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PROBABILISTIC ANALYSIS AND 
RANDOMIZED ALGORITHMS



Motivation

• Worst case does not usually happen

• Average case analysis

• Amortized analysis

• Randomization helps avoid worst-case and attacks by evil users

• Choosing the pivot in quick-sort at random

• Randomization necessary in cryptography

• Can we get randomness? 

• How to extract randomness (extractors)

• Longer “random behaving” strings from small seed (pseudorandom 
generators)



Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player 

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

current best candidate
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Probabilistic Analysis: The Hiring Problem

NY Knicks are going to hire one new basketball player 

• the taller the better

They have n candidates that they call for interview

Strategy: each candidate is hired that is taller than the current best/tallest

Example:

hired hired

= 2

Question: how many players did we (temporarily) hire?



Worst-case analysis
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Worst-case analysis

In the worst case: how many players/candidates do we temporarily hire?

. . . 
hired hired hired hired hired

hired
hired

n candidates

Answer: in the worst case we hire all n candidates



Worst-case unlikely to happen

• We only hire all candidates if they arrive in a specific order

• They are likely to arrive in a random order

• More interesting question (probabilistic analysis): 

 

 What is the expected number of hires we make over all the 
permutations of the candidates?



Example

3 2

22

1 1

Expected number of hires=

which equals 1+5/6
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• n! permutations each equally likely

• Expectation = sum of hires in each permutation divided by n!
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Calculating the expectation in general 1st trial

• n! permutations each equally likely

• Expectation = sum of hires in each permutation divided by n!

• For n=5 we have 120 terms

• For n=10 we have 3 628 800 terms

NEED A MORE CLEVER METHOD
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Indicator Random Variables

DEFINITION:  Given a sample space and an event A, we define the  
         indicator random variable 

LEMMA: For an event A, let XA = I{A}. Then E[XA] = Pr[A]

PROOF:  E[XA] = 1* Pr{A} + 0 * Pr{A}  = Pr{A}
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Simple Example: Coin Flip

Determine the expected number of heads when we flip a coin one time

• Sample space is {H,T}

• Pr{H} = Pr{T} = ½

• Define indicator variable XH = I{H}

• XH counts the number of heads in one flip

• Since Pr{H} = 1/2, previous lemma says  that E[XH] = 1/2
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• Let X be a random variable for the number of heads in n flips

• Could calculate

• … but cumbersome

• Instead use indicator variables
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Slightly More Complex: n Coin Flips

Determine the expected number of heads when we flip n coins

• Let X be a random variable for the number of heads in n flips

• For i = 1, …, n, define Xi = I{the i’th flip results in event H}

• Then E[X] = E[X1 + X2 + … + Xn]

• By linearity of expectation i.e., that  E[aX + bY] = aE[X] + bE[Y] 

E[X] = E[X1 + X2 + … + Xn] = E[X1] + E[X2] + … + E[Xn]

         

     = n/2 

holds even if X and Y are dependent

By Lemma equals Pr{H} = 1/2
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• Candidates arrive in random order

• Let X be a random variable that equals the number of times we hire a player

3 2

22

1 1

E[X] =

which equals 1+5/6



Probabilistic Analysis of Hiring Problem

• Candidates arrive in random order

• Let X be a random variable that equals the number of time we hire a player

• Define indicator variables X1, X2, …, Xn where

 Xi = I{candidate i is hired}

X1 = 1

X1 = 1

X1 = 1

X1 = 1

X1 = 1

X1 = 1

X2 = 1 X2 = 1

X2 = 1

X3 = 1

X3 = 1X2 = 0

X2 = 0 X2 = 0X3 = 0

X3 = 0

X3 = 0

X3 = 0

E[X] = E[X1+X2+X3]
    
 =  E[X1] + E[X2] + E[X3]

 = 1 + 1/2 + 1/3 = 1 + 5/6 
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Probabilistic Analysis of Hiring Problem

• Candidates arrive in random order

• Let X be a random variable that equals the number of time we hire a player

• Define indicator variables X1, X2, …, Xn where

 Xi = I{candidate i is hired}

• Note that X = X1 + X2 + … + Xn and E[Xi] = Pr{candidate i is hired}

• By linearity of expectation,

 E[X] = E[X1 + X2 + … + Xn]= E[X1] + E[X2] + … + E[Xn]

which equals 

Pr{candidate 1 is hired} + Pr{candidate 2 is hired} + … + Pr{candidate n is hired}



Probability of Hiring i’th Candidate 

Pr{candidate 1 is hired} = 1 



Probability of Hiring i’th Candidate 

Pr{candidate 1 is hired} = 1 Pr{candidate 2 is hired} = 1/2 



Probability of Hiring i’th Candidate 

Pr{candidate 1 is hired} = 1 Pr{candidate 2 is hired} = 1/2 

Pr{candidate 3 is hired} = 1/3 



Probability of Hiring i’th Candidate 

• i’th candidate hired iff he is tallest among the first i candidates

• Since they arrive in random order, any one of these first i candidates are 
equally likely to be the tallest =>

Pr{candidate 3 is hired} = 1/3 

Pr{candidate i is hired}  = 1/i
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Expected Number of Hires

Recall that E[number of hires] = E[X] = 

Pr{candidate 1 is hired} + Pr{candidate 2 is hired} + … + Pr{candidate n is hired}

which equals

1/1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n = Hn      = ln n + O(1)

n: th harmonic number

Examples:

• Expected number of hires for n=6 is 2.45

• Expected number of hires for n=100 is 5.1874

• Expected number of hires for n=10000 is  9.7876 



Questions

• What is the probability that we hire only one candidate? 

• What is the probability that we hire n candidates?



Questions

• What is the probability that we hire only one candidate? 1/n (tallest first)

• What is the probability that we hire n candidates? 1/n! (worst case order)

. . . 
hired hiredhired hired hired

hired hired

. . . 

hired



Randomized Algorithm 

• Instead of assuming that the candidates arrive in random order

• We/the algorithm pick a random order and call the candidates in this 
order
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Randomized Algorithm 

• Instead of assuming that the candidates arrive in random order

• We/the algorithm pick a random order and call the candidates in this 
order

• In this way we can foul malicious users

. . . 
hiredhiredhiredhiredhired

hired hired



Question

• Given a function RANDOM that returns 1 with probability p and 0 with 
probability 1-p

• How to use RANDOM for generating an unbiased bit?



Question

• Given a function RANDOM that returns 1 with probability p and 0 with 
probability 1-p

• How to use RANDOM for generating an unbiased bit?

• Pick a pair (a,b) of random numbers: a = RANDOM and b = RANDOM

• If a≠b return a

• Otherwise pick a new pair
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