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FLOW NETWORKS
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Flow Network

Transfer as much cheese as possible from Gruyere to Lausanne

s

v1

v2

v3

v4

t
Gruyere

Bern Neuchatel

Geneve Morges

Lausanne
16

13

4

14

12

9

20

4

7

Capacity: at most 20 cheeses can be
transferred from Neuchatel to Lausanne

Source Sink

▶ a graph to model flow through edges (pipes)
▶ each edge has a capacity an upper bound on the flow rate (pipes

have different sizes)
▶ Want to maximize rate of flow from the source to the sink
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Flow Network (formally)

s

v1

v2

v3

v4

t
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3

3
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▶ Directed graph G = (V , E )
▶ Each edge (u, v) has a capacity c(u, v) ≥ 0 (c(u, v) = 0 if (u, v) < E)

▶ Source s and sink t (flow goes from s to t)
▶ No antiparallel edges (assumed w.l.o.g. for simplicity)
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Why is “no antiparallel edges” w.l.o.g.?

u v

1

5

⇒ u v
v ’

1 1

5

▶ If there are two parallel edges (u, v) and (v , u), choose one of them say (u, v)

▶ Create a new vertex v ′

▶ Replace (u, v) by two new edges (u, v ′) and (v ′, v) with
c(u, v ′) = c(v ′, u) = c(u, v)

▶ Repeat this O(E) times to get an equivalent flow network with no antiparallel
edges.
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Definition of a flow

s

v1

v2

v3

v4

t

0/1/3

0/2/2

1/30/31/3

1/30/32/3

1/20/22/2

0/1/1
1/30/32/3

1/20/21/2

1/30/31/3

A flow is a function f : V × V → R satisfying:

Capacity constraint: For all u, v ∈ V : 0 ≤ f (u, v) ≤ c(u, v)

Flow conservation: For all u ∈ V \ {s, t},∑
v∈V

f (v , u)︸          ︷︷          ︸
flow into u

=
∑
v∈V

f (u, v)︸          ︷︷          ︸
flow out of u
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Value of a flow

s

v1

v2

v3

v4

t

0/1/3

0/2/2

0/31/3

0/32/3

0/22/2

0/1/1
0/32/3

0/21/2

0/31/3

Value of a flow f = |f |

=
∑
v∈V

f (s, v) −
∑
v∈V

f (v , s)

= flow out of source − flow into source
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What’s the value of this flow? 9
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L. R. Ford, Jr. (1927-) D, R, Fulkerson (1924-1976)

MAXIMUM-FLOW PROBLEM
Ford-Fulkerson Method
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The Ford-Fulkerson Method’54

Ford-Fulkerson-Method(G , s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

Basic idea:
▶ As long as there is a path from source to sink, with available

capacity on all edges in the path
▶ send flow along one of these paths and then we find another path

and so on
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Applying the basic idea to examples
▶ As long as there is a path from source to sink, with available capacity on all

edges in the path
▶ send flow along one of these paths and then we find another path and so on

s t
5 3 7 4 Exists a path p from s to t

with remaining capacity
⇒ Push flow on p

5 3 7 4 Exists a path p from s to t
with remaining capacity
⇒ Push flow on p

3/5 3/3 3/7 3/4
No path from s to t
with remaining capacity

and the flow is maximum

3/5 3/3 3/7 3/4
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Applying the basic idea to examples
▶ As long as there is a path from source to sink, with available capacity on all

edges in the path
▶ send flow along one of these paths and then we find another path and so on

s t

1

1

1

1

1

1

1

1

Exists a path p from s to t
with remaining capacity
⇒ Push flow on p1/1

1

1/1

1

Exists a path p from s to t
with remaining capacity
⇒ Push flow on p1/1

1

1/1

1

1/1

1

1/1

1

Exists a path p from s to t
with remaining capacity
⇒ Push flow on p1/1

1/1

1/1

1/1

Exists a path p from s to t
with remaining capacity
⇒ Push flow on p1/1

1/1

1/1

1/1

No path from s to t
with remaining capacity

and the flow is maximum
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Applying the basic idea to examples
▶ As long as there is a path from source to sink, with available capacity on all

edges in the path
▶ send flow along one of these paths and then we find another path and so on

s t

1

1

1

1

1

1

1

1

1

1

Exists a path p from s to t
with remaining capacity
⇒ Push flow on p1/1

1

1

1/1

1/1

Exists a path p from s to t
with remaining capacity
⇒ Push flow on p1/1

1

1

1/1

1/1

No path from s to t
with remaining capacity

but the flow is not maximum

What went wrong? How can we fix it?
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G , s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f
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Residual network
▶ Given a flow f and a network G = (V , E )
▶ the residual network consists of edges with capacities that represent

how we can change the flow on the edges

Residual capacity:

cf (u, v) =


c(u, v) − f (u, v) if (u, v) ∈ E
f (v , u) if (v , u) ∈ E
0 otherwise

Amount of capacity left

Amount of flow that
can be reversed

Residual network:

Gf = (V , Ef ) where Ef = {(u, v) ∈ V × V : cf (u, v) > 0}
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Examples
Residual network: Gf = (V , Ef ) where Ef = {(u, v) ∈ V × V : cf (u, v) > 0} and

cf (u, v) =

c(u, v) − f (u, v) if (u, v) ∈ E
f (v , u) if (v , u) ∈ E
0 otherwise

G and f

s t

1/1

1

1

1/1

1/1

Gf

s t

1

1

1

1

1
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Examples
Residual network: Gf = (V , Ef ) where Ef = {(u, v) ∈ V × V : cf (u, v) > 0} and

cf (u, v) =

c(u, v) − f (u, v) if (u, v) ∈ E
f (v , u) if (v , u) ∈ E
0 otherwise

G and f

s

v1

v2

v3

v4

t

1/3

2/2

1/3

2/3

2/2

1/1

2/3

1/2

1/3

Gf

s

v1

v2

v3

v4

t

2

2

2

1

2

1

1 1

1

1

1

2

2

2

1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f
Augmenting path = simple path from s to t

Exists augmenting path p
with flow fp of value = min ca-
pacity on p

f is updated by changing the
flow on an edge (u, v) by
fp(u, v) − fp(v, u)

No augmenting path and flow
of value 2 is optimal

G and f

s t

0/1

0/1

0/1

0/1

0/1

1/1

0/1

0/1

1/1

1/1

1/1

1/1

1/1

0/1

1/1

Gf

s t

1

1

1

1

1

1

1

1

1

1

1/1

1

1

1/1

1/1

1

1

1

1

1

1

1

1

1

1

1

1/1

1/1

1/1

1

1

1

1

1

1
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The Ford-Fulkerson Method’54
Ford-Fulkerson-Method(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

No augmenting path and flow
of value 29 is optimal

G and f

s t

0/10

0/5

0/15

0/9

0/150/2

0/4

0/8

0/16

0/100/15

0/10

0/100/6

10/10

0/5

0/15

0/9

10/150/2

0/4

0/8

0/16

0/100/15

10/10

0/100/6

10/10

0/5

6/15

6/9

4/150/2

0/4

6/8

6/16

6/100/15

10/10

0/106/6

10/10

4/5

6/15

6/9

4/150/2

4/4

6/8

10/16

6/100/15

10/10

4/106/6

10/10

5/5

6/15

7/9

4/151/2

4/4

6/8

10/16

7/100/15

10/10

4/106/6

10/10

5/5

12/15

7/9

4/151/2

4/4

6/8

16/16

7/100/15

10/10

10/106/6

10/10

5/5

13/15

8/9

4/152/2

3/4

6/8

16/16

8/100/15

10/10

10/106/6

10/10

5/5

14/15

9/9

3/152/2

2/4

7/8

16/16

9/100/15

10/10

10/106/6

Gf

s ts t

10

5

15

9

152

4

8

16

1015

10

106

10

5

15

9

152

4

8

16

1015

10

106

10

5

15

9

52

4

8

16

1015

10

10

106

10

5

15

9

52

4

8

16

1015

10

10

106

10

5

9

3

112

4

2

10
6

415

6

10

4

6
106

6

6
10

5

9

3

112

4

2

10
6

415

6

10

4

6
106

6

6
10

1

9

3

112

4

2
4

6
6

415

6

10

4

6
66

10

6

4

10

1

9

3

112

4

2
4

6
6

415

6

10

4

6
66

10

6

4

10

5

9

2

1111

4

2

6
6

315

7

10

4

6
66

10

7

4

10

5

9

2

1111

4

2

6
6

315

7

10

4

6
66

10

7

4

10

5

3

2

1111

4

2

16
12

315

7

10

4

6
106

7
10

5

3

2

1111

4

2

16
12

315

7

10

4

6
106

7
10

5

2

1

112

1

2

16
13

3

215

8

10

4

6
106

8
10

5

2

1

112

1

2

16
13

3

215

8

10

4

6
106

8
10

5

1

9

122

2

1

16
14

2

115

10

3

7
106

9
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WHY IS RETURNED FLOW OPTIMAL?
(MIN-CUTS)
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Cuts in flow networks

A cut of flow network G(V , E ) is
▶ a partition of V into S and T = V \ S
▶ such that s ∈ S and t ∈ T
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Net flow across a cut

The net flow across cut (S, T ) is

f (S, T ) =
∑

u∈S,v∈T
f (u, v)︸                ︷︷                ︸

flow leaving S

−
∑

u∈S,v∈T
f (v , u)︸                ︷︷                ︸

flow entering S

What is the net flow of this cut? 12 + 11 − 4 = 19 Note that this equals
the value of the flow; it’s always the case!
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Net flow equals flow value for any cut

Theorem
For any cut (S, T ), |f | = f (S, T ).

Proof by induction on the size of S.

s t

Base case S = {s}

net flow equals = flow out from s - flow
into s which equals the value of the flow

s

Inductive Step S = S′ ∪ {w}

New net flow = Old net flow +
flow on blue edges - flow on red edges︸ ︷︷ ︸

0 by flow conservation

S′

w
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Capacity a cut

The capacity of a cut (S, T ) is

c(S, T ) =
∑

u∈S,v∈T
c(u, v)

What is the capacity of this cut? 12 + 14 = 26
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Flow is at most capacity of a cut

For any flow f and any cut (S, T ):

|f | = f (S, T )

=
∑

u∈S,v∈T
f (u, v) −

∑
u∈S,v∈T

f (v , u)

≤
∑

u∈S,v∈T
f (u, v)

≤
∑

u∈S,v∈T
c(u, v)

= c(S, T )
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Max-flow is at most capacity of a cut

Therefore: max-flow ≤ min-cut

We shall prove

Theorem (max-flow min-cut theorem)

max-flow = min-cut
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Examples

Consider f obtained by running Ford-Fulkerson and let

S = {v ∈ V : there is a path from s to v in Gf } and T = V \ S

G and f

s t

1/1

1/1

1/1

0/1

1/1

Gf

s t

1

1

1

1

1

Lecture 16, 15.04.2025



Examples

Consider f obtained by running Ford-Fulkerson and let

S = {v ∈ V : there is a path from s to v in Gf } and T = V \ S

G and f

s t

10/10

5/5

14/15

9/9

3/152/2

2/4

7/8

16/16

9/100/15

10/10

10/106/6

Gf

s t

10

5

1

9

122

2

1

16
14

2

115

10

3

7
106

9
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Max-flow min-cut theorem
Let G = (V , E) be a flow network with source s and sink t and capacities c and a flow f .

The following are equivalent:

1 f is a maximum flow

2 Gf has no augmenting path

3 |f | = c(S, T ) for a minimum cut (S, T )
Proof. (1) ⇒ (2): Suppose toward contradiction that Gf has an augmenting path p.

However, then Ford-Fulkerson method would augment f by p to obtain a flow if
increased value which contradicts that f is a maximum flow
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Max-flow min-cut theorem
Let G = (V , E) be a flow network with source s and sink t and capacities c and a flow f .

The following are equivalent:
1 f is a maximum flow
2 Gf has no augmenting path
3 |f | = c(S, T ) for a minimum cut (S, T )

Proof. (2) ⇒ (3): S = set of nodes reachable from s in residual network, T = V \ S

Every edge flowing out of S in G must be at capacity, otherwise we can reach a node
outside S in the residual network.

S

f (e) < c(e)

Original graph

S

f (e) − c(e) > 0

Residual network

Every edge flowing into S in G must have flow 0, otherwise we can reach a node
outside S in the residual network.

S

f (e) > 0

Original graph

S

f (e) > 0

Residual network

Therefore

|f | = f (S, T )

=
∑

u∈S,v∈T

f (u, v) −
∑

u∈S,v∈T

f (v , u)

=
∑

u∈S,v∈T

c(u, v)

= c(S, T )
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Max-flow min-cut theorem
Let G = (V , E) be a flow network with source s and sink t and capacities c and a flow f .

The following are equivalent:

1 f is a maximum flow

2 Gf has no augmenting path

3 |f | = c(S, T ) for a minimum cut (S, T )
Proof. (3) ⇒ (1): Recall that |f | ≤ c(S, T ) for all cuts (S, T ).

Therefore, if the value of flow is equal to the capacity of some cut, then it cannot be
further improved.

So f is a maximum flow
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Summary

▶ Flow Networks

▶ Ford-Fulkerson Method

▶ Cuts

▶ Max-flow = min cut theorem
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