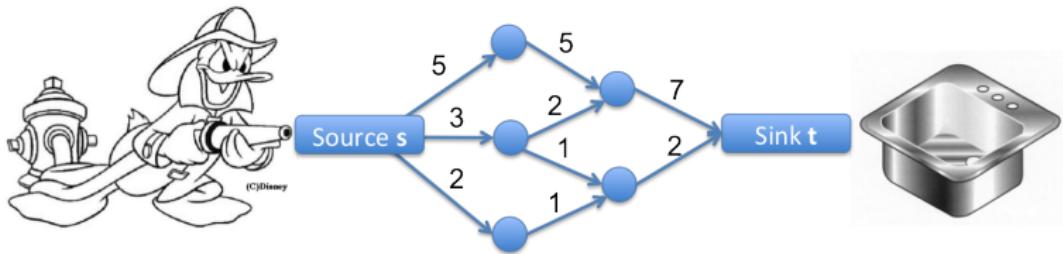


Algorithms: Ford-Fulkerson Method

Alessandro Chiesa, Ola Svensson

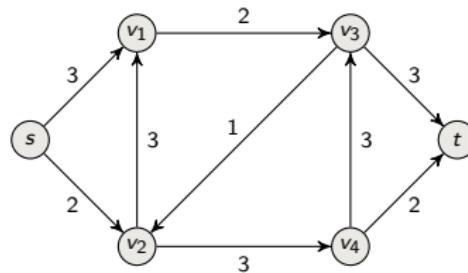
EPFL School of Computer and Communication Sciences

Lecture 18, 16.04.2025



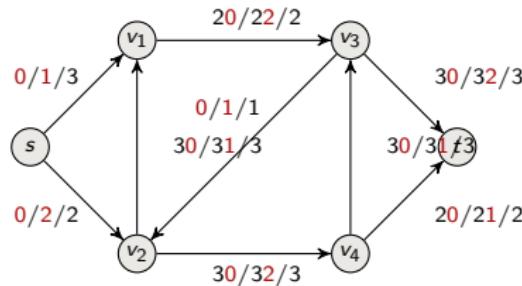
FLOW NETWORKS

Flow Network



- Directed graph $G = (V, E)$
- Each edge (u, v) has a capacity $c(u, v) \geq 0$ ($c(u, v) = 0$ if $(u, v) \notin E$)
- Source s and sink t (flow goes from s to t)
- No antiparallel edges (assumed w.l.o.g. for simplicity)

Definition of a flow



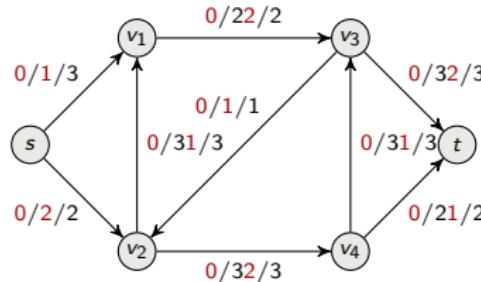
A flow is a function $f : V \times V \rightarrow \mathbb{R}$ satisfying:

Capacity constraint: For all $u, v \in V$: $0 \leq f(u, v) \leq c(u, v)$

Flow conservation: For all $u \in V \setminus \{s, t\}$,

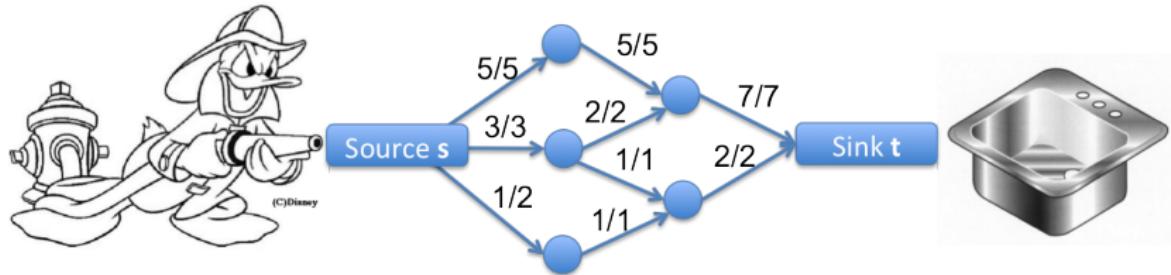
$$\underbrace{\sum_{v \in V} f(v, u)}_{\text{flow into } u} = \underbrace{\sum_{v \in V} f(u, v)}_{\text{flow out of } u}$$

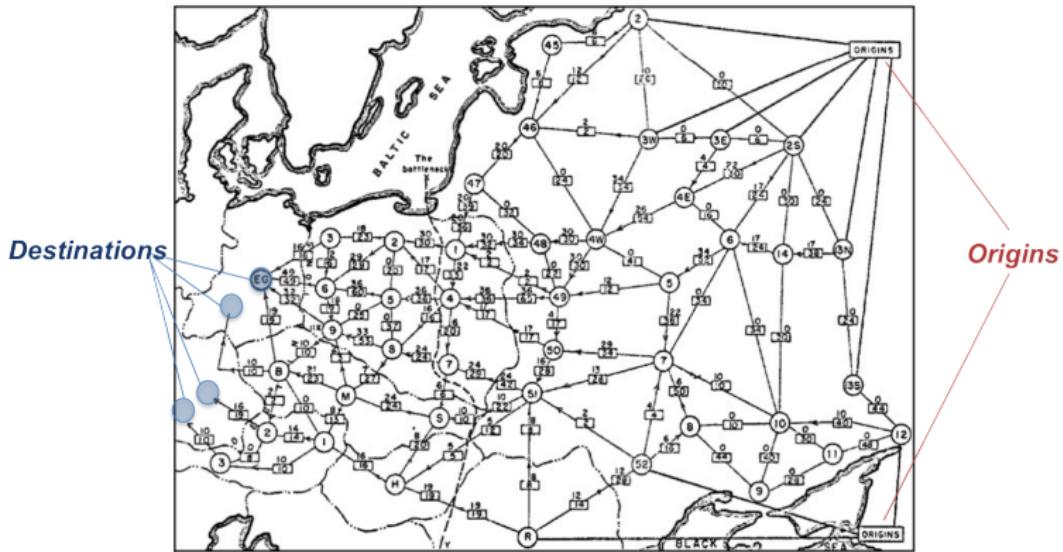
Value of a flow



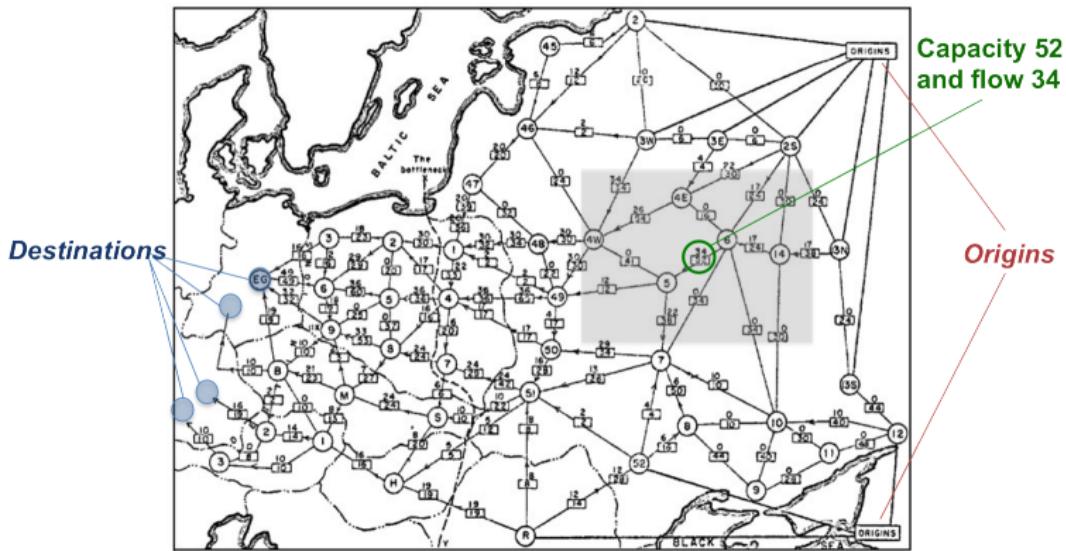
$$\begin{aligned}\text{Value of a flow } f &= |f| \\ &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) \\ &= \text{flow out of source} - \text{flow into source}\end{aligned}$$

What's the value of this flow? 9





- Schematic diagram of the railway network of the western Soviet union and easter European countries, from Harris & Ross (1955), declassified by pentagon in 1999.

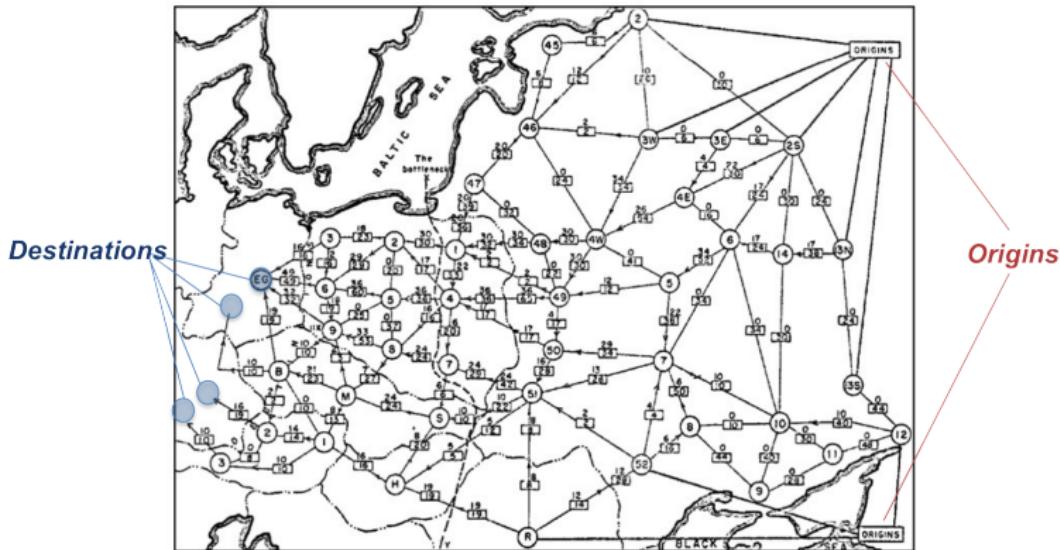


- Schematic diagram of the railway network of the western Soviet union and easter European countries, from Harris & Ross (1955), declassified by pentagon in 1999.

Goal of Soviet union

Maximize throughput from the “origins” to the destinations

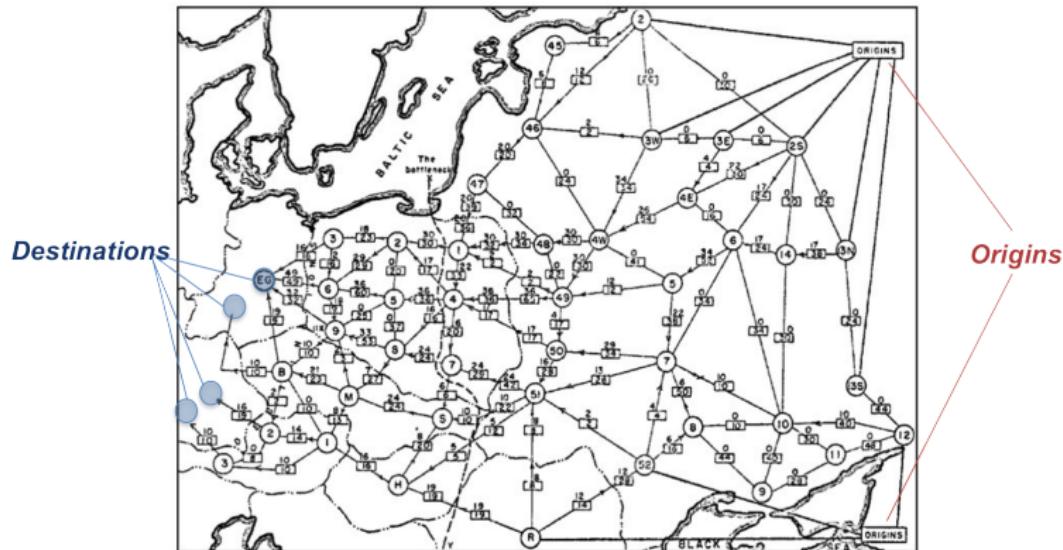
Ford-Fulkerson method solves it



Goal of US Air Force (1950's)

Disrupt flow of goods into satellite countries in the best possible way

Find a minimum cut (Ford-Fulkerson method solves it)



L. R. Ford, Jr. (1927-)

D. R. Fulkerson (1924-1976)

MAXIMUM-FLOW PROBLEM

Ford-Fulkerson Method

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. **while** exists an **augmenting path** p in the **residual network** G_f
3. **augment flow** f along p
4. **return** f

Basic idea:

- ▶ As long as there is a path from source to sink, with available capacity on all edges in the path
- ▶ send flow along one of these paths and then we find another path and so on

Residual network

- Given a flow f and a network $G = (V, E)$
- the residual network consists of edges with capacities that represent how we can change the flow on the edges

Residual capacity:

$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E \\ f(v, u) & \text{if } (v, u) \in E \\ 0 & \text{otherwise} \end{cases}$$

Amount of capacity left

Amount of flow that can be reversed

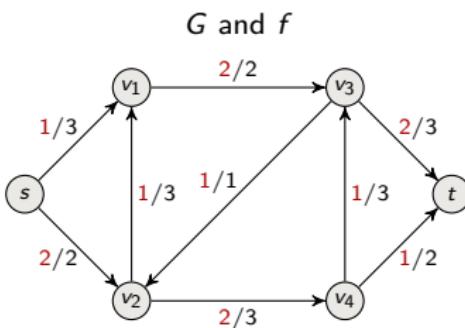
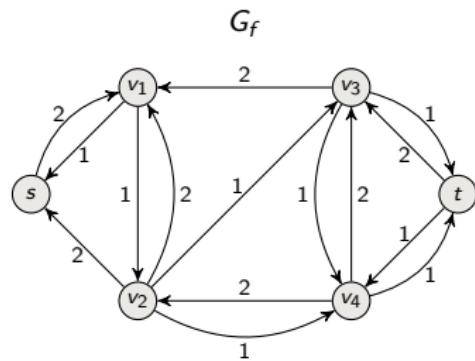
Residual network:

$$G_f = (V, E_f) \text{ where } E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$$

Examples

Residual network: $G_f = (V, E_f)$ where $E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$ and

$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E \\ f(v, u) & \text{if } (v, u) \in E \\ 0 & \text{otherwise} \end{cases}$$



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

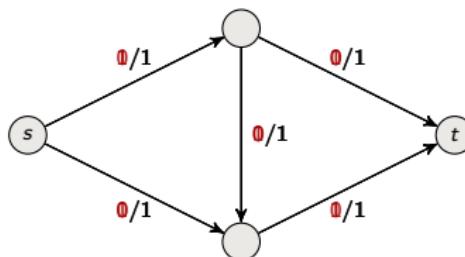
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G_f
 3. augment flow f along p
 4. return f

No augmenting path and flow of value 2 is optimal

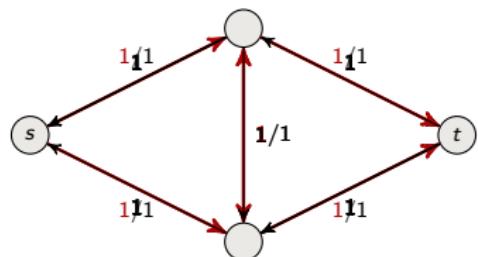
Augn

f is updated
flow on an
 $f_p(u, v) - f_p(v)$

G and f



G_f



The Ford-Fulkerson Method

Start with 0-flow

Max-flow

while there is an augmenting path from s to t in residual network **do**

- ▶ Find augmenting path
- ▶ Compute bottleneck = min capacity on path
- ▶ Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then

Min-cut

- ▶ Find set of nodes S reachable from s in residual network
- ▶ Set $T = V \setminus S$

S and T define a minimum cut

Max-flow = Min-cut

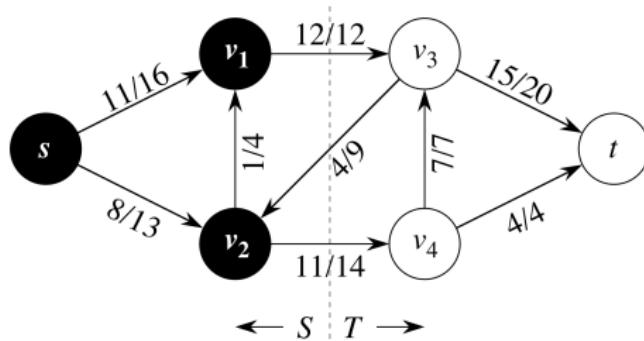
Gives a way to verify that the step-by-step calculations of the flow are correct!

WHY IS RETURNED FLOW OPTIMAL? (MIN-CUTS)

Cuts in flow networks

A cut of flow network $G(V, E)$ is

- ▶ a partition of V into S and $T = V \setminus S$
- ▶ such that $s \in S$ and $t \in T$

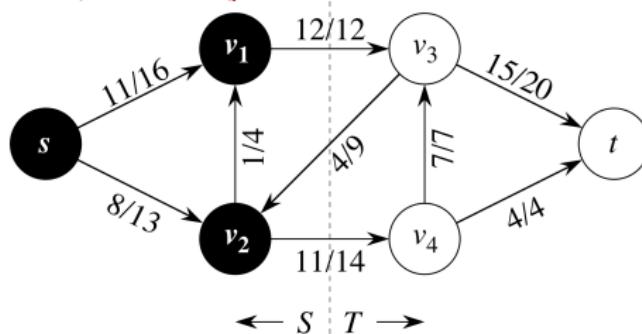


Net flow across a cut

The net flow across cut (S, T) is

$$f(S, T) = \underbrace{\sum_{u \in S, v \in T} f(u, v)}_{\text{flow leaving } S} - \underbrace{\sum_{u \in S, v \in T} f(v, u)}_{\text{flow entering } S}$$

What is the net flow of this cut? $12 + 11 - 4 = 19$ Note that this equals the value of the flow; it's always the case!



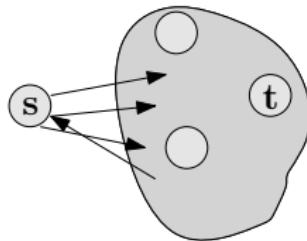
Net flow equals flow value for any cut

Theorem

For any cut (S, T) , $|f| = f(S, T)$.

Proof by induction on the size of S .

Base case $S = \{s\}$



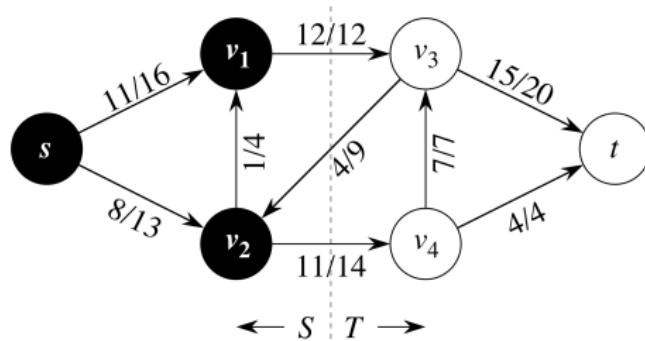
net flow equals = flow out from s - flow into s which equals the value of the flow

Capacity a cut

The capacity of a cut (S, T) is

$$c(S, T) = \sum_{u \in S, v \in T} c(u, v)$$

What is the capacity of this cut? $12 + 14 = 26$



Flow is at most capacity of a cut

For any flow f and any cut (S, T) :

$$|f| = f(S, T)$$

$$= \sum_{u \in S, v \in T} f(u, v) - \sum_{u \in S, v \in T} f(v, u)$$

$$\leq \sum_{u \in S, v \in T} f(u, v)$$

$$\leq \sum_{u \in S, v \in T} c(u, v)$$

$$= c(S, T)$$

Max-flow is at most capacity of a cut

Therefore: **max-flow \leq min-cut**

We shall prove

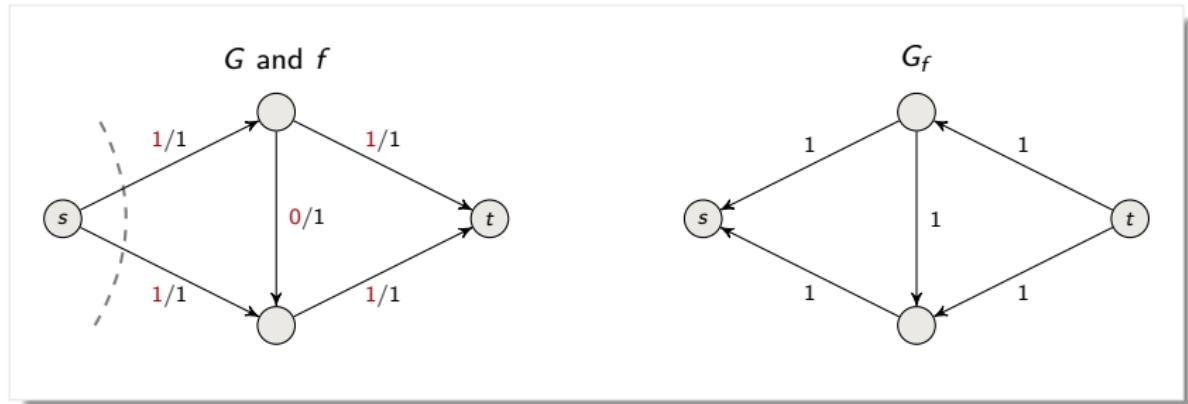
Theorem (max-flow min-cut theorem)

max-flow = min-cut

Examples

Consider f obtained by running Ford-Fulkerson and let

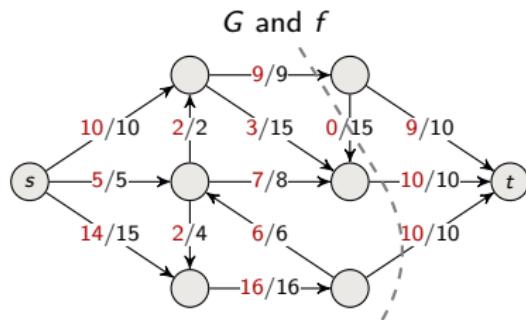
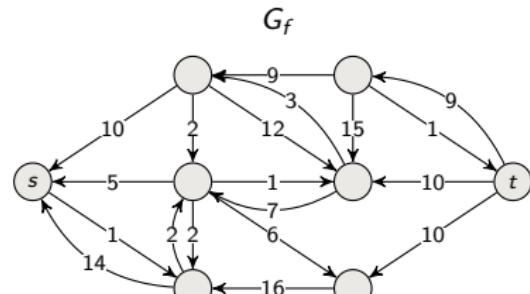
$$S = \{v \in V : \text{there is a path from } s \text{ to } v \text{ in } G_f\} \quad \text{and} \quad T = V \setminus S$$



Examples

Consider f obtained by running Ford-Fulkerson and let

$$S = \{v \in V : \text{there is a path from } s \text{ to } v \text{ in } G_f\} \quad \text{and} \quad T = V \setminus S$$



Max-flow min-cut theorem

Let $G = (V, E)$ be a flow network with source s and sink t and capacities c and a flow f .

The following are equivalent:

- 1 f is a maximum flow
- 2 G_f has no augmenting path
- 3 $|f| = c(S, T)$ for a minimum cut (S, T)

Proof. (1) \Rightarrow (2): Suppose toward contradiction that G_f has an augmenting path p .

However, then Ford-Fulkerson method would augment f by p to obtain a flow of increased value which contradicts that f is a maximum flow

Max-flow min-cut theorem

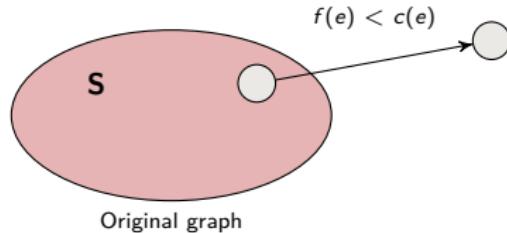
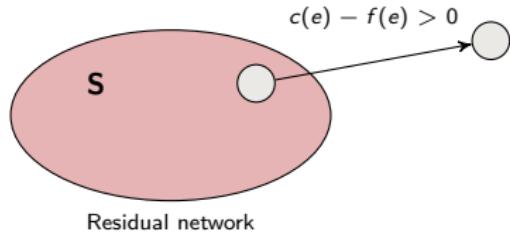
Let $G = (V, E)$ be a flow network with source s and sink t and capacities c and a flow f .

The following are equivalent:

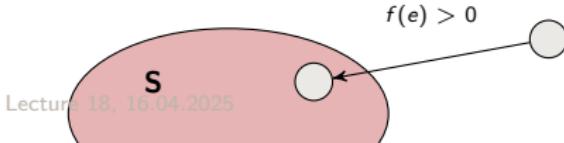
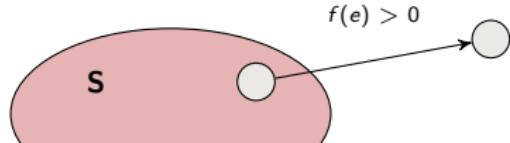
- 1 f is a maximum flow
- 2 G_f has no augmenting path
- 3 $|f| = c(S, T)$ for a minimum cut (S, T)

Proof. (2) \Rightarrow (3): $S = \text{set of nodes reachable from } s \text{ in residual network}$, $T = V \setminus S$

Every edge flowing out of S in G must be at capacity, otherwise we can reach a node outside S in the residual network.



Every edge flowing into S in G must have flow 0, otherwise we can reach a node outside S in the residual network.



Max-flow min-cut theorem

Let $G = (V, E)$ be a flow network with source s and sink t and capacities c and a flow f .

The following are equivalent:

- 1 f is a maximum flow
- 2 G_f has no augmenting path
- 3 $|f| = c(S, T)$ for a minimum cut (S, T)

Proof. (3) \Rightarrow (1): Recall that $|f| \leq c(S, T)$ for all cuts (S, T) .

Therefore, if the value of flow is equal to the capacity of some cut, then it cannot be further improved.

So f is a maximum flow

Summary: Ford-Fulkerson Method

Start with 0-flow

Max-flow

while there is an augmenting path from s to t in residual network **do**

- ▶ Find augmenting path
- ▶ Compute bottleneck = min capacity on path
- ▶ Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then

Min-cut

- ▶ Find set of nodes S reachable from s in residual network
- ▶ Set $T = V \setminus S$

S and T define a minimum cut

$$\text{Max-flow} = \text{Min-cut}$$

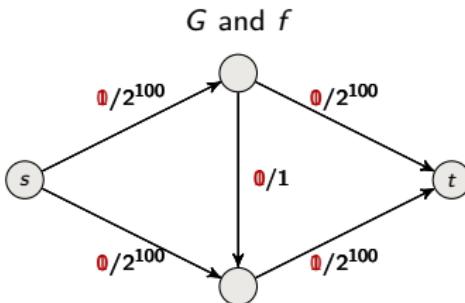
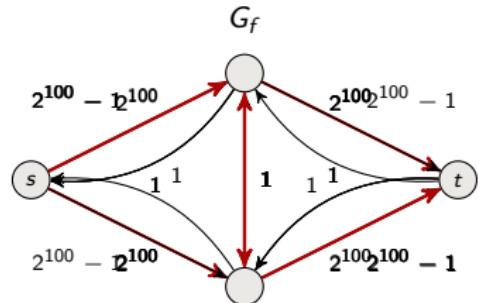
Gives a way to verify that the step-by-step calculations of the flow are correct!

TIME FOR FINDING MAX-FLOW (OR MIN-CUT)

Upper bound (assuming integral capacities)

- ▶ It takes $O(E)$ time to find a path in the residual network (use for example breadth-first search)
- ▶ Each time the flow value is increased by at least 1
- ▶ Running time is $O(E \cdot |f_{\max}|)$ where $|f_{\max}|$ denotes the value of a maximum flow

Problematic case



Problematic case

- you graduate
- I retire
-
- The sun stops to shine
-
- Something happens to the universe
-
-
-
-
-
- Our algorithm returns a max-flow

Even more bad news

If capacities are irrational then the Ford-Fulkerson method might not terminate

Good news

If we either take the **shortest path** or the **fattest path** then this will not happen if the capacities are integers without proof

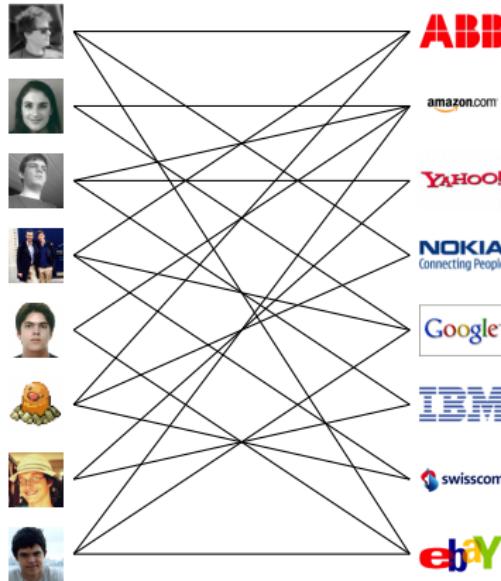
BFS shortest path	$\leq \frac{1}{2}E \cdot V$
Fattest path	$\leq E \cdot \log(E \cdot U)$

- ▶ U is the maximum flow value
- ▶ Fattest path: choose augmenting path with largest minimum capacity (bottleneck)

APPLICATIONS OF MAX-FLOW

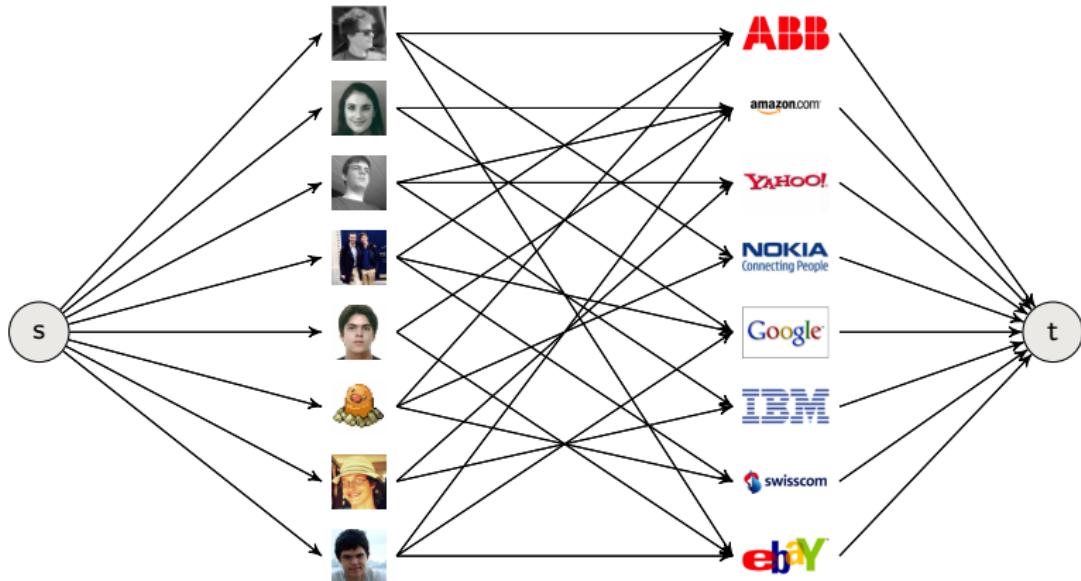
Bipartite matching

- ▶ N students apply for M jobs
- ▶ Each get several offers
- ▶ Is there a way to match all students to jobs? *obviously M has to be at least equal to N*



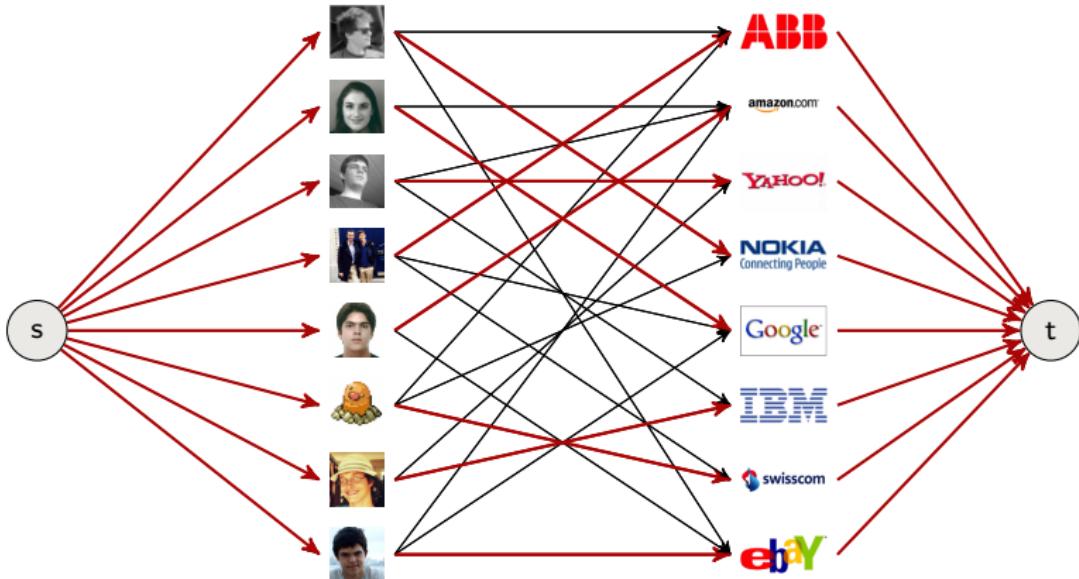
Bipartite matching as flow problem

- ▶ Add source s and sink t with edges from s to students and from jobs to t
- ▶ All edges have capacity one
- ▶ Direction is from left to right



Bipartite matching as flow problem

- ▶ Run the Ford-Fulkerson method
- ▶ Matching is complete



Why does it work?

Every matching defines a flow of value equal to the number of edges in matching

- ▶ Put flow 1 on
 - ▶ Edges of the matching
 - ▶ Edges from s to matched student nodes
 - ▶ Edges from matched job nodes to t
- ▶ Put flow 0 on all other edges

Works because flow conservation is equivalent to: no student is matched more than once, no job is matched more than once

Why does it work?

Every flow during the algorithm defines a matching of size equal to its value

- ▶ Flows obtained by Ford-Fulkerson are integer valued if capacities are integral, so value on every edge is 0 or 1
- ▶ Edges between students and jobs with flow 1 are a matching by flow conservation
 - ▶ There cannot be more than one edge with flow 1 from a student node
 - ▶ There cannot be more than one edge with flow 1 into a job node

So, maximum flow is a maximum matching!

Edge-disjoint paths

- ▶ You want to travel to a nice location these winter holidays
- ▶ You need to drive from Lausanne to Geneva airport
- ▶ Winter season \Rightarrow risk that roads are closed
- ▶ How many different routes can you take that does not share a common road?

Edge-disjoint paths as flow network

- ▶ $s = \text{Lausanne}$
- ▶ $t = \text{Geneva airport}$
- ▶ An edge capacity of 1 in both directions for each road
- ▶ (make anti-parallel using gadgets)

Solution

- ▶ $\text{max-flow} = \# \text{ edge-disjoint paths}$
- ▶ $\text{min-cut} = \min \# \text{roads to be closed so that there is no route from Lausanne to Geneva airport}$
- ▶ An edge capacity of 1 in both directions for each road

