
Welcome to CS-250: Algorithms!

Alessandro Chiesa, Ola Svensson

School of Computer and Communication Sciences

Lecture 1, 18.02.2025

Slides inspired by
http://www.cs.princeton.edu/courses/archive/fall13/cos226/lectures/00Intro+15UnionFind.pdf



CS-250 course overview

What is CS-250?
▶ Bachelor-intermediate level course
▶ Survey of tools and their application to problem solving
▶ Algorithm: method for solving a problem
▶ Data structure: method to store information

topic data structures and algorithms
data types lists, stack, queue, union-find, priority queue

sorting insertion sort, mergesort, heapsort, quicksort

searching binary search, BST, hash table

graphs BFS, DFS, Prim, Kruskal, Bellman-Ford

and so on max-flow min-cut, probabilistic analysis

Lecture 1, 18.02.2025



Why study algorithms?
Their impact is broad and far-reaching

Internet. Web search, packet routing, distributed file sharing, . . .

Biology. Human genome project, protein folding, . . .

Computers. Circuit layout, files system, compilers, . . .

Computer graphics. Movies, video games, virtual reality, . . .

Security. Cell phones, e-commerce, voting machines, . . .

Multimedia. MP3, JPG, HDTV, song recognition, face recognition, . . .

Social networks. Recommendations, dating, advertisement, . . .

Physics. N-body simulation, particle collision simulation, . . .

Lecture 1, 18.02.2025



Why study algorithms?
To become a proficient programmer

“The difference between a bad programmer and a good one is whether
[the programmer] considers code or data structures more important.
Bad programmers worry about the code. Good programmers worry
about data structures and their relationships.”

– Linus Torvalds (creator of Linux)

“Algorithms + Data Structures = Programs.”

– Niklaus Wirth (Turing award winner from Switzerland)

Lecture 1, 18.02.2025



Why study algorithms?
They may unlock the secrets of life and of the universe

Scientists are replacing mathematical models with computational models

“Algorithms: a common language for nature, human, and computer.”

– Avi Wigderson

Lecture 1, 18.02.2025



Why study algorithms?
For fun, intellectual stimulation and profit!

Lecture 1, 18.02.2025



WHO WILL TEACH YOU
ALL THE COOL MATERIAL?

Lecture 1, 18.02.2025



The Dream Team of Teaching Assistants

Antoni

Arthur

Aruzhan Davide Giacomo Guy

Lina Lukas Marina Matheo Miltos Radu

Rémy Siba Sofia Victor Wiktoria Yassine

Youssef Zihan
Lecture 1, 18.02.2025



Instructor

▶ Alessandro Chiesa
▶ alessandro.chiesa@epfl.ch
▶ https:

//ic-people.epfl.ch/~achiesa/

▶ Faculty of computer science
▶ research on cryptography, complexity

▶ Office: BC 245

Lecture 1, 18.02.2025

https://ic-people.epfl.ch/~achiesa/
https://ic-people.epfl.ch/~achiesa/


Instructor

▶ Ola Svensson
▶ ola.svensson@epfl.ch
▶ http://theory.epfl.ch/osven/

▶ Faculty of computer science
▶ research on algorithms

▶ Office: INJ 114

Lecture 1, 18.02.2025

http://theory.epfl.ch/osven/


THE COURSE ESSENTIALS

Lecture 1, 18.02.2025



Online Resources

Moodle: http://moodle.epfl.ch/

Dynamic: course material (these slides will
be there), exercises+solutions, quizzes, etc.

Forum where you can ask questions!

Lecture 1, 18.02.2025



Textbook

Introduction to Algorithms, Third edition (2009)

by T. Cormen, C. Leiserson, R. Rivest, C. Stein

▶ To learn best, solve as many of the exercises at the end of sections
and problems at the end of chapters as you can.

▶ For mathematical background, look at the appendices at the end of
the book.

▶ Many other good books available (see e.g. chapter notes at the end of Chapter 1)

A classic: The Art of Computer Programming Volumes 1, 2, 3, 4A by D. E. Knuth

Lecture 1, 18.02.2025



Time and Location

Lectures:
▶ Tuesday 13:15 - 15:00 (RLC E1 240)
▶ Wednesday 11:15 - 13:00 (RLC E1 240)

Exercise Session:
▶ Friday 10:15 - 12:00 in CM11, CM1100, CM1104, CM1105,

CM1106

Online forum: Around the clock :)

Lecture 1, 18.02.2025



Grading

FINAL: exam to be scheduled during exam period in June

MID-TERM: in-class exam during the lecture April 1
▶ Both the final and mid-term will test basic knowledge as well as

more advanced knowledge required for the higher grades

IMPLEMENTATION EXERCISE: on codeforces, in May
QUIZZES: ≈weekly

GRADE: The maximum of
(i) 10% implementation exercise + 10% quizzes + 30% mid-term +

50% final

(ii) 100% final

Lecture 1, 18.02.2025



A note on cheating

Don’t!
We will report any cases

Do not copy, look at, share your solutions to problems during
quizzes, mid-terms or finals.

Always contact us (Ale or Ola) if in doubt whether
something is allowed or not.

Lecture 1, 18.02.2025



An exciting new addition
Instead of only listening, you will do the explaining

Lecture 1, 18.02.2025



Explaining concepts

▶ Every week (starting ≈next week), we will have two
concepts, for example addition and multiplication

▶ Explain one of the concepts and read about the other

▶ Following explaining/reading, do a quiz until you succeed

Lecture 1, 18.02.2025



Let’s start our journey!
Small example: calculating an arithmetic series

“Alkhwarizmi → Algorism → Algorithm”

Lecture 1, 18.02.2025



Let’s start our journey!
Small example: calculating an arithmetic series

“Alkhwarizmi → Algorism → Algorithm”

Lecture 1, 18.02.2025



Let’s start our journey!
Small example: calculating an arithmetic series

“Alkhwarizmi → Algorism → Algorithm”

Lecture 1, 18.02.2025



Let’s start our journey!
Small example: calculating an arithmetic series

“Alkhwarizmi → Algorism → Algorithm”

Lecture 1, 18.02.2025



What is an Algorithm?

“Informally, an algorithm is any well-defined computational procedure
that takes some value, or set of values as input and produces some
value, or set of values, as output. An algorithm is thus a sequence of
computational steps that transform the input into the output.”

▶ We can view an algorithm as a tool for solving a well-specified
computational problem

▶ The statement of the problem specifies in general terms the desired
input/output relationship

▶ The algorithm describes a specific computational procedure for
achieving that input/output relationship

Lecture 1, 18.02.2025



Problem: Calculating an Arithmetic Series

Problem Definition (Input/Output relationship)
Input: A number n

Output: The value of ∑n
i=1 i

▶ For example, given the input 4, a correct algorithm outputs ???

10.
Such an input is called an instance of the problem.

▶ Another instance is 5, another 10142141 and so on (there are
infinitely many instances).

Which one is an instance of the computational problem defined above?

A. a positive integer B. 232 C. (4,10)

Lecture 1, 18.02.2025



Problem: Calculating an Arithmetic Series

Problem Definition (Input/Output relationship)
Input: A number n

Output: The value of ∑n
i=1 i

▶ For example, given the input 4, a correct algorithm outputs 10.
Such an input is called an instance of the problem.

▶ Another instance is 5, another 10142141 and so on (there are
infinitely many instances).

Which one is an instance of the computational problem defined above?

A. a positive integer B. 232 C. (4,10)

Lecture 1, 18.02.2025



First Algorithm
▶ Well simply calculate the sum :)

CalculateSum(n):
1. ans = 0
2. for i = 1, 2, . . . , n
3. ans = ans + i
4. return ans

Example (CalculateSum(4))

ans i
013610 1234

+1+2+3+4

▶ Is the algorithm efficient?
Space? Yes, store 2 numbers Time? So so, O(n) elementary operations

▶ Can we do better?

Lecture 1, 18.02.2025

CalculateSum(n):
1. ans = 0
2. for i = 1, 2, . . . , n
3. ans = ans + i
4. return ans



Clever Algorithm
▶ Well simply calculate the sum in a smart way :)

CalculateSumClever(n):

1. return n(n + 1)/2

▶ Is the algorithm efficient?
Space? Yes Time? Yes, constant # elementary operations

▶ Is the algorithm correct?

Carl-Friedrich Gauss

Lecture 1, 18.02.2025



Correctness
Theorem
For any integer n ≥ 0, n(n+1)

2 = 1 + 2 + · · ·+ n.

Most likely “Gauss’ argument”:

1 + 2 + 3 + · · ·+ n − 2 + n − 1 + n= (1 + n)
= (1 + n)

+ (2 + n − 1)
+ (3 + n − 2)

...

+ (n/2 + n/2 + 1)

= n
2 (n + 1)

▶ Rigorous proof by induction ← refresh this technique!

n/2 terms each
equal to n + 1

Lecture 1, 18.02.2025



The message

▶ Straightforward algorithm not always the best

▶ Clever insight into structure of the problem

▶ Provably better/faster algorithm

Lecture 1, 18.02.2025



Some of you are still not convinced...

I buy a 10 times faster computer next year

Lecture 1, 18.02.2025



Asymptotics
If insertion sort takes 2n2 steps and merge sort takes 50n lg n steps,
and if computer FAST runs 1000 faster than computer SLOW which
one takes more time if we have to sort 10, 000, 000 numbers?

A. Insertion sort on computer FAST B. Merge sort on computer SLOW

200 400 600 800 1,000
0

5 · 105

1 · 106

1.5 · 106

2 · 106

2x2

50x log(x)

▶ Constant coefficients do not matter asymptotically!
Refresh the notions O(·), Ω(·), Θ(·), o(·), ω(·)

Lecture 1, 18.02.2025



Be Aware, There are Hard Problems

▶ Most problems in this course can be solved by an efficient algorithm
that runs in time O(n), O(n2) or O(n3).

▶ Many more complex problems do not have efficient algorithms
(they are NP-hard)

Example: Traveling Salesman Problem (best algorithm runs in time ≈ 2n)

2 4 6 8 10 12
0

1,000

2,000

3,000

4,000
2x2

50x log(x)
2x

Lecture 1, 18.02.2025



Lecture 1, 18.02.2025



SORTING
Insertion Sort

Lecture 1, 18.02.2025



The sorting problem

Definition
INPUT: A sequence of n numbers ⟨a1, a2, . . . , an⟩.

OUTPUT: A permutation (reordering) ⟨a′
1, a′

2, . . . , a′
n⟩ of the input

sequence such that a′
1 ≤ a′

2 ≤ · · · ≤ a′
n.

For example
▶ Given the input ⟨5, 2, 4, 6, 1, 3⟩

▶ a correct output is ⟨1, 2, 3, 4, 5, 6⟩

Lecture 1, 18.02.2025



Insertion Sort - The Idea
Like sorting a hand of playing cards

▶ Start with an empty left hand of playing cards and the cards face
down on the table

▶ Then remove one card at a time from the table, and insert it into
the correct position in the left hand

▶ To find the correct position for a card, compare it with each of the
cards already in the hand, from right to left.

▶ At all times, the cards, held in the left hand are sorted, and these
cards were originally the top cards of the pile on the table

8 282 585 10 11 2 5 8 10 35 8 103

Lecture 1, 18.02.2025



Insertion Sort
The Algorithm

▶ Takes as parameters an array A[1 . . . n] and the length n of the array

Lecture 1, 18.02.2025



Insertion Sort
Example on ⟨8, 2, 5, 10, 1, 3⟩

key:

j:

i:

A: 8 2 5 10 1 38 2 5 10 1 3

0
2
0

8 2 5 10 1 3

2
2
0

8 2 5 10 1 3

2
2
1

8 2 5 10 1 3

2
2
1

8 8 5 10 1 3

2
2
1

8 8 5 10 1 3

2
2
0

8 8 5 10 1 3

2
2
0

2 8 5 10 1 3

2
2
0

2 8 5 10 1 3

2
3
0

2 8 5 10 1 3

5
3
0

2 8 5 10 1 3

5
3
2

2 8 5 10 1 3

5
3
2

2 8 8 10 1 3

5
3
2

2 8 8 10 1 3

5
3
1

2 8 8 10 1 3

5
3
1

2 5 8 10 1 3

5
3
1

2 5 8 10 1 3

5
4
1

2 5 8 10 1 3

10
4
1

2 5 8 10 1 3

10
4
3

2 5 8 10 1 3

10
4
3

2 5 8 10 1 3

10
4
3

2 5 8 10 1 3

10
5
3

2 5 8 10 1 3

1
5
3

2 5 8 10 1 3

1
5
4

2 5 8 10 1 3

1
5
4

2 5 8 10 10 3

1
5
4

2 5 8 10 10 3

1
5
3

2 5 8 10 10 3

1
5
3

2 5 8 8 10 3

1
5
3

2 5 8 8 10 3

1
5
2

2 5 8 8 10 3

1
5
2

2 5 5 8 10 3

1
5
2

2 5 5 8 10 3

1
5
1

2 5 5 8 10 3

1
5
1

2 2 5 8 10 3

1
5
1

2 2 5 8 10 3

1
5
0

2 2 5 8 10 3

1
5
0

1 2 5 8 10 3

1
5
0

1 2 5 8 10 3

1
6
0

1 2 5 8 10 3

3
6
0

1 2 5 8 10 3

3
6
5

1 2 5 8 10 3

3
6
5

1 2 5 8 10 10

3
6
5

1 2 5 8 10 10

3
6
4

1 2 5 8 10 10

3
6
4

1 2 5 8 8 10

3
6
4

1 2 5 8 8 10

3
6
3

1 2 5 8 8 10

3
6
3

1 2 5 5 8 10

3
6
3

1 2 5 5 8 10

3
6
2

1 2 5 5 8 10

3
6
2

1 2 3 5 8 10

3
6
2

Lecture 1, 18.02.2025



Correctness

Loop invariant:
At the start of each iteration of the “outer” for loop – the loop
indexed by j– the subarrary A[1 . . . , j − 1] consists of the elements
originally in A[1, . . . , j − 1] but in sorted order.

Need to verify:
▶ Initialization: It is true prior to the first iteration of the loop.
▶ Maintenance: If it is true before an iteration of the loop, it

remains true before the next iteration.
▶ Termination: When the loop terminates, the invariant — usually

along with the reason that the loop terminated — gives us a useful
property that helps show that the algorithm is correct.

Similar to induction

Lecture 1, 18.02.2025



Analyzing Algorithms

Lecture 1, 18.02.2025



Computational Model

We want to predict the resources that the algorithm requires. Usually,
running time.

For that we need a computational model

Random-access machine (RAM) model
▶ Instructions are executed one after another

▶ Simplification basic instructions take constant (O(1)) time
▶ Arithmetic: add, subtract, multiply, divide, remainder, floor, ceiling
▶ Data movement: load, store, copy.
▶ Control: conditional/unconditional branch, subroutine call and return

▶ We don’t worry about precision, although it is crucial in certain
numerical applications

Lecture 1, 18.02.2025



Analyzing an algorithm’s running time (1/2)

Time it takes depend on the input
▶ Sorting 1000 numbers take longer than sorting 3 numbers

▶ A given sorting algorithm may even take different amounts of time
on two inputs of the same size

Input size: depends on the problem being studied
▶ Usually, the number of items in the input. Like the size n of the

array being sorted
▶ If multiplying two integers, could be the total number of bits in the

two integers
▶ Could be described by more than one number: e.g. graph algorithm

running times are usually expressed in terms of the number of
vertices and the number of edges in the input graph.

Lecture 1, 18.02.2025



Analyzing an algorithm’s running time (2/2)

Running time: on a particular input, it is the number of primitive
operations (steps) executed

▶ Figure that each line of pseudocode requires a constant amount of
time

▶ One line may take a different amount of time than another, but
each execution of line i takes the same amount of time ci

▶ This is assuming that the line consists only of primitive operations
▶ If the line is a subroutine call, then the actual call takes constant time,

but the execution of the subroutine might not
▶ If the line specifies operations other than primitive ones, then it might

take more than constant time. Example: “sort the points by
x-coordinate”

Lecture 1, 18.02.2025



Analysis of insertion sort

number of times
line executed
based on the
value of j

Best case: The array is already sorted
T (n) = c1n + c2(n − 1) + c4(n − 1) + c5(n − 1) + c8(n − 1) = Θ(n)

Worst case: The array is in reverse sorted

T (n) = c1n + c2(n − 1) + c4(n − 1) + c5
n(n + 1)− 2

2

+ (c6 + c7)n · (n − 1)
2 + c8(n − 1) = Θ(n2)

Lecture 1, 18.02.2025



A note on worst-case analysis
We usually concentrate on finding the worst-case running time: the
longest running time for any input of size n

Reasons:
▶ Gives a guaranteed upper bound on the running time for any input

▶ For some algorithms, the worst case occurs often.
For example, when searching, the worst case often occurs when the item being
searched for is not present

▶ Average case often as bad as worst-case: Suppose that we
randomly choose n numbers as the input to insertion sort

Order of growth: Focus on the important features
▶ Drop lower-order terms
▶ Ignore the constant coefficient in the leading term

Lecture 1, 18.02.2025



Summary

▶ Welcome to “Algorithms”!
▶ You will learn a lot of cool and useful material
▶ We will do our best to help you, but ask questions
▶ Today: what is an algorithm and simple example + analysis.
▶ Refresh from previous courses:

▶ Discrete math such as mathematical induction, graphs and
trees, and probability (covered in Appendices B, C)

▶ Asymptototics and summation formulas (covered in Chapter 3
and Appendix A)

▶ Programming basics such as arrays, recursive calls, and
pointers.

Lecture 1, 18.02.2025


