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Flow Network

Transfer as much cheese as possible from Gruyere to Lausanne

Bern Neuchatel
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Geneve Morges
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Flow Network

Transfer as much cheese as possible from Gruyere to Lausanne

Bern Neuchatel . Capacity: at most 20 cheeses can be
12 ~ transferred from Neuchatel to Lausanne
.

Gruyere Lausanne

Geneve

Source Sink

> a graph to model flow through edges (pipes)

> each edge has a capacity an upper bound on the flow rate (pipes
have different sizes)

» Want to maximize rate of flow from the source to the sink
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Flow Network (formally)
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Flow Network (formally)

> Directed graph G = (V,E)
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Flow Network (formally)

> Directed graph G = (V,E)

> Each edge (u, v) has a capacity c(u,v) > 0 (c(u,v) =0 if (u,v) ¢ E)
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Flow Network (formally)

> Directed graph G = (V,E)
> Each edge (u, v) has a capacity c(u,v) > 0 (c(u,v) =0 if (u,v) ¢ E)

> Source s and sink ¢ (flow goes from s to t)
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Flow Network (formally)

v

Directed graph G = (V, E)

\4

Each edge (u, v) has a capacity c(u,v) > 0 (c(u,v) =0 if (u,v) ¢ E)

v

Source s and sink t (flow goes from s to t)

v

No antiparallel edges (assumed w.l.o.g. for simplicity)

Lecture 16, 15.04.2025



Why is “no antiparallel edges” w.l.o.g.?
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Why is “no antiparallel edges” w.l.o.g.?

1 11
@C@é
5 5

> If there are two parallel edges (u, v) and (v, u), choose one of them say (u, v)
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Why is “no antiparallel edges” w.l.o.g.?

1 1 0 1
@ o =
5 5
> If there are two parallel edges (u, v) and (v, u), choose one of them say (u, v)

> Create a new vertex v/
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Why is “no antiparallel edges” w.l.o.g.?

1 1 0 1
@ o =
5 5
> If there are two parallel edges (u, v) and (v, u), choose one of them say (u, v)

> Create a new vertex v/

> Replace (u, v) by two new edges (u,v’) and (v/, v) with
c(u,v') =c(v/,u) = c(u,v)
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Why is “no antiparallel edges” w.l.o.g.?

1 1 0 1
@ o =
5 5
> If there are two parallel edges (u, v) and (v, u), choose one of them say (u, v)

> Create a new vertex v/

> Replace (u, v) by two new edges (u,v’) and (v/, v) with
c(u,v') =c(v/,u) = c(u,v)

> Repeat this O(E) times to get an equivalent flow network with no antiparallel
edges.
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Definition of a flow

A flow is a function f : V x V — R satisfying:
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Definition of a flow

A flow is a function f : V x V — R satisfying:

Capacity constraint: For all u,v € V: 0 < f(u,v) < c(u,v)
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Definition of a flow

A flow is a function f : V x V — R satisfying:
Capacity constraint: For all u,v € V: 0 < f(u,v) < c(u,v)
Flow conservation: For all u € V'\ {s, t},

Z f(v,u) = Z f(u,v)

veV vev
-

J

flow into u flow out of u
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Value of a flow

Value of a flow f = |f|

= Z f(s,v) — Z f(v,s)

veVv vev
= flow out of source — flow into source
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Value of a flow

Value of a flow f = |f|

= Z f(s,v) — Z f(v,s)

veVv vev
= flow out of source — flow into source
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What's the value of this flow?




What's the value of this flow? 9




L. R. Ford, Jr. (1927-) D, R, Fulkerson (1924-1976)

MAXIMUM-FLOW PROBLEM

Ford-Fulkerson Method
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p

4. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Basic idea:
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Basic idea:

> As long as there is a path from source to sink, with available
capacity on all edges in the path
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Basic idea:

> As long as there is a path from source to sink, with available
capacity on all edges in the path

> send flow along one of these paths and then we find another path
and so on

Lecture 16, 15.04.2025



Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t

5 3 7 4
@—)O—)O—)O—)@ with remaining capacity

= Push flow on p
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

3/5 3/3 3/7 3/4 Exists a path p from s to t

@—)O—)O—)O—)@ with remaining capacity

= Push flow on p
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

No path from s to t

3/5 @ with remaining capacity

I AN AN A
O—0O—0

©

and the flow is maximum
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t
with remaining capacity
= Push flow on p
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t
with remaining capacity
1/1 1/1 => Push flow on p
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on
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Applying the basic idea to examples
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t
with remaining capacity
1/1 1/1 = Push flow on p
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

No path from s to t
with remaining capacity

1 % and the flow is maximum

11 11 @
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

Exists a path p from s to t
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= Push flow on p
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

No path from s to t
with remaining capacity

but the flow is not maximum

ey
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Applying the basic idea to examples

> As long as there is a path from source to sink, with available capacity on all
edges in the path

> send flow along one of these paths and then we find another path and so on

No path from s to t
with remaining capacity

but the flow is not maximum

What went wrong? How can we fix it?
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G

3. augment flow f along p

4. return f
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Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges
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Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v) —f(u,v) if(u,v)eE
cr(u,v) = ¢ f(v,u) if (v,u) e E
0 otherwise
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Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v)—f(u,v) if(u,v)€eE

Cf(“? V) = f(V, U) if (V’ U) €E D Amount of flow that

0 OtherWise can be reversed
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Residual network

> Given a flow f and a network G = (V, E)

> the residual network consists of edges with capacities that represent
how we can change the flow on the edges

Residual capacity:

c(u,v)—f(u,v) if(u,v)€eE

Cf(“? V) = f(V, U) if (V’ U) €E D Amount of flow that

0 OtherWise can be reversed

Residual network:
Gr = (V, Ef) where Ef = {(u,v) € V x V : ¢r(u,v) > 0}
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Residual network: G = (V, Ef) where Ef = {(u,v) € V X V : ¢f(u,v) > 0} and
c(u,v) — f(u,v) if(u,v)€eE

cr(u,v) =< f(v,u) if (v,u) € E
0 otherwise

Gr
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Residual network: G = (V, Ef) where Ef = {(u,v) € V X V : ¢f(u,v) > 0} and

c(u,v) — f(u,v) if(u,v)€eE
cr(u,v) =< f(v,u) if (v,u) € E
0 otherwise
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G

3. augment flow f along p

4. return f

i Augmenting path = simple path from s to t
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G

3. augment flow f along p

Exists augmenting path
4. return f € g patip
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G

3. augment flow f along p
Exists augmenting path p

4. return f with flow f, of value = min ca-
pacity on p =
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
f is updated by changing the
4. return f flow on an edge (u,v) by
fo(u,v) — fp(v, u) I
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
f is updated by changing the
4. return f flow on an edge (u,v) by
fo(u,v) — fp(v, u) I
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Gr

Lecture 16, 15.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f

Lecture 16, 15.04.2025



The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

Gr
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf|No augmenting path and flow
of value 2 is optimal
3. augment flow f along p

4. return f @
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

. Initialize flow f to 0

while exists an augmenting path p in the residual network Gf |No augmenting path and flow
of value 2 is optimal

1
2
3. augment flow f along p
4

. return f @
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f

Gand f

( <0/
0/16 0/2 0/15 0;15 0/10
G{o/s&o/%—oﬁ%

0/15 0/4 0/6 0/10

Oy
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

( <0/ o—>()
0/16 0/2 0/15 0;15 0/10 0 1 1
G{o/s&o/%—oﬁ% ®<‘ 5 3\871%

0/15 0/4 0/6 0/10 1 6.

S oS S
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

( <0/ o—>()
0/16 0/2 0/15 0;15 0/10 1 1
G{o/s&o/%—oﬁ% ®< 5 3\871%

0/15 0/4 0/6 0/10 1 6.

S oS S
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4. return f
G and f Gy

( <0/9—>( ) —>( )
10/10 0/2 10/15 0/15 0/10 1 1

G:éo /5%0 /%—10 /19:9 ®< 5 3\871%
0/15

0/4 0/6 0/10 1 6 0

N oS S
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G

3. augment flow f along p
4. return f
G and f Gy
0/ 9

10/10 0/2 10/15 0/15 0/10

0/5 0/ 10/10 O<‘
/15 0/4 0/6 0/16 6 0
SO S
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

( <0/9—>( )
10/10 0/2 10/15 0/15 0/10

0/5 0/ 10/10

0/15 0/4 0/6 0/10

Oy
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4. return f
G and f Gy

AR 5&
10/10 0/2 #/15 0/15 /10 0
G{o/s&e/%—wﬂ% G<
/15 0/4 6/6 1

0/10

oo

(&)
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

,<)<6/9—></l O O
10/10 0/2 3/15 0/15 6/10

0/5 6/%—10/10 @
5/15 0/4 6/6 0/16

ey o O

O
O
©
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

( <ﬁ/
10/10 0/2 /15 0;15 5/10
G{o/s&e/%—wﬂ%

6/15 0/4 6/6 0/10

oo
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

( <ﬁ/
10/10 0/2 /15 0;15 5/10
G{o/s&e/%—wﬂ%

6/15 0/4 6/6 0/10

oo
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4. return f
G and f
AR 5&
10/10 0/2 4/15 0/15 6/10
4/5 6/ 10/10
6/15 4/4  6/6 4/10
10/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

,<)<6/9—></l O O
10/10 0/2 3/15 0/15 6/10

4/5 6/ 10/10 @
5/15  4/4 6/6 4/16

0oy O O

O
O
©
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

( <6/9—>( )
10/10 0/2 3/15 0/15 6/10

4/5 6/ 10/10
5/15 4/4  6/6 4/10

10/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

( <6/9—>( )
10/10 0/2 3/15 0/15 6/10

4/5 6/ 10/10
5/15 4/4  6/6 4/10

10/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4. return f
G and f
AR ?\
10/10 1/2  4/15 0/15 7/10
5/5 6/ 10/10
6/15 4/4  6/6 4/10
10/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

,<)<7/9—></l O O
10/10 1/2  3/15 0/15 7/10

5/5 6/ 10/10 @
5/15  4/4 6/6 4/16

0oy O O

O
O
©
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

( <7/9—>( )
10/10 1/2  3/15 0/15 7/10

5/5 6/ 10/10
5/15 4/4  6/6 4/10

10/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

( <7/9—>( )
10/10 1/2  3/15 0/15 7/10

5/5 6/ 10/10
5/15 4/4  6/6 4/10

10/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f

( <7/9—>( )
10/10 1/2  3/15 0/15 7/10

5/5 6/ 10/10
12/15 4/4 6/6 10/10

16/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

,<)<7/9—></l O O
10/10 1/2  3/15 0/15 7/10

5/5 6/ 10/10 @
12/15 4/4 6/6 10/10

e O O

O
O
©
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

( <7/9—>( )
10/10 1/2  3/15 0/15 7/10

5/5 6/ 10/10

12/15 4/4 6/6 10/10

16/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

( <7/9—>( )
10/10 1/2  3/15 0/15 7/10

5/5 6/ 10/10

12/15 4/4 6/6 10/10

16/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f

( <8/9—>( )
10/10 2/2 3/15 0/15 8/10

5/5 6/ 10/10

13/15 3/4 6/6 10/10

16/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

,<)<8/9—></l O O
10/10 2/2 3/15 0/15 8/10

5/5 6/ 10/10 @
13/15 3/4 6/6 10/10

e O O

O
O
©
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

( <8/9—>( )
10/10 2/2 3/15 0/15 8/10

5/5 6/ 10/10

13/15 3/4 6/6 10/10

16/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

( <8/9—>( )
10/10 2/2 3/15 0/15 8/10

5/5 6/ 10/10

13/15 3/4 6/6 10/10

16/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f

( <9/9—>( )
10/10 2/2  3/15 0/15 9/10

5/5 7/ 10/10

14/15 2/4 6/6 10/10

16/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

G and f Gy

,(><9/9—>§l O O
10/10 2/2  3/15 0/15 9/10

5/5 7/ 10/10 @
14/15 2/4 6/6 10/10

16/1M O O

O
O
©
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f

( <9/9—>( )
10/10 2/2  3/15 0/15 9/10

5/5 7/ 10/10

14/15 2/4 6/6 10/10

16/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f

( <9/9—>( )
10/10 2/2  3/15 0/15 9/10

5/5 7/ 10/10

14/15 2/4 6/6 10/10

16/16
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

. Initialize flow f to 0

while exists an augmenting path p in the residual network Gf |No augmenting path and flow
of value 29 is optimal

1
2
3. augment flow f along p
4

. return f @

Gand f
9/

/'; ~ ; N 3 ; (< ~o.
10/10 2/2 3/15 0/15 9/10 1
5/5 7/ 10/10 10
14/15 2/4 6/6 10/10 0

16/16 M
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WHY IS RETURNED FLOW OPTIMAL?

(MIN-CUTS)

Lecture 16, 15.04.2025



Cuts in flow networks

A cut of flow network G(V, E) is
> a partition of V into Sand T =V \ S
» suchthatse Sandte T
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Net flow across a cut

The net flow across cut (S, T) is

f(5,T)= Z flu,v)— Z f(v,u)

ueS,veT ueS,veT

flow leaving S flow en‘t’ering S
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Net flow across a cut

The net flow across cut (S, T) is

f(5,T)= Z flu,v)— Z f(v,u)

ueS,veT ueS,veT

flow leaving S flow en‘t’ering S

What is the net flow of this cut?
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Net flow across a cut

The net flow across cut (S, T) is

f(5,T)= Z flu,v)— Z f(v,u)

ueS,veT ueS,veT

flow leaving S flow en‘t’ering S

What is the net flow of this cut? 12 +11 — 4 =19
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Net flow across a cut

The net flow across cut (S, T) is

f(5,T)= Z flu,v)— Z f(v,u)

ueS,veT ueS,veT

flow leaving S flow en‘t’ering S

What is the net flow of this cut? 12 + 11 — 4 = 19 Note that this equals
the value of the flow; it's always the case!

Lecture 16, 15.04.2025



Net flow equals flow value for any cut
For any cut (S, T), |f| = (S, T). |
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Net flow equals flow value for any cut
For any cut (S, T), |f| = (S, T). I

Proof by induction on the size of S.
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Net flow equals flow value for any cut

For any cut (S, T), |f| = (S, T). I

Proof by induction on the size of S.

Base case S = {s}

©)

net flow equals = flow out from s - flow
into s which equals the value of the flow
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Net flow equals flow value for any cut

For any cut (S, T), |f| = (S, T).

Proof by induction on the size of S.

Base case S = {s} Inductive Step S = 5" U {w}

©)

New net flow = Old net flow +
flow on blue edges - flow on red edges

net flow equals = flow out from s - flow

into s which equals the value of the flow 0 by flow conservation
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The capacity of a cut (5, T) is

(5, 7)= Z c(u,v)

ueS,veT
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The capacity of a cut (5, T) is

(5, 7)= Z c(u,v)

ueS,veT

What is the capacity of this cut?
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The capacity of a cut (5, T) is

(5, 7)= Z c(u,v)

ueS,veT

What is the capacity of this cut? 12 + 14 =26
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Flow is at most capacity of a cut

For any flow f and any cut (S, T):

fl=1(5T)
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Flow is at most capacity of a cut

For any flow f and any cut (S, T):
fl=1(5T)

= Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT
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Flow is at most capacity of a cut

For any flow f and any cut (S, T):

[f=£(S,T)
= > fluv)— > f(v,u)
ueS,veT ueS,veT
< Z f(u,v)

ueS,veT
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Flow is at most capacity of a cut

For any flow f and any cut (S, T):

[fl=1(S5,T)
= > fluv)— > f(v,u)
ueS,veT ueS,veT
< > f(u,v)
ueS,veT
< > c(u,v)
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Flow is at most capacity of a cut

For any flow f and any cut (S, T):
fl=1(5T)

= Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT

< Z f(u,v)

ueS,veT

Lecture 16, 15.04.2025



Flow is at most capacity of a cut

For any flow f and any cut (S, T):
fl=1(5T)

= Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT

< Z f(u,v)

ueS,veT
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Max-flow is at most capacity of a cut
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Max-flow is at most capacity of a cut

Therefore: max-flow < min-cut
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Max-flow is at most capacity of a cut

Therefore: max-flow < min-cut

We shall prove

Theorem (max-flow min-cut theorem)

max-flow = min-cut
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Consider f obtained by running Ford-Fulkerson and let

S ={v € V :thereis a path from s to v in G¢} and T=V\S
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Consider f obtained by running Ford-Fulkerson and let

S ={v € V :thereis a path from s to v in G¢} and T=V\S

G and f
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Consider f obtained by running Ford-Fulkerson and let

S ={v € V :thereis a path from s to v in G¢} and T=V\S

G and f

( t:::9/9——9< )
10/10 2/2  3/15 0/15 9/10

5/5 7/ 10/10

14/15 2/4 6/6 10/10

16/16
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Consider f obtained by running Ford-Fulkerson and let

S ={v € V :thereis a path from s to v in G¢} and T=V\S

G and f
AY

( k::zg/g—dgg )
10/10 22 3/15 0M5 9/10

N
5/5 7/ r

10/10
\
1415 2/4 6/6 10/10
16/16 )
s
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:

f is a maximum flow

Gr has no augmenting path

|f| = ¢(S, T) for a minimum cut (S, T)
Proof.
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (1) = (2): Suppose toward contradiction that G has an augmenting path p.

However, then Ford-Fulkerson method would augment f by p to obtain a flow if
increased value which contradicts that f is a maximum flow
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)

Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Every edge flowing out of S in G must be at capacity, otherwise we can reach a node
outside S in the residual network.

f(e) < c(e) f(e) —c(e) >0

Original graph Residual network

Lecture 16, 15.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Every edge flowing into S in G must have flow 0, otherwise we can reach a node
outside S in the residual network.

f(e) >0 f(e) >0

Original graph Residual network

Lecture 16, 15.04.2025



Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Therefore

Ifl=f(5,T)
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)

Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Therefore
Ifl=£(5T)
= Z f(u,v)— Z f(v,u)
ueS,veT ueS,veT
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)

Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Therefore
Ifl=£(5T)
= > fuv)- > fvu)
ueS,veT ueS,veT
= ) cwv)
ueS,veT
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (2) = (3): S = set of nodes reachable from s in residual network, T = V' \ S

Therefore

Ifl=f(5,T)

Z f(u,v)— Z f(v,u)

ueS,veT ueS,veT
E c(u,v)
ueS,veT

=¢(5,T)
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (3) = (1): Recall that |f| < ¢(S, T) for all cuts (S, T).
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (3) = (1): Recall that |f| < ¢(S, T) for all cuts (S, T).

Therefore, if the value of flow is equal to the capacity of some cut, then it cannot be
further improved.
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Max-flow min-cut theorem

Let G = (V, E) be a flow network with source s and sink t and capacities ¢ and a flow f.

The following are equivalent:
f is a maximum flow
Gr has no augmenting path
|f| = ¢(S, T) for a minimum cut (S, T)
Proof. (3) = (1): Recall that |f| < ¢(S, T) for all cuts (S, T).

Therefore, if the value of flow is equal to the capacity of some cut, then it cannot be

further improved.

So f is a maximum flow
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Flow Networks

\4

Ford-Fulkerson Method

> Cuts

v

Max-flow = min cut theorem
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