Algorithms: Ford-Fulkerson Method

Alessandro Chiesa, Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 18, 16.04.2025



FLOW NETWORKS

Lecture 18, 16.04.2025



Flow Network

v

Directed graph G = (V, E)

\4

Each edge (u, v) has a capacity c(u,v) > 0 (c(u,v) =0 if (u,v) ¢ E)

v

Source s and sink t (flow goes from s to t)

v

No antiparallel edges (assumed w.l.o.g. for simplicity)

Lecture 18, 16.04.2025



Definition of a flow

A flow is a function f : V x V — R satisfying:
Capacity constraint: For all u,v € V: 0 < f(u,v) < c(u,v)
Flow conservation: For all u € V'\ {s, t},

Z f(v,u) = Z f(u,v)

veV vev
-

~

flow into u flow out of u

Lecture 18, 16.04.2025



Definition of a flow

A flow is a function f : V x V — R satisfying:
Capacity constraint: For all u,v € V: 0 < f(u,v) < c(u,v)
Flow conservation: For all u € V'\ {s, t},

Z f(v,u) = Z f(u,v)

veV vev
-

J

flow into u flow out of u

Lecture 18, 16.04.2025



Definition of a flow

A flow is a function f : V x V — R satisfying:
Capacity constraint: For all u,v € V: 0 < f(u,v) < c(u,v)
Flow conservation: For all u € V'\ {s, t},

Z f(v,u) = Z f(u,v)

veV vev
-

~

flow into u flow out of u

Lecture 18, 16.04.2025



Value of a flow

Value of a flow f = |f|

= Z f(s,v) — Z f(v,s)

veVv vev
= flow out of source — flow into source

Lecture 18, 16.04.2025



Value of a flow

Value of a flow f = |f|

= Z f(s,v) — Z f(v,s)

veVv vev
= flow out of source — flow into source

Lecture 18, 16.04.2025



What's the value of this flow?




What's the value of this flow? 9




Destination\g i

\ ',
\
\

Origins

> Schematic diagram of the railway network of the western Soviet
union and easter European countries, from Harris & Ross (1955),
declassified by pentagon in 1999.



Capacity 52

and flow 34

Destina tion& Origins
\

\1/
[N~

» Schematic diagram of the railway network of the western Soviet
union and easter European countries, from Harris & Ross (1955),

declassified by pentagon in 1999.



c
.9
c
=
)
2
>
o
(0p)
[
o
“©
o
(&)

> = i3 > =
£ G &, s > GD o ra)
4 N
. . o 2 da, i i
Destinatio MR 20 s
QY AD G5 2 g
s
™ 373 &b )
Y o , g, un 4
o o sy U5 e 4l
§
X t

Lecture 18, 16.04.2025



Goal of Soviet union

Maximize throughput from the “origins” to the destinations

Origins

- oo G0
7
£ i @ . g
N3 M = <
i ¢ & The s
K
. . o iy 3 b at
Destinatio M3 )
R g & &) G
{ Gok on b
;
o e
g 37 a
i g g :
0 h gh
s
’ 3
al 2l o

Lecture 18, 16.04.2025



Goal of Soviet union

Maximize throughput from the “origins” to the destinations

Ford-Fulkerson method solves it

Origins

N A o 5 3}
E 7
Lt 7 . & 7
AT M & < 8 i
4 Ao DA The i
R 4
3) 2 = = G2
o 2 S 9 o N\e
o w24
Destinatio. ME O A .
- 42\ o 1 a2
&
g
0 32 a
8 T - g
- F43)
1) al 5 (x4 & o
w2} o a 2

Lecture 18, 16.04.2025



—~
w
(@)
LO
(@)
—
~
()
O
ut
®)
L
=
<<
9]
=
G—
®)
©
®)
O

el 43 Yy
Destinatio ) w0 2 -
4 £57) s
9 3% o .ty & {2 )
‘. P2 [, fdl, i .
=3 23] [#24 L Fo

Lecture 18, 16.04.2025



Goal of US Air Force (1950's)

Disrupt flow of goods into satellite countries in the best possible way

Origins

¢ @ Vi =
] Y ;
“ 4 ‘ v The
$ % < 3
Destinatio HRE 2O i y
i GD 2
9 32 . a9 » {8 )
¥ . 03] ": % "I' 8 ur o o

Lecture 18, 16.04.2025



Goal of US Air Force (1950's)

Disrupt flow of goods into satellite countries in the best possible way

Find a minimum cut (Ford-Fulkerson method solves it)

- e
7 §
S &
an LN o
4 4 The b
5 <
G F21] b
= 5 32ty o
( 324
Destinatio 2 m P AN O »
i GD G
- 813 . a9 . {8 )
s
s xS 29 & "", g un an
- o th
F &
e O (i} s

Lecture 18, 16.04.2025

Origins




Goal of US Air Force (1950's)

Disrupt flow of goods into satellite countries in the best possible way

Find a minimum cut (Ford-Fulkerson method solves it)

(/ L) &
) Y ;
“ 4 ‘ v The
{ 3 < X
Destinatio HRE o * y
i GD G

- 32 . a . {8 )

¥ =S AT Oz = an
- rey 2 tn

Lecture 18, 16.04.2025

Origins




L. R. Ford, Jr. (1927-) D, R, Fulkerson (1924-1976)

MAXIMUM-FLOW PROBLEM

Ford-Fulkerson Method

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p

4. return f

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Basic idea:

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Basic idea:

> As long as there is a path from source to sink, with available
capacity on all edges in the path

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Basic idea:

> As long as there is a path from source to sink, with available
capacity on all edges in the path

> send flow along one of these paths and then we find another path
and so on

Lecture 18, 16.04.2025



Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Lecture 18, 16.04.2025



Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v) —f(u,v) if(u,v)eE
cr(u,v) = ¢ f(v,u) if (v,u) e E
0 otherwise

Lecture 18, 16.04.2025



Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v)—f(u,v) if(u,v)€eE

Cf(“? V) = f(V, U) if (V’ U) €E D Amount of flow that

0 OtherWise can be reversed

Lecture 18, 16.04.2025



Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v)—f(u,v) if(u,v)€eE

Cf(“? V) = f(V, U) if (V’ U) €E D Amount of flow that

0 OtherWise can be reversed

Residual network:
Gr = (V, Ef) where Ef = {(u,v) € V x V : ¢r(u,v) > 0}

Lecture 18, 16.04.2025



Residual network: G = (V, Ef) where Ef = {(u,v) € V X V : ¢f(u,v) > 0} and
c(u,v) — f(u,v) if(u,v)€eE

cr(u,v) =< f(v,u) if (v,u) € E
0 otherwise

Gr

Lecture 18, 16.04.2025



Residual network: G = (V, Ef) where Ef = {(u,v) € V X V : ¢f(u,v) > 0} and

c(u,v) — f(u,v) if(u,v)€eE
cr(u,v) =< f(v,u) if (v,u) € E
0 otherwise

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G

3. augment flow f along p

4. return f

i Augmenting path = simple path from s to t

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G

3. augment flow f along p

Exists augmenting path
4. return f € g patip

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G

3. augment flow f along p
Exists augmenting path p

4. return f with flow f, of value = min ca-
pacity on p =

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
f is updated by changing the
4. return f flow on an edge (u,v) by
fo(u,v) — fp(v, u) I

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
f is updated by changing the
4. return f flow on an edge (u,v) by
fo(u,v) — fp(v, u) I

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Gr

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Gr

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf|No augmenting path and flow
of value 2 is optimal
3. augment flow f along p

4. return f @

Lecture 18, 16.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

. Initialize flow f to 0

while exists an augmenting path p in the residual network Gf |No augmenting path and flow
of value 2 is optimal

1
2
3. augment flow f along p
4

. return f @

Lecture 18, 16.04.2025



The Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

Lecture 18, 16.04.2025



The Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Lecture 18, 16.04.2025



The Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut

Gives a way to verify that the step-by-step calculations of the flow are correct!

Lecture 18, 16.04.2025



WHY IS RETURNED FLOW OPTIMAL?

(MIN-CUTS)

Lecture 18, 16.04.2025



Cuts in flow networks

A cut of flow network G(V, E) is
> a partition of V into Sand T =V \ S
» suchthatse Sandte T

Lecture 18, 16.04.2025



Net flow across a cut

The net flow across cut (S, T) is

f(5,T)= Z flu,v)— Z f(v,u)

ueS,veT ueS,veT

flow leaving S flow en‘t’ering S

Lecture 18, 16.04.2025



Net flow across a cut

The net flow across cut (S, T) is

f(5,T)= Z flu,v)— Z f(v,u)

ueS,veT ueS,veT

flow leaving S flow en‘t’ering S

What is the net flow of this cut?

Lecture 18, 16.04.2025



Net flow across a cut

The net flow across cut (S, T) is

f(5,T)= Z flu,v)— Z f(v,u)

ueS,veT ueS,veT

flow leaving S flow en‘t’ering S

What is the net flow of this cut? 12 +11 — 4 =19

Lecture 18, 16.04.2025



Net flow across a cut

The net flow across cut (S, T) is

f(5,T)= Z flu,v)— Z f(v,u)

ueS,veT ueS,veT

flow leaving S flow en‘t’ering S

What is the net flow of this cut? 12 + 11 — 4 = 19 Note that this equals
the value of the flow; it's always the case!

Lecture 18, 16.04.2025



Net flow equals flow value for any cut
For any cut (S, T), |f| = (S, T). |

Lecture 18, 16.04.2025



Net flow equals flow value for any cut
For any cut (S, T), |f| = (S, T). I

Proof by induction on the size of S.

Lecture 18, 16.04.2025



Net flow equals flow value for any cut

For any cut (S, T), |f| = (S, T). I

Proof by induction on the size of S.

Base case S = {s}

©)

net flow equals = flow out from s - flow
into s which equals the value of the flow

Lecture 18, 16.04.2025



Net flow equals flow value for any cut

For any cut (S, T), |f| = (S, T).

Proof by induction on the size of S.

Base case S = {s} Inductive Step S = 5" U {w}

©)

New net flow = Old net flow +
flow on blue edges - flow on red edges

net flow equals = flow out from s - flow

into s which equals the value of the flow 0 by flow conservation

Lecture 18, 16.04.2025



The capacity of a cut (5, T) is

(5, 7)= Z c(u,v)

ueS,veT

Lecture 18, 16.04.2025



The capacity of a cut (5, T) is

(5, 7)= Z c(u,v)

ueS,veT

What is the capacity of this cut?

Lecture 18, 16.04.2025



The capacity of a cut (5, T) is

(5, 7)= Z c(u,v)

ueS,veT

What is the capacity of this cut? 12 + 14 =26

Lecture 18, 16.04.2025



Flow is at most capacity of a cut

For any flow f and any cut (S, T):

fl=1(5T)

Lecture 18, 16.04.2025



Flow is at most capacity of a cut

For any flow f and any cut (S, T):
fl=1(5T)

= Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT

Lecture 18, 16.04.2025



Flow is at most capacity of a cut

For any flow f and any cut (S, T):

[f=£(S,T)
= > fluv)— > f(v,u)
ueS,veT ueS,veT
< Z f(u,v)

ueS,veT

Lecture 18, 16.04.2025



Flow is at most capacity of a cut

For any flow f and any cut (S, T):

[fl=1(S5,T)
= > fluv)— > f(v,u)
ueS,veT ueS,veT
< > f(u,v)
ueS,veT
< > c(u,v)

Lecture 18, 16.04.2025



Flow is at most capacity of a cut

For any flow f and any cut (S, T):
fl=1(5T)

= Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT

< Z f(u,v)

ueS,veT

Lecture 18, 16.04.2025



Flow is at most capacity of a cut

For any flow f and any cut (S, T):
fl=1(5T)

= Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT

< Z f(u,v)

ueS,veT

Lecture 18, 16.04.2025



Max-flow is at most capacity of a cut

Lecture 18, 16.04.2025



Max-flow is at most capacity of a cut

Therefore: max-flow < min-cut

Lecture 18, 16.04.2025



Max-flow is at most capacity of a cut

Therefore: max-flow < min-cut

We shall prove

Theorem (max-flow min-cut theorem)

max-flow = min-cut

Lecture 18, 16.04.2025



Consider f obtained by running Ford-Fulkerson and let

S ={v € V :thereis a path from s to v in G¢} and T=V\S

Lecture 18, 16.04.2025



Consider f obtained by running Ford-Fulkerson and let

S ={v € V :thereis a path from s to v in G¢} and T=V\S

G and f

Lecture 18, 16.04.2025



Consider f obtained by running Ford-Fulkerson and let

S ={v € V :thereis a path from s to v in G¢} and T=V\S

G and f

( t:::9/9——9< )
10/10 2/2  3/15 0/15 9/10

5/5 7/ 10/10

14/15 2/4 6/6 10/10

16/16

Lecture 18, 16.04.2025



Consider f obtained by running Ford-Fulkerson and let

S ={v € V :thereis a path from s to v in G¢} and T=V\S

G and f
AY

( k::zg/g—dgg )
10/10 22 3/15 0M5 9/10

N
5/5 7/ r

10/10
\
1415 2/4 6/6 10/10
16/16 )
s

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:

f is a maximum flow

Gr has no augmenting path

|f| = ¢(S, T) for a minimum cut (S, T)
Proof.

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (1) = (2): Suppose toward contradiction that G has an augmenting path p.

However, then Ford-Fulkerson method would augment f by p to obtain a flow if
increased value which contradicts that f is a maximum flow

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)

Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Every edge flowing out of S in G must be at capacity, otherwise we can reach a node
outside S in the residual network.

f(e) < c(e) c(e) — f(e) >0

Original graph Residual network

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Every edge flowing into S in G must have flow 0, otherwise we can reach a node
outside S in the residual network.

f(e) >0 f(e) >0

Original graph Residual network

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Therefore

Ifl=f(5,T)

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)

Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Therefore
Ifl=£(5T)
= Z f(u,v)— Z f(v,u)
ueS,veT ueS,veT

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)

Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Therefore
Ifl=£(5T)
= > fuv)- > fvu)
ueS,veT ueS,veT
= ) cwv)
ueS,veT

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Therefore

Ifl=f(5,T)

Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT
E c(u,v)
ueS,veT

=¢(5,T)

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (3) = (1): Recall that |f| < ¢(S, T) for all cuts (S, T).

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (3) = (1): Recall that |f| < ¢(S, T) for all cuts (S, T).

Therefore, if the value of flow is equal to the capacity of some cut, then it cannot be
further improved.

Lecture 18, 16.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (3) = (1): Recall that |f| < ¢(S, T) for all cuts (S, T).

Therefore, if the value of flow is equal to the capacity of some cut, then it cannot be

further improved.

So f is a maximum flow

Lecture 18, 16.04.2025



Summary: Ford-Fulkerson Method

Start with 0-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

Max-flow

Lecture 18, 16.04.2025




Summary: Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do
> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck
When finished, resulting flow is maximal
If no augmenting path exists in residual network, then Min-cut

> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Lecture 18, 16.04.2025




Summary: Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut

Lecture 18, 16.04.2025



Summary: Ford-Fulkerson Method

Start with O-flow Max-flow

while there is an augmenting path from s to t in residual network do
> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut

> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut

Gives a way to verify that the step-by-step calculations of the flow are correct!

Lecture 18, 16.04.2025



Summary: Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut

Gives a way to verify that the step-by-step calculations of the flow are correct!

Lecture 18, 16.04.2025



TIME FOR FINDING MAX-FLOW

(OR MIN-CUT)

Lecture 18, 16.04.2025



Upper bound (assuming integral capacities)

Lecture 18, 16.04.2025



Upper bound (assuming integral capacities)

> It takes O(E) time to find a path in the residual network (use for
example breadth-first search)

Lecture 18, 16.04.2025



Upper bound (assuming integral capacities)

> It takes O(E) time to find a path in the residual network (use for
example breadth-first search)

> Each time the flow value is increased by at least 1

Lecture 18, 16.04.2025



Upper bound (assuming integral capacities)

> |t takes O(E) time to find a path in the residual network (use for
example breadth-first search)

> Each time the flow value is increased by at least 1

> Running time is O(E - |fnax|) where |fax| denotes the value of a maximum

flow

Lecture 18, 16.04.2025



Problematic case

Lecture 18, 16.04.2025



Problematic case

Lecture 18, 16.04.2025



Problematic case

Lecture 18, 16.04.2025



Problematic case

Lecture 18, 16.04.2025



Problematic case

Lecture 18, 16.04.2025



Problematic case

Lecture 18, 16.04.2025



Problematic case

Lecture 18, 16.04.2025



Problematic case

Lecture 18, 16.04.2025



Problematic case

@ you graduate

Lecture 18, 16.04.2025



Problematic case

@ you graduate
@ | retire

Lecture 18, 16.04.2025



Problematic case

@ you graduate
@ | retire
[

Lecture 18, 16.04.2025



Problematic case

@ you graduate
@ | retire
[

@ The sun stops to shine

Lecture 18, 16.04.2025



Problematic case

@ you graduate

@ | retire

[ ]

@ The sun stops to shine
([ ]

Lecture 18, 16.04.2025



Problematic case

you graduate

| retire

The sun stops to shine

Something happens to the universe

Lecture 18, 16.04.2025



Problematic case

you graduate

| retire
The sun stops to shine

Something happens to the universe

Lecture 18, 16.04.2025



Problematic case

you graduate

| retire
The sun stops to shine

Something happens to the universe

Lecture 18, 16.04.2025



Problematic case

you graduate

| retire
The sun stops to shine

Something happens to the universe

Lecture 18, 16.04.2025



Problematic case

you graduate

| retire
The sun stops to shine

Something happens to the universe

Lecture 18, 16.04.2025



Problematic case

you graduate

| retire
The sun stops to shine

Something happens to the universe

Lecture 18, 16.04.2025



Problematic case

you graduate

| retire

The sun stops to shine

Something happens to the universe

Our algorithm returns a max-flow

Lecture 18, 16.04.2025



Even more bad news

If capacities are irrational then the Ford-Fulkerson method might not
terminate

Lecture 18, 16.04.2025



Good news

If we either take the shortest path or the fattest path then this will not
happen if the capacities are integers without proof

Lecture 18, 16.04.2025



Good news

If we either take the shortest path or the fattest path then this will not
happen if the capacities are integers without proof

BFS shortest path < 1 E.-V
-2
Fattest path < E-log(E - V)

Lecture 18, 16.04.2025



Good news

If we either take the shortest path or the fattest path then this will not
happen if the capacities are integers without proof

BFS shortest path < EE %
-2
Fattest path < E-log(E - V)

» U is the maximum flow value

> Fattest path: choose augmenting path with largest minimum
capacity (bottleneck)

Lecture 18, 16.04.2025



APPLICATIONS OF MAX-FLOW

Lecture 18, 16.04.2025



Bipartite matching

> N students apply for M jobs

¢ swisscom

ehY

ALY T-1-1
!
{

Lecture 18, 16.04.2025



Bipartite matching

> N students apply for M jobs
> Each get several offers

Lecture 18, 16.04.2025



Bipartite matching

> N students apply for M jobs
> Each get several offers
> |s there a way to match all students to jobs? obviously M has to be at least equal to N

Lecture 18, 16.04.2025



Bipartite matching as flow problem

Lecture 18, 16.04.2025



Bipartite matching as flow problem

> Add source s and sink t with edges from s to students and from jobs to t

Lecture 18, 16.04.2025



Bipartite matching as flow problem

> Add source s and sink t with edges from s to students and from jobs to t
> All edges have capacity one

Lecture 18, 16.04.2025



Bipartite matching as flow problem

> Add source s and sink t with edges from s to students and from jobs to t
> All edges have capacity one
> Direction is from left to right

Lecture 18, 16.04.2025



Bipartite matching as flow problem

» Run the Ford-Fulkerson method

Lecture 18, 16.04.2025



Bipartite matching as flow problem

» Run the Ford-Fulkerson method

Lecture 18, 16.04.2025



Bipartite matching as flow problem

» Run the Ford-Fulkerson method

> Matching is complete

Lecture 18, 16.04.2025



Bipartite matching as flow problem

» Run the Ford-Fulkerson method

> Matching is complete

FELY T-1°)
" E g
oW 2 B 3

Lecture 18, 16.04.2025



Why does it work?

Every matching defines a flow of value equal to the number of edges in
matching

> Put flow 1 on

> Edges of the matching
> Edges from s to matched student nodes
> Edges from matched job nodes to t

> Put flow 0 on all other edges

Works because flow conservation is equivalent to: no student is matched
more than once, no job is matched more than once

Lecture 18, 16.04.2025



Why does it work?

Every flow during the algorithm defines a matching of size equal to its
value

> Flows obtained by Ford-Fulkerson are integer valued if capacities
are integral, so value on every edge is 0 or 1

> Edges between students and jobs with flow 1 are a matching by
flow conservation

> There cannot be more than one edge with flow 1 from a student node
> There cannot be more than one edge with flow 1 into a job node

Lecture 18, 16.04.2025



Why does it work?

Every flow during the algorithm defines a matching of size equal to its
value

> Flows obtained by Ford-Fulkerson are integer valued if capacities
are integral, so value on every edge is 0 or 1

> Edges between students and jobs with flow 1 are a matching by
flow conservation

> There cannot be more than one edge with flow 1 from a student node
> There cannot be more than one edge with flow 1 into a job node

So, maximum flow is a maximum matching!

Lecture 18, 16.04.2025



vy v.vvY

You want to travel to a nice location these winter holidays
You need to drive from Lausanne to Geneva airport
Winter season = risk that roads are closed

How many different routes can you take that does not share a common road?




vy v.vvY

s = Lausanne
t = Geneva airport
An edge capacity of 1 in both directions for each road

(make anti-parallel using gadgets)




> max-flow = # edge-disjoint paths

> min-cut = min #roads to be closed so that there is no route from Lausanne to
Geneva airport




