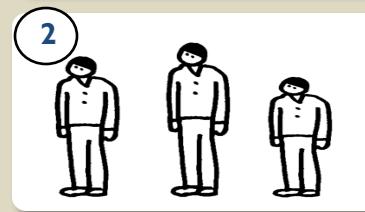
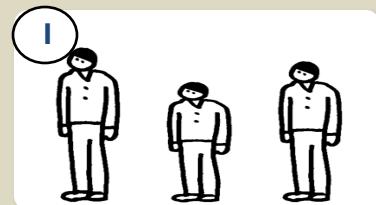
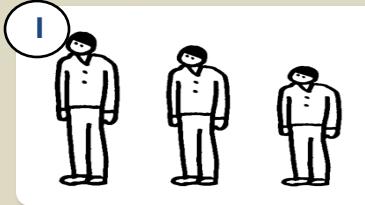
$$= n/2$$

Probabilistic Analysis of Hiring Problem

- Candidates arrive in random order
- Let \mathbf{X} be a random variable that equals the number of time we hire a player

Probabilistic Analysis of Hiring Problem

- Candidates arrive in random order
- Let X be a random variable that equals the number of times we hire a player



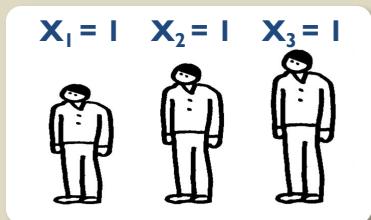
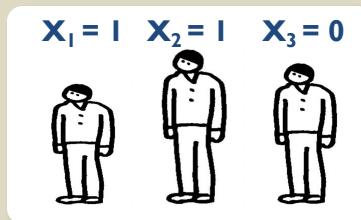
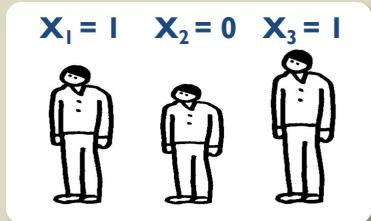
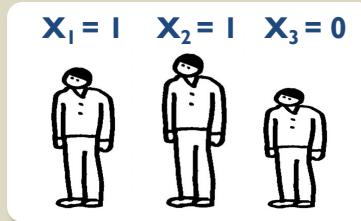
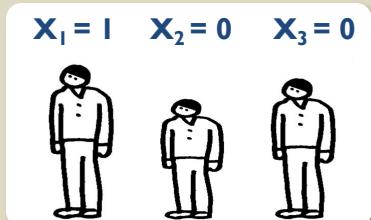
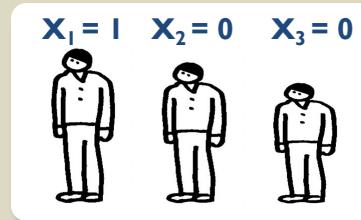
$$E[X] = \frac{3 + 2 + 2 + 2 + 1 + 1}{6}$$

which equals $1 + 5/6$

Probabilistic Analysis of Hiring Problem

- Candidates arrive in random order
- Let \mathbf{X} be a random variable that equals the number of time we hire a player
- Define indicator variables $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ where

$$\mathbf{X}_i = \mathbf{I}\{\text{candidate } i \text{ is hired}\}$$



$$\mathbf{E}[\mathbf{X}] = \mathbf{E}[\mathbf{X}_1 + \mathbf{X}_2 + \mathbf{X}_3]$$

$$= \mathbf{E}[\mathbf{X}_1] + \mathbf{E}[\mathbf{X}_2] + \mathbf{E}[\mathbf{X}_3]$$

$$= 1 + 1/2 + 1/3 = 1 + 5/6$$

Probabilistic Analysis of Hiring Problem

- Candidates arrive in random order
- Let \mathbf{X} be a random variable that equals the number of time we hire a player
- Define indicator variables $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ where
$$\mathbf{X}_i = \mathbf{I}\{\text{candidate } i \text{ is hired}\}$$
- Note that $\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n$ and $E[\mathbf{X}_i] = \Pr\{\text{candidate } i \text{ is hired}\}$

Probabilistic Analysis of Hiring Problem

- Candidates arrive in random order
- Let \mathbf{X} be a random variable that equals the number of time we hire a player
- Define indicator variables $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ where
$$\mathbf{X}_i = \mathbf{I}\{\text{candidate } i \text{ is hired}\}$$
- Note that $\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n$ and $E[\mathbf{X}_i] = \Pr\{\text{candidate } i \text{ is hired}\}$
- By linearity of expectation,
$$E[\mathbf{X}] = E[\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n] = E[\mathbf{X}_1] + E[\mathbf{X}_2] + \dots + E[\mathbf{X}_n]$$

Probabilistic Analysis of Hiring Problem

- Candidates arrive in random order
- Let \mathbf{X} be a random variable that equals the number of time we hire a player
- Define indicator variables $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ where

$$\mathbf{X}_i = \mathbf{I}\{\text{candidate } i \text{ is hired}\}$$

- Note that $\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n$ and $E[\mathbf{X}_i] = \Pr\{\text{candidate } i \text{ is hired}\}$

- By linearity of expectation,

$$E[\mathbf{X}] = E[\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n] = E[\mathbf{X}_1] + E[\mathbf{X}_2] + \dots + E[\mathbf{X}_n]$$

which equals

$$\Pr\{\text{candidate 1 is hired}\} + \Pr\{\text{candidate 2 is hired}\} + \dots + \Pr\{\text{candidate } n \text{ is hired}\}$$

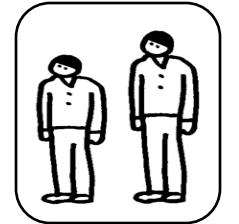
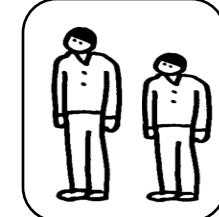
Probability of Hiring i'th Candidate

$\Pr\{\text{candidate } i \text{ is hired}\} = i$

Probability of Hiring i'th Candidate

Pr{candidate 1 is hired} = 1

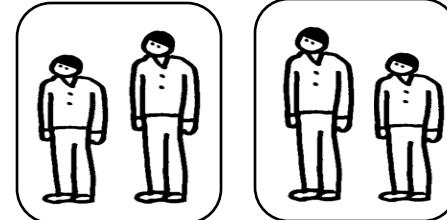
Pr{candidate 2 is hired} = 1/2



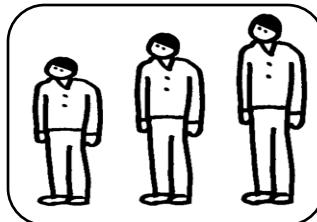
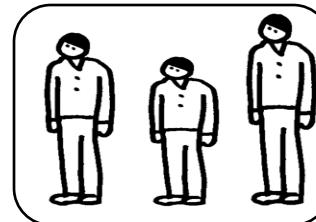
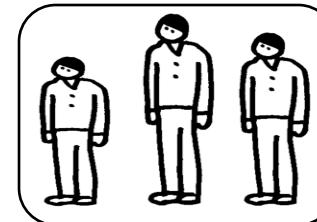
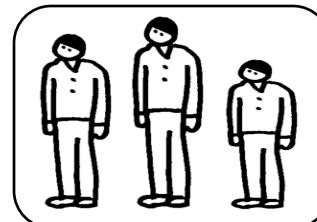
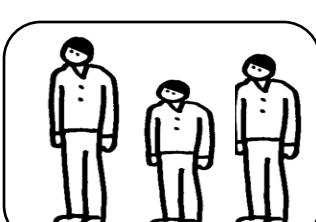
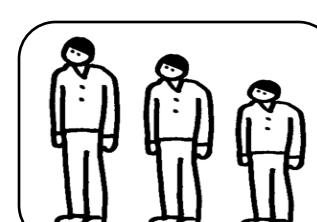
Probability of Hiring i'th Candidate

Pr{candidate 1 is hired} = 1

Pr{candidate 2 is hired} = 1/2



Pr{candidate 3 is hired} = 1/3

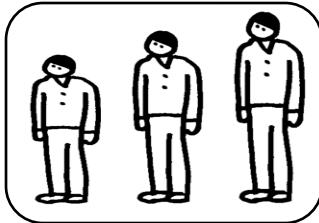
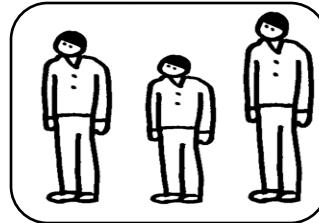
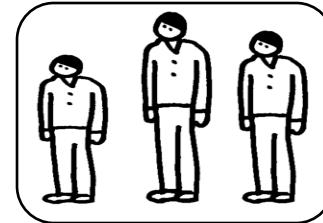
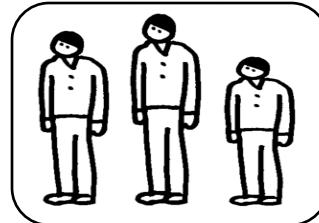
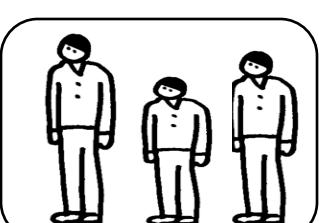
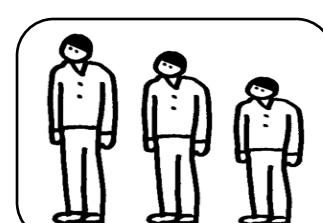


Probability of Hiring i'th Candidate

- i'th candidate hired iff he is tallest among the first i candidates
- Since they arrive in random order, any one of these first i candidates are equally likely to be the tallest =>

$$\Pr\{\text{candidate } i \text{ is hired}\} = 1/i$$

$$\Pr\{\text{candidate 3 is hired}\} = 1/3$$



Expected Number of Hires

Recall that $E[\text{number of hires}] = E[X] =$

$\Pr\{\text{candidate 1 is hired}\} + \Pr\{\text{candidate 2 is hired}\} + \dots + \Pr\{\text{candidate n is hired}\}$

Expected Number of Hires

Recall that **E[number of hires] = E[X] =**

Pr{candidate 1 is hired} + Pr{candidate 2 is hired} + ... + Pr{candidate n is hired}

which equals

$$1/1 + 1/2 + 1/3 + 1/4 + 1/5 + \dots + 1/n$$

Expected Number of Hires

Recall that $E[\text{number of hires}] = E[X] =$

$\Pr\{\text{candidate 1 is hired}\} + \Pr\{\text{candidate 2 is hired}\} + \dots + \Pr\{\text{candidate } n \text{ is hired}\}$

which equals

$$1/1 + 1/2 + 1/3 + 1/4 + 1/5 + \dots + 1/n = H_n$$

n:th harmonic number

Expected Number of Hires

Recall that $E[\text{number of hires}] = E[X] =$

$\Pr\{\text{candidate 1 is hired}\} + \Pr\{\text{candidate 2 is hired}\} + \dots + \Pr\{\text{candidate } n \text{ is hired}\}$

which equals

$$1/1 + 1/2 + 1/3 + 1/4 + 1/5 + \dots + 1/n = H_n = \ln n + O(1)$$

n: th harmonic number

Expected Number of Hires

Recall that $E[\text{number of hires}] = E[X] =$

$\Pr\{\text{candidate 1 is hired}\} + \Pr\{\text{candidate 2 is hired}\} + \dots + \Pr\{\text{candidate } n \text{ is hired}\}$

which equals

$$1/1 + 1/2 + 1/3 + 1/4 + 1/5 + \dots + 1/n = H_n = \ln n + O(1)$$

n: th harmonic number

Examples:

- Expected number of hires for $n=6$ is **2.45**
- Expected number of hires for $n=100$ is **5.1874**
- Expected number of hires for $n=10000$ is **9.7876**

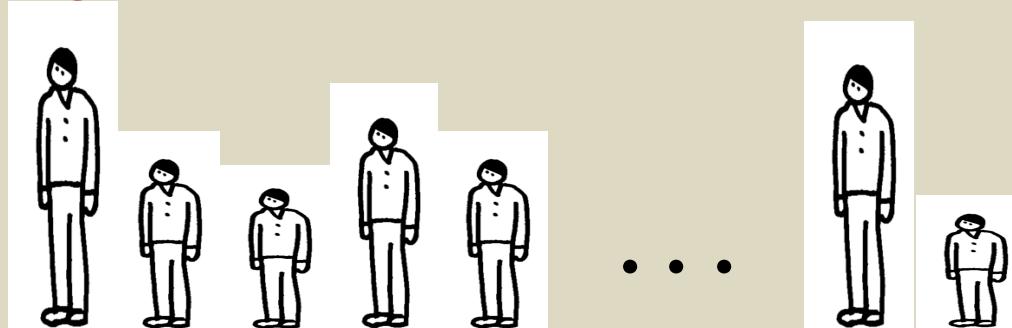
Questions

- What is the probability that we hire only one candidate?
- What is the probability that we hire n candidates?

Questions

- What is the probability that we hire only one candidate? $1/n$ (tallest first)

hired



- What is the probability that we hire n candidates? $1/n!$ (worst case order)

Randomized Algorithm

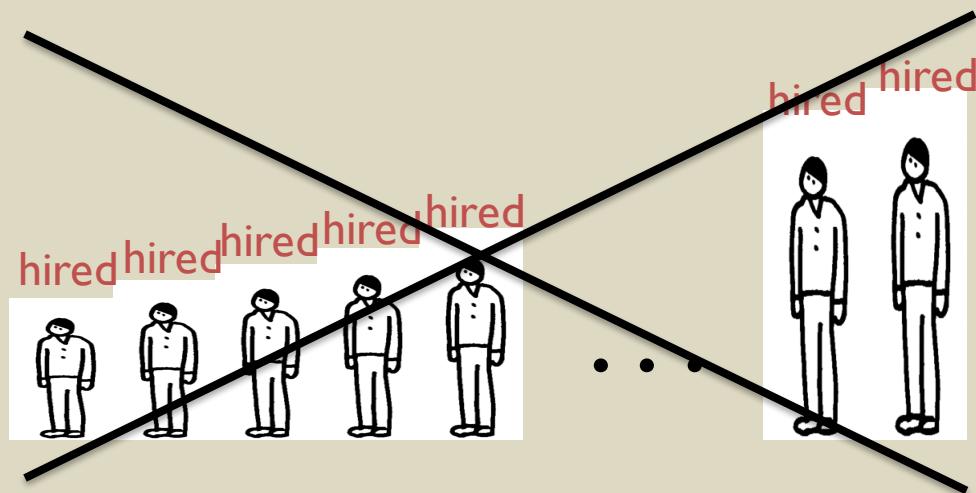
- Instead of assuming that the candidates arrive in random order
- **We/the algorithm** pick a random order and call the candidates in this order

Randomized Algorithm

- Instead of assuming that the candidates arrive in random order
- **We/the algorithm** pick a random order and call the candidates in this order

Randomized Algorithm

- Instead of assuming that the candidates arrive in random order
- **We/the algorithm** pick a random order and call the candidates in this order
- **In this way we can foul malicious users**



Question

- Given a function **RANDOM** that returns **1** with probability **p** and **0** with probability **1-p**
- How to use **RANDOM** for generating an unbiased bit?

Question

- Given a function **RANDOM** that returns **1** with probability **p** and **0** with probability **1-p**
- How to use **RANDOM** for generating an unbiased bit?
- Pick a pair (a,b) of random numbers: $a = \text{RANDOM}$ and $b = \text{RANDOM}$
 - If $a \neq b$ return a
 - Otherwise pick a new pair