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FLOW NETWORKS
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Flow Network

v

Directed graph G = (V, E)

v

Each edge (u, v) has a capacity c(u,v) > 0 (c(u,v) =0 if (u,v) ¢ E)

\4

Source s and sink t (flow goes from s to t)

v

No antiparallel edges (assumed w.l.0.g. for simplicity)
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Definition of a flow
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A flow is a function f : V x V — R satisfying:

Capacity constraint: For all u,v € V : 0 < f(u,v) < c(u,v)
Flow conservation: For all u € V'\ {s, t},

Z f(v,u) = Z f(u,v)

veVv vev
N

~

~~ ~~
flow into u flow out of u
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Value of a flow
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Value of a flow f = |f|

= Z f(s,v)— Z f(v,s)

vevVv vev
= flow out of source — flow into source
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What's the value of this flow? 9




Deslinatiorﬁ . Origins
\‘\

\[

» Schematic diagram of the railway network of the western Soviet
union and easter European countries, from Harris & Ross (1955),
declassified by pentagon in 1999.



Capacity 52
and flow 34
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» Schematic diagram of the railway network of the western Soviet
union and easter European countries, from Harris & Ross (1955),

declassified by pentagon in 1999.



Goal of Soviet union

Maximize throughput from the “origins” to the destinations

Ford-Fulkerson method solves it
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Goal of US Air Force (1950's)

Disrupt flow of goods into satellite countries in the best possible way

Find a minimum cut (Ford-Fulkerson method solves it)
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L. R. Ford, Jr. (1927-) D, R, Fulkerson (1924-1976)

MAXIMUM-FLOW PROBLEM

Ford-Fulkerson Method
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The Ford-Fulkerson Method’'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gr

3. augment flow f along p

4. return f

Basic idea:

> As long as there is a path from source to sink, with available
capacity on all edges in the path

> send flow along one of these paths and then we find another path
and so on
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Residual network

> Given a flow f and a network G = (V/, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v)—f(u,v) if(u,v)€eE

cr(u,v)= ¢ f(v,u if (v,u)e E
f( 7 ) ( ’ ) ( ’ ) (\Amount of flow that
0 otherwise can be reversed

Residual network:

Gr = (V, Ef) where Ef = {(u,v) € V x V : ¢¢(u,v) > 0}
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Examples

Residual network: G = (V, Ef) where Ef = {(u,v) € V X V : ¢¢(u,v) > 0} and

c(u,v) — f(u,v) if (u,v) €E
cr(u,v) = ¢ f(v,u) if (v,u)e E
0 otherwise

Lecture 18, 16.04.2025



The Ford-Fulkerson Method’'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢

3. augment flow f along p

No augmenting path and flow
of value 2 is optimal

f is updated
flow on an
| Augn fp(u, v) — fp (v

Gr

4. return f
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The Ford-Fulkerson Method

Start with O-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut

Gives a way to verify that the step-by-step calculations of the flow are correct!
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WHY IS RETURNED FLOW OPTIMAL?

(MIN-CUTS)
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Cuts in flow networks

A cut of flow network G(V/, E) is
> a partition of Vinto Sand T =V \ S

» suchthatse Sandte T
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The net flow across cut (S, T) is

quv vau

ueS,veT ueS,veT

flow leaving S flow entering S

What is the net flow of this cut? 12 + 11 — 4 = 19 Note that this equals
the value of the flow; it's always the casel!




Net flow equals flow value for any cut

For any cut (S, T), |f| = f(S, T). I

Proof by induction on the size of S.

Base case S = {s}

©)

net flow equals = flow out from s - flow
into s which equals the value of the flow
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The capacity of a cut (5, T) is

(5, 7)= Z c(u,v)

ueS,veT

What is the capacity of this cut? 12 + 14 = 26
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Flow is at most capacity of a cut

For any flow f and any cut (S, T):
[fl=£(5,T)

= Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT

< Y f(uv)

ueS,veT
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Max-flow is at most capacity of a cut

Therefore: max-flow < min-cut

We shall prove

Theorem (max-flow min-cut theorem)

max-flow = min-cut
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Consider f obtained by running Ford-Fulkerson and let

S ={v e V:thereis a path from s to v in G¢} and T=V\S
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Consider f obtained by running Ford-Fulkerson and let

S ={v e V:thereis a path from s to v in G¢} and T=V\S

Gand f
\
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.
The following are equivalent:

f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (1) = (2): Suppose toward contradiction that G has an augmenting path p.

However, then Ford-Fulkerson method would augment f by p to obtain a flow if
increased value which contradicts that f is a maximum flow
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.
The following are equivalent:

f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Every edge flowing out of S in G must be at capacity, otherwise we can reach a node
outside S in the residual network.
c(e) — f(e) >0

f(e) < c(e) : :

Original graph Residual network

Every edge flowing into S in G must have flow 0, otherwise we can reach a node
outside S in the residual network.

f(e) >0 f(e) >0
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (3) = (1): Recall that |f| < ¢(S, T) for all cuts (S, T).

Therefore, if the value of flow is equal to the capacity of some cut, then it cannot be

further improved.

So f is a maximum flow
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Summary: Ford-Fulkerson Method

Start with O-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut

Gives a way to verify that the step-by-step calculations of the flow are correct!
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TIME FOR FINDING MAX-FLOW

(OR MIN-CUT)
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Upper bound (assuming integral capacities)

> It takes O(E) time to find a path in the residual network (use for
example breadth-first search)

> Each time the flow value is increased by at least 1

» Running time is O(E- |fmax|) where |fmax| denotes the value of a maximum

flow
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Problematic case
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Problematic case

you graduate

| retire
The sun stops to shine

Something happens to the universe

Our algorithm returns a max-flow
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Even more bad news

If capacities are irrational then the Ford-Fulkerson method might not
terminate
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Good news

If we either take the shortest path or the fattest path then this will not

happen if the capacities are integers without proof
BFS shortest path < EE v
-2
Fattest path < E-log(E-U)

» U is the maximum flow value

> Fattest path: choose augmenting path with largest minimum
capacity (bottleneck)
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APPLICATIONS OF MAX-FLOW
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Bipartite matching

> N students apply for M jobs
> Each get several offers

> |s there a way to match all students to jobs? obviously M has to be at least equal to N
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> Add source s and sink t with edges from s to students and from jobs to t
> All edges have capacity one

> Direction is from left to right




Bipartite matching as flow problem

> Run the Ford-Fulkerson method

> Matching is complete
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Why does it work?

Every matching defines a flow of value equal to the number of edges in
matching

» Put flow 1 on

> Edges of the matching
> Edges from s to matched student nodes
> Edges from matched job nodes to t

> Put flow 0 on all other edges

Works because flow conservation is equivalent to: no student is matched
more than once, no job is matched more than once
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Why does it work?

Every flow during the algorithm defines a matching of size equal to its
value
> Flows obtained by Ford-Fulkerson are integer valued if capacities
are integral, so value on every edge is 0 or 1

> Edges between students and jobs with flow 1 are a matching by
flow conservation

> There cannot be more than one edge with flow 1 from a student node
> There cannot be more than one edge with flow 1 into a job node

So, maximum flow is a maximum matching!
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v v.v Y

You want to travel to a nice location these winter holidays
You need to drive from Lausanne to Geneva airport
Winter season = risk that roads are closed

How many different routes can you take that does not share a common road?




v v.v Y

s = Lausanne
t = Geneva airport
An edge capacity of 1 in both directions for each road

(make anti-parallel using gadgets)




max-flow = # edge-disjoint paths

min-cut = min #roads to be closed so that there is no route from Lausanne to
Geneva airport

An edge capacity of 1 in both directions for each road




