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FLOW NETWORKS
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Flow Network

v

Directed graph G = (V, E)

\4

Each edge (u, v) has a capacity c(u,v) > 0 (c(u,v) =0 if (u,v) ¢ E)

v

Source s and sink t (flow goes from s to t)

v

No antiparallel edges (assumed w.l.o.g. for simplicity)
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Definition of a flow

A flow is a function f : V x V — R satisfying:
Capacity constraint: For all u,v € V: 0 < f(u,v) < c(u,v)
Flow conservation: For all u € V'\ {s, t},

Z f(v,u) = Z f(u,v)

veV vev
-

~

flow into u flow out of u
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Definition of a flow
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Definition of a flow

A flow is a function f : V x V — R satisfying:
Capacity constraint: For all u,v € V: 0 < f(u,v) < c(u,v)
Flow conservation: For all u € V'\ {s, t},

Z f(v,u) = Z f(u,v)

veV vev
-

~

flow into u flow out of u
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Value of a flow

Value of a flow f = |f|

= Z f(s,v) — Z f(v,s)

veVv vev
= flow out of source — flow into source
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Value of a flow

Value of a flow f = |f|

= Z f(s,v) — Z f(v,s)

veVv vev
= flow out of source — flow into source
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What's the value of this flow?




What's the value of this flow? 9




Destination\g i

\ ',
\
\

Origins

> Schematic diagram of the railway network of the western Soviet
union and easter European countries, from Harris & Ross (1955),
declassified by pentagon in 1999.



Capacity 52

and flow 34

Destina tion& Origins
\

\1/
[N~

» Schematic diagram of the railway network of the western Soviet
union and easter European countries, from Harris & Ross (1955),

declassified by pentagon in 1999.
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Goal of Soviet union

Maximize throughput from the “origins” to the destinations

Origins
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Goal of Soviet union

Maximize throughput from the “origins” to the destinations

Ford-Fulkerson method solves it

Origins
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Goal of US Air Force (1950's)

Disrupt flow of goods into satellite countries in the best possible way

Origins
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Goal of US Air Force (1950's)

Disrupt flow of goods into satellite countries in the best possible way

Find a minimum cut (Ford-Fulkerson method solves it)
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Goal of US Air Force (1950's)

Disrupt flow of goods into satellite countries in the best possible way

Find a minimum cut (Ford-Fulkerson method solves it)
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L. R. Ford, Jr. (1927-) D, R, Fulkerson (1924-1976)

MAXIMUM-FLOW PROBLEM

Ford-Fulkerson Method
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p

4. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Basic idea:
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Basic idea:

> As long as there is a path from source to sink, with available
capacity on all edges in the path
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Basic idea:

> As long as there is a path from source to sink, with available
capacity on all edges in the path

> send flow along one of these paths and then we find another path
and so on
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Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges
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Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v) —f(u,v) if(u,v)eE
cr(u,v) = ¢ f(v,u) if (v,u) e E
0 otherwise
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Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v)—f(u,v) if(u,v)€eE

Cf(“? V) = f(V, U) if (V’ U) €E D Amount of flow that

0 OtherWise can be reversed
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Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v)—f(u,v) if(u,v)€eE

Cf(“? V) = f(V, U) if (V’ U) €E D Amount of flow that

0 OtherWise can be reversed

Residual network:
Gr = (V, Ef) where Ef = {(u,v) € V x V : ¢r(u,v) > 0}
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Residual network: G = (V, Ef) where Ef = {(u,v) € V X V : ¢f(u,v) > 0} and
c(u,v) — f(u,v) if(u,v)€eE

cr(u,v) =< f(v,u) if (v,u) € E
0 otherwise

Gr
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Residual network: G = (V, Ef) where Ef = {(u,v) € V X V : ¢f(u,v) > 0} and

c(u,v) — f(u,v) if(u,v)€eE
cr(u,v) =< f(v,u) if (v,u) € E
0 otherwise
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G

3. augment flow f along p

4. return f

i Augmenting path = simple path from s to t
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G

3. augment flow f along p

Exists augmenting path
4. return f € g patip
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G

3. augment flow f along p
Exists augmenting path p

4. return f with flow f, of value = min ca-
pacity on p =
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
f is updated by changing the
4. return f flow on an edge (u,v) by
fo(u,v) — fp(v, u) I
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
f is updated by changing the
4. return f flow on an edge (u,v) by
fo(u,v) — fp(v, u) I
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Gr
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Gr
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf|No augmenting path and flow
of value 2 is optimal
3. augment flow f along p

4. return f @
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

. Initialize flow f to 0

while exists an augmenting path p in the residual network Gf |No augmenting path and flow
of value 2 is optimal

1
2
3. augment flow f along p
4

. return f @
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The Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal
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The Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut
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The Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut

Gives a way to verify that the step-by-step calculations of the flow are correct!
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WHY IS RETURNED FLOW OPTIMAL?

(MIN-CUTS)
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Cuts in flow networks

A cut of flow network G(V, E) is
> a partition of V into Sand T =V \ S
» suchthatse Sandte T
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Net flow across a cut

The net flow across cut (S, T) is

f(5,T)= Z flu,v)— Z f(v,u)

ueS,veT ueS,veT

flow leaving S flow en‘t’ering S
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Net flow across a cut

The net flow across cut (S, T) is

f(5,T)= Z flu,v)— Z f(v,u)

ueS,veT ueS,veT

flow leaving S flow en‘t’ering S

What is the net flow of this cut?
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Net flow across a cut

The net flow across cut (S, T) is

f(5,T)= Z flu,v)— Z f(v,u)

ueS,veT ueS,veT

flow leaving S flow en‘t’ering S

What is the net flow of this cut? 12 +11 — 4 =19
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Net flow across a cut

The net flow across cut (S, T) is

f(5,T)= Z flu,v)— Z f(v,u)

ueS,veT ueS,veT

flow leaving S flow en‘t’ering S

What is the net flow of this cut? 12 + 11 — 4 = 19 Note that this equals
the value of the flow; it's always the case!
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Net flow equals flow value for any cut
For any cut (S, T), |f| = (S, T). |
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Net flow equals flow value for any cut
For any cut (S, T), |f| = (S, T). I

Proof by induction on the size of S.
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Net flow equals flow value for any cut

For any cut (S, T), |f| = (S, T). I

Proof by induction on the size of S.

Base case S = {s}

©)

net flow equals = flow out from s - flow
into s which equals the value of the flow
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Net flow equals flow value for any cut

For any cut (S, T), |f| = (S, T).

Proof by induction on the size of S.

Base case S = {s} Inductive Step S = 5" U {w}

©)

New net flow = Old net flow +
flow on blue edges - flow on red edges

net flow equals = flow out from s - flow

into s which equals the value of the flow 0 by flow conservation
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The capacity of a cut (5, T) is

(5, 7)= Z c(u,v)

ueS,veT
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The capacity of a cut (5, T) is

(5, 7)= Z c(u,v)

ueS,veT

What is the capacity of this cut?
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The capacity of a cut (5, T) is

(5, 7)= Z c(u,v)

ueS,veT

What is the capacity of this cut? 12 + 14 =26
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Flow is at most capacity of a cut

For any flow f and any cut (S, T):

fl=1(5T)
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Flow is at most capacity of a cut

For any flow f and any cut (S, T):
fl=1(5T)

= Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT
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Flow is at most capacity of a cut

For any flow f and any cut (S, T):

[f=£(S,T)
= > fluv)— > f(v,u)
ueS,veT ueS,veT
< Z f(u,v)

ueS,veT
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Flow is at most capacity of a cut

For any flow f and any cut (S, T):

[fl=1(S5,T)
= > fluv)— > f(v,u)
ueS,veT ueS,veT
< > f(u,v)
ueS,veT
< > c(u,v)
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Flow is at most capacity of a cut

For any flow f and any cut (S, T):
fl=1(5T)

= Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT

< Z f(u,v)

ueS,veT
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Flow is at most capacity of a cut

For any flow f and any cut (S, T):
fl=1(5T)

= Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT

< Z f(u,v)

ueS,veT

Lecture 18, 16.04.2025



Max-flow is at most capacity of a cut
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Max-flow is at most capacity of a cut

Therefore: max-flow < min-cut
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Max-flow is at most capacity of a cut

Therefore: max-flow < min-cut

We shall prove

Theorem (max-flow min-cut theorem)

max-flow = min-cut
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Consider f obtained by running Ford-Fulkerson and let

S ={v € V :thereis a path from s to v in G¢} and T=V\S
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Consider f obtained by running Ford-Fulkerson and let

S ={v € V :thereis a path from s to v in G¢} and T=V\S

G and f
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Consider f obtained by running Ford-Fulkerson and let

S ={v € V :thereis a path from s to v in G¢} and T=V\S

G and f

( t:::9/9——9< )
10/10 2/2  3/15 0/15 9/10

5/5 7/ 10/10

14/15 2/4 6/6 10/10

16/16
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Consider f obtained by running Ford-Fulkerson and let

S ={v € V :thereis a path from s to v in G¢} and T=V\S

G and f
AY

( k::zg/g—dgg )
10/10 22 3/15 0M5 9/10

N
5/5 7/ r

10/10
\
1415 2/4 6/6 10/10
16/16 )
s
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:

f is a maximum flow

Gr has no augmenting path

|f| = ¢(S, T) for a minimum cut (S, T)
Proof.
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (1) = (2): Suppose toward contradiction that G has an augmenting path p.

However, then Ford-Fulkerson method would augment f by p to obtain a flow if
increased value which contradicts that f is a maximum flow
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)

Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Every edge flowing out of S in G must be at capacity, otherwise we can reach a node
outside S in the residual network.

f(e) < c(e) c(e) — f(e) >0

Original graph Residual network
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Every edge flowing into S in G must have flow 0, otherwise we can reach a node
outside S in the residual network.

f(e) >0 f(e) >0

Original graph Residual network
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Therefore

Ifl=f(5,T)
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)

Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Therefore
Ifl=£(5T)
= Z f(u,v)— Z f(v,u)
ueS,veT ueS,veT
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)

Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Therefore
Ifl=£(5T)
= > fuv)- > fvu)
ueS,veT ueS,veT
= ) cwv)
ueS,veT
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Therefore

Ifl=f(5,T)

Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT
E c(u,v)
ueS,veT

=¢(5,T)
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (3) = (1): Recall that |f| < ¢(S, T) for all cuts (S, T).
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (3) = (1): Recall that |f| < ¢(S, T) for all cuts (S, T).

Therefore, if the value of flow is equal to the capacity of some cut, then it cannot be
further improved.
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (3) = (1): Recall that |f| < ¢(S, T) for all cuts (S, T).

Therefore, if the value of flow is equal to the capacity of some cut, then it cannot be

further improved.

So f is a maximum flow
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Summary: Ford-Fulkerson Method

Start with 0-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

Max-flow
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Summary: Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do
> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck
When finished, resulting flow is maximal
If no augmenting path exists in residual network, then Min-cut

> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut
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Summary: Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut
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Summary: Ford-Fulkerson Method

Start with O-flow Max-flow

while there is an augmenting path from s to t in residual network do
> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut

> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut

Gives a way to verify that the step-by-step calculations of the flow are correct!
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Summary: Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut

Gives a way to verify that the step-by-step calculations of the flow are correct!
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TIME FOR FINDING MAX-FLOW

(OR MIN-CUT)

Lecture 18, 16.04.2025



Upper bound (assuming integral capacities)
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Upper bound (assuming integral capacities)

> It takes O(E) time to find a path in the residual network (use for
example breadth-first search)
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Upper bound (assuming integral capacities)

> It takes O(E) time to find a path in the residual network (use for
example breadth-first search)

> Each time the flow value is increased by at least 1
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Upper bound (assuming integral capacities)

> |t takes O(E) time to find a path in the residual network (use for
example breadth-first search)

> Each time the flow value is increased by at least 1

> Running time is O(E - |fnax|) where |fax| denotes the value of a maximum

flow
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Problematic case
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Problematic case
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Problematic case
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Problematic case
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Problematic case
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Problematic case
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Problematic case
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Problematic case
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Problematic case

@ you graduate
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Problematic case

@ you graduate
@ | retire
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Problematic case

@ you graduate
@ | retire
[
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Problematic case

@ you graduate
@ | retire
[

@ The sun stops to shine
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Problematic case

@ you graduate

@ | retire

[ ]

@ The sun stops to shine
([ ]
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Problematic case

you graduate

| retire

The sun stops to shine

Something happens to the universe
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Problematic case

you graduate

| retire
The sun stops to shine

Something happens to the universe
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Problematic case

you graduate
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Problematic case

you graduate
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Something happens to the universe
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Problematic case

you graduate

| retire
The sun stops to shine

Something happens to the universe
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Problematic case

you graduate

| retire
The sun stops to shine

Something happens to the universe
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Problematic case

you graduate

| retire

The sun stops to shine

Something happens to the universe

Our algorithm returns a max-flow
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Even more bad news

If capacities are irrational then the Ford-Fulkerson method might not
terminate
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Good news

If we either take the shortest path or the fattest path then this will not
happen if the capacities are integers without proof
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Good news

If we either take the shortest path or the fattest path then this will not
happen if the capacities are integers without proof

BFS shortest path < 1 E.-V
-2
Fattest path < E-log(E - V)
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Good news

If we either take the shortest path or the fattest path then this will not
happen if the capacities are integers without proof

BFS shortest path < EE %
-2
Fattest path < E-log(E - V)

» U is the maximum flow value

> Fattest path: choose augmenting path with largest minimum
capacity (bottleneck)
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APPLICATIONS OF MAX-FLOW
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Bipartite matching

> N students apply for M jobs

¢ swisscom

ehY

ALY T-1-1
!
{
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Bipartite matching

> N students apply for M jobs
> Each get several offers
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Bipartite matching

> N students apply for M jobs
> Each get several offers
> |s there a way to match all students to jobs? obviously M has to be at least equal to N
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Bipartite matching as flow problem
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Bipartite matching as flow problem

> Add source s and sink t with edges from s to students and from jobs to t
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Bipartite matching as flow problem

> Add source s and sink t with edges from s to students and from jobs to t
> All edges have capacity one
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Bipartite matching as flow problem

> Add source s and sink t with edges from s to students and from jobs to t
> All edges have capacity one
> Direction is from left to right
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Bipartite matching as flow problem

» Run the Ford-Fulkerson method
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Bipartite matching as flow problem

» Run the Ford-Fulkerson method
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Bipartite matching as flow problem

» Run the Ford-Fulkerson method

> Matching is complete
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Bipartite matching as flow problem

» Run the Ford-Fulkerson method

> Matching is complete
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oW 2 B 3

Lecture 18, 16.04.2025



Why does it work?

Every matching defines a flow of value equal to the number of edges in
matching

> Put flow 1 on

> Edges of the matching
> Edges from s to matched student nodes
> Edges from matched job nodes to t

> Put flow 0 on all other edges

Works because flow conservation is equivalent to: no student is matched
more than once, no job is matched more than once
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Why does it work?

Every flow during the algorithm defines a matching of size equal to its
value

> Flows obtained by Ford-Fulkerson are integer valued if capacities
are integral, so value on every edge is 0 or 1

> Edges between students and jobs with flow 1 are a matching by
flow conservation

> There cannot be more than one edge with flow 1 from a student node
> There cannot be more than one edge with flow 1 into a job node
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Why does it work?

Every flow during the algorithm defines a matching of size equal to its
value

> Flows obtained by Ford-Fulkerson are integer valued if capacities
are integral, so value on every edge is 0 or 1

> Edges between students and jobs with flow 1 are a matching by
flow conservation

> There cannot be more than one edge with flow 1 from a student node
> There cannot be more than one edge with flow 1 into a job node

So, maximum flow is a maximum matching!
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vy v.vvY

You want to travel to a nice location these winter holidays
You need to drive from Lausanne to Geneva airport
Winter season = risk that roads are closed

How many different routes can you take that does not share a common road?




vy v.vvY

s = Lausanne
t = Geneva airport
An edge capacity of 1 in both directions for each road

(make anti-parallel using gadgets)




> max-flow = # edge-disjoint paths

> min-cut = min #roads to be closed so that there is no route from Lausanne to
Geneva airport




