Welcome to CS-250: Algorithms!

Alessandro Chiesa, Ola Svensson

=PrL

School of Computer and Communication Sciences

Lecture 1, 18.02.2025

Slides inspired by
http://www.cs.princeton.edu/courses/archive /fall13/cos226/lectures/00Intro+15UnionFind.pdf

CS-250 course overview

What is CS-2507
» Bachelor-intermediate level course

> Survey of tools and their application to problem solving

v

Algorithm: method for solving a problem

v

Data structure: method to store information

data types lists, stack, queue, union-find, priority queue

sorting insertion sort, mergesort, heapsort, quicksort
searching binary search, BST, hash table

graphs BFS, DFS, Prim, Kruskal, Bellman-Ford
and so on max-flow min-cut, probabilistic analysis

Lecture 1, 18.02.2025

Their impact is broad and far-reaching

TheNew York Times

WORLD | US| NY./REGION | BUSNESS | TECHNOLOGY | SCIENCE | HEALTH | SFORTS | OPINION
Search Business Financial Tools More in Business »
Go| | [selecta financai Tool 3] Global | Markts | Economy

Stock Traders Find Speed Pays, in Milliseconds

CHARLES DUHIGG

¥ TR
Itis the hot new thing on Wall Street, a way for a handful of traders [tnwceom
to master the stock market, peek at investors’ orders and, critics say, B SIGNINTOE-
even subtly manipulate share prices. b
& prnr
Itis called high-frequency trading — o ceomurs
Multimedia and it is suddenly one of the most -

S — talked-about and mysterious forces in

i the markets. @ 6

Powerful computers, some housed E Said
right next to the machines that drive

‘marketplaces like the New York Stock Exchange, enable
high-frequency traders to transmit millions of orders at
lightning speed and, their detractors contend, reap bilions
at everyone else’s expense.

Ll Graphic
The Thirty-Millisecond Advantage

> Today's Business:

Internet. Web search, packet routing, distributed file sharing, ...

RPiAalAacry:, Hitmnan ccarnAarma mr~iart mratraim FAIA A~

Why study algorithms?

To become a proficient programmer

“The difference between a bad programmer and a good one is whether
[the programmer] considers code or data structures more important.
Bad programmers worry about the code. Good programmers worry
about data structures and their relationships.”

— Linus Torvalds (creator of Linux)

“Algorithms + Data Structures = Programs.”

— Niklaus Wirth (Turing award winner from Switzerland)

Lecture 1, 18.02.2025

They may unlock the secrets of life and of the universe

Scientists are replacing mathematical models with computational models

“Algorithms: a common language for nature, human, and computer.”

— Avi Wigderson

For fun, intellectual stimulation and profit!

P C1sco SYSTEMS
< .

Apple Computer
Nmtendo \ \\|
TREET

[T F I. |)(A'd?b‘e SRYW
DEShaw&Co ORACLE (f\:

PANDORA

Google

YaEHOO! amazoncom Micresoft r ¢ X A R

WHO WILL TEACH YOU

ALL THE COOL MATERIAL?

Lecture 1, 18.02.2025

~ALE

Antoni Aruzhan Dawde Giacomo

Lukas ~ _Marina Matheo Miltos Radu

A 2

Vlctor Wiktoria Yassine

Youssef

Instructor

> Alessandro Chiesa

> alessandro.chiesa@epfl.ch
> https:
//ic-people.epfl.ch/~achiesa/

> Faculty of computer science

> research on cryptography, complexity

> Office: BC 245

Lecture 1, 18.02.2025

https://ic-people.epfl.ch/~achiesa/
https://ic-people.epfl.ch/~achiesa/

Ola Svensson

ola.svensson@epfl.ch
http://theory.epfl.ch/osven/

Faculty of computer science

research on algorithms

Office: INJ 114

http://theory.epfl.ch/osven/

THE COURSE ESSENTIALS

Lecture 1, 18.02.2025

Online Resources

Moodle: http://moodle.epfl.ch/

Dynamic: course material (these slides will
be there), exercises+solutions, quizzes, etc.

Forum where you can ask questions!

Lecture 1, 18.02.2025

Introduction to Algorithms, Third edition (2009)

by T. Cormen, C. Leiserson, R. Rivest, C. Stein

> To learn best, solve as many of the exercises at the end of sections
and problems at the end of chapters as you can.

> For mathematical background, look at the appendices at the end of
the book.

> Many other good books available (see e.g. chapter notes at the end of Chapter 1)
A classic: The Art of Computer Programming Volumes 1, 2, 3, 4A by D. E. Knuth

Lecture 1, 18.02.2025

Time and Location

Lectures:
> Tuesday 13:15 - 15:00 (RLC E1 240)
> Wednesday 11:15 - 13:00 (RLC E1 240)

Exercise Session:
> Friday 10:15 - 12:00 in CM11, CM1100, CM1104, CM1105,
CM1106

Online forum: Around the clock :)

Lecture 1, 18.02.2025

FINAL: exam to be scheduled during exam period in June

MID-TERM: in-class exam during the lecture April 1

> Both the final and mid-term will test basic knowledge as well as
more advanced knowledge required for the higher grades

IMPLEMENTATION EXERCISE: on codeforces, in May
QUIZZES: ~weekly

GRADE: The maximum of

(i) 10% implementation exercise + 10% quizzes + 30% mid-term +
50% final

(i) 100% final

Don't!
We will report any cases

Do not copy, look at, share your solutions to problems during
quizzes, mid-terms or finals.

Always contact us (Ale or Ola) if in doubt whether
something is allowed or not.

An exciting new addition

Instead of only listening, you will do the explaining

Lecture 1, 18.02.2025

> Every week (starting ~~next week), we will have two
concepts, for example addition and multiplication

OlaNils Anders Svensson
ola.svensson@epfl.ch

Algorithms

Week 250

Due on 20 Ft

y at 18:09

Addition Multiplication

» Explain one of the concepts and read about the other

» Following explaining/reading, do a quiz until you succeed

Let’s start our journey!

Small example: calculating an arithmetic series

Lecture 1, 18.02.2025

Let’s start our journey!

Small example: calculating an arithmetic series

Lecture 1, 18.02.2025

Let’s start our journey!

Small example: calculating an arithmetic series

Lecture 1, 18.02.2025

Let’s start our journey!

Small example: calculating an arithmetic series

“Alkhwarizmi — Algorism — Algorithm”

Lecture 1, 18.02.2025

“Informally, an algorithm is any well-defined computational procedure
that takes some value, or set of values as input and produces some
value, or set of values, as output. An algorithm is thus a sequence of
computational steps that transform the input into the output.”

» We can view an algorithm as a tool for solving a well-specified
computational problem

> The statement of the problem specifies in general terms the desired
input/output relationship

» The algorithm describes a specific computational procedure for
achieving that input/output relationship

Problem: Calculating an Arithmetic Series

Problem Definition (Input/Output relationship)

[nput: A number n
Output: The value of 37 i

> For example, given the input 4, a correct algorithm outputs 7?77

Lecture 1, 18.02.2025

Problem: Calculating an Arithmetic Series

Problem Definition (Input/Output relationship)
[nput: A number n
Output: The value of 37 i

> For example, given the input 4, a correct algorithm outputs 10.
Such an input is called an instance of the problem.

> Another instance is 5, another 10142141 and so on (there are
infinitely many instances).

Which one is an instance of the computational problem defined above?

A. a positive integer B. 232 C. (4,10)

Lecture 1, 18.02.2025

First Algorithm

> Well simply calculate the sum :)

CalculateSum(n):

1. ans =0

2. fori=1,2,...,n
3. ans = ans + i
4. return ans

1
2

3.
4.

CalculateSum(n):

.ans =0

Cfori=1,2,...,n
ans = ans + i

return ans

Example (CalculateSum(4))

i)

ans

-~

Lecture 1, 18.02.2025
P DR R [P R o S I The 1

> Well simply calculate the sum in a smart way :)

CalculateSumClever(n):

1. return n(n+1)/2

> s the algorithm efficient?

Space? Yes Time? Yes, constant # elementary operations

> s the algorithm correct?

Carl-Friedrich Gauss

Correctness

i (n+1) _
For any integer n > 0, “5~ =1+2+---+n.

Most likely “Gauss’ argument”:

1+42+3+---4+n—-24n—-1+n
= (1+n)
+(2+n—1) n/2 terms each
equalton+1
+(B3+n-2)

:E(n+1) @

> Rigorous proof by induction < refresh this technique!
Lecture 1, 18.02.2025

> Straightforward algorithm not always the best
> Clever insight into structure of the problem

> Provably better/faster algorithm

Lecture 1, 18.02.2025

.

f

whatever!

| buy a 10 times faster computer next year

If insertion sort takes 2n? steps and merge sort takes 50nlg n steps,
and if computer FAST runs 1000 faster than computer SLOW which
one takes more time if we have to sort 10,000,000 numbers?

A. Insertion sort on computer FAST B. Merge sort on computer SLOW

2-10°
— 22

— 50x log(x)
1.5-10°

1-10°

5-10°

200 400 600 800 1,000

> Constant coefficients do not matter asymptotically!
Refresh the notions O(-), Q(+), ©(-), o(-), w(-)

Lecture 1, 18.02.2025

Be Aware, There are Hard Problems

> Most problems in this course can be solved by an efficient algorithm

that runs in time O(n), O(n?) or O(n).

> Many more complex problems do not have efficient algorithms

(they are NP-hard)

Example: Traveling Salesman Problem (best algorithm runs in time ~ 2")

4,000

3,000

2,000

1,000

Lecture 1, 18.02.2025

— 2X2
— 50x log(x)

J— 2%

The 280-Year-0Old Algorithm Inside Google Trips
Tuesday, September 20, 2016

Posted by Bogdan Arsintescu, Software Engineer & Sreenivas Gollapudi, Kostas Kollias, Tamas Sarlos and
Andrew Tomkins, Research Scientists

Algorithms Engineering is a lot of fun because algorithms do not go out of fashion: one never

knows when an oldie-but-goodie might come in handy. Case in point: Yesterday, Google announced
Google Trips, a new app to assist you in your travels by helping you create your own “perfect day” in
a city. Surprisingly, deep inside Google Trips, there is an algorithm that was invented 280 years ago.

In 1736, Leonhard Euler authored a brief but beautiful mathematical paper regarding the town of
Konigsberg and its 7 bridges, shown here:

SHERGA

Image from Wikipedia

Lecture 1, 18.02.2025

SORTING

Insertion Sort

Lecture 1, 18.02.2025

The sorting problem

Definition

INPUT: A sequence of n numbers (aj, ap, ..., a,).

OUTPUT: A permutation (reordering) (aj, a5, ..., a),) of the input
sequence such that a] < af <..- < a/.

For example

> Given the input (5,2,4,6,1,3)

> a correct output is (1,2,3,4,5,6)

Lecture 1, 18.02.2025

Insertion Sort - The Idea

Like sorting a hand of playing cards

> Start with an empty left hand of playing cards and the cards face
down on the table

> Then remove one card at a time from the table, and insert it into
the correct position in the left hand

> To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

> At all times, the cards, held in the left hand are sorted, and these
cards were originally the top cards of the pile on the table

HOHREER)

Lecture 1, 18.02.2025

Insertion Sort

The Algorithm

> Takes as parameters an array A[1...n] and the length n of the array

INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—1
wlu'lc{i > 0 and A[i] > key
Ali + 1] = A[i]
i=i-1

Ali +1] = key

Lecture 1, 18.02.2025

I nse rt | on Sort INSERTION-SORT(A,)

for j =2ton
key = A[j]
Example on <87 27 55 105 1’ 3> // Insert A[j] into the sorted sequence A[l..j —1].
i=j-1

while i > 0 and A[i] > key
Ali + 1] = Ali]

i=i-1
. Ali +1] = key
key . m INSERTION-SORT (A, n)
for j = 2ton
key = A[j]
j . ﬂ // Tnsert A[j] into the sorted sequence A[l..j —1].
. i=j—1

while i > 0 and A[i] > key
Ali + 1] = A[i]
i . i=i-1
. Ali +1] = key
INSERTION-SORT(A, n)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j—-1
» whil:i > 0and A[i] > key
Al 2 8B 8B | B Al 1) = Al
i=i-1
Ali + 1] = key
INSERTION-SORT (A, 1)
for j =2ton
key = A[j]
// Insert A[] into the sorted sequence A[1..j —1].
i=j—-1
whik{i > 0 and A[i] > key
Lecture 1, 18.02.2025 Ali +1] = Ali]
i=i-1

INSERTION-SORT (A4, 1)
for j =2ton

key = A[/]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j-1
while i > 0 and A[i] > key
Ali + 1] = Ali]
i=i-1

Loop invariant: Ali +1] = key

At the start of each iteration of the “outer” for loop — the loop
indexed by j— the subarrary A[Ll..., j— 1] consists of the elements
originally in A[1,...,j — 1] but in sorted order.

Need to verify: Similar to induction

> Initialization: It is true prior to the first iteration of the loop.

» Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.

» Termination: When the loop terminates, the invariant — usually

along with the reason that the loop terminated — gives us a useful
property that helps show that the algorithm is correct.

Analyzing Algorithms

Lecture 1, 18.02.2025

We want to predict the resources that the algorithm requires. Usually,
running time.

For that we need a computational model

Random-access machine (RAM) model

> |nstructions are executed one after another

» Simplification basic instructions take constant (O(1)) time

> Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
> Data movement: load, store, copy.

> Control: conditional/unconditional branch, subroutine call and return

» We don't worry about precision, although it is crucial in certain
numerical applications

Time it takes depend on the input

» Sorting 1000 numbers take longer than sorting 3 numbers

> A given sorting algorithm may even take different amounts of time
on two inputs of the same size

Input size: depends on the problem being studied

> Usually, the number of items in the input. Like the size n of the
array being sorted

> If multiplying two integers, could be the total number of bits in the
two integers

> Could be described by more than one number: e.g. graph algorithm
running times are usually expressed in terms of the number of
vertices and the number of edges in the input graph.

Running time: on a particular input, it is the number of primitive
operations (steps) executed

> Figure that each line of pseudocode requires a constant amount of
time

> One line may take a different amount of time than another, but
each execution of line i takes the same amount of time ¢;

» This is assuming that the line consists only of primitive operations

> If the line is a subroutine call, then the actual call takes constant time,

but the execution of the subroutine might not

If the line specifies operations other than primitive ones, then it might
take more than constant time. Example: “sort the points by
x-coordinate”

Analysis of insertion sort

INSERTION-SORT (A, n)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j — 1].
i=j-1
while i > 0 and A[i] > key

Ali + 1] = A[i] number of times

i=i-1 line executed
Ali +1] = key based] on the
INSERTION-SORT (A, n) cost times |0 lof j
for j =2ton ¢ n
key = A[j] ¢ n-—1
// Insert A[/] into the sorted sequence A[l..j —1]. 0 n—1
i=j—1 s n— 1@
while i > 0 and A[i] > key T YN ¥
Ali +1] = A[i] 6 Yot —1)
i=i-1 o Y-
Ali + 1] = key cg n—1

Best case: The array is already sorted

L Tn)=can+ cn—1)+ca(n—1)+c(n—1)+ c(n—1) = O(n)

We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Reasons:
> Gives a guaranteed upper bound on the running time for any input
» For some algorithms, the worst case occurs often.

For example, when searching, the worst case often occurs when the item being
searched for is not present

> Average case often as bad as worst-case: Suppose that we
randomly choose n numbers as the input to insertion sort
Order of growth: Focus on the important features
» Drop lower-order terms

> lIgnore the constant coefficient in the leading term

v

v

v

v

Welcome to “Algorithms™!

You will learn a lot of cool and useful material

We will do our best to help you, but ask questions

Today: what is an algorithm and simple example + analysis.
Refresh from previous courses:

> Discrete math such as mathematical induction, graphs and
trees, and probability (covered in Appendices B, C)

> Asymptototics and summation formulas (covered in Chapter 3
and Appendix A)

> Programming basics such as arrays, recursive calls, and
pointers.

