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Dynamic Programming (DP)

Main idea:
↭ Remember calculations already made
↭ Saves enormous amounts of computation

Allows to solve many optimization problems
↭ Always at least one question in google code jam needs DP
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Key elements in designing a DP-algorithm

Optimal substructure
↭ Show that a solution to a problem consists of making a choice,

which leaves one or several subproblems to solve

and the optimal
solution solves the subproblems optimally

Overlapping subproblems
↭ A naive recursive algorithm may revisit the same (sub)problem over

and over.
↭ Top-down with memoization

Solve recursively but store each result in a table
↭ Bottom-up

Sort the subproblems and solve the smaller ones first; that way, when solving a
subproblem, have already solved the smaller subproblems we need
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ROD CUTTING
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Rod cutting - Reminder

Instance: ↭ A length n of a metal rod.
↭ A table of prices pi for rods of lengths i = 1, . . . , n.

Objective: Decide how to cut the rod into pieces and maximize the
price.
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Dynamic programming algorithm

Choice:

where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the
remaining piece in an optimal way

Hence, if we let r(n) be the optimal revenue from a rod of length n, we
can express r(n) recursively as follows

r(n) =
{

0 if n = 0
max1→i→n {pi + r(n → i)} otherwise if n ↓ 1

Overlapping subproblems: Solve recurrence using top-down with
memoization or bottom-up which yields an algorithm that runs in time
!(n2).
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Reconstructing an Optimal Solution

↭ We saw algorithms that only return the optimal profit.
↭ Sometimes one needs also to find an optimal solution.

Approach
↭ Each cell of the memoization table corresponds to a decision: the

location of the left most cut.
↭ Store the decision corresponding to every cell in a separate table.

Lecture 10, 19.03.2025



Reconstructing an Optimal Solution

↭ We saw algorithms that only return the optimal profit.
↭ Sometimes one needs also to find an optimal solution.

Approach
↭ Each cell of the memoization table corresponds to a decision: the

location of the left most cut.

↭ Store the decision corresponding to every cell in a separate table.

Lecture 10, 19.03.2025



Reconstructing an Optimal Solution

↭ We saw algorithms that only return the optimal profit.
↭ Sometimes one needs also to find an optimal solution.

Approach
↭ Each cell of the memoization table corresponds to a decision: the

location of the left most cut.
↭ Store the decision corresponding to every cell in a separate table.

Lecture 10, 19.03.2025



Reconstructing an Optimal Solution (cont.)

Output

i 0 1 2 3 4 5 6 7 8
r[i] 0 1 5 8 10 13 17 18 22
s[i] 0 1 2 3 2 2 6 1 2
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Reconstructing an Optimal Solution (cont.)

↭ The table s stores the choices that lead to an optimal solution.
↭ These decisions can be extracted from the table.

Output(for n = 8)

n 8

6 0

output

2 6
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Reconstructing an Optimal Solution (cont.)

↭ The table s stores the choices that lead to an optimal solution.
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Summary

↭ We had a recursive formulation for the optimal value for our
problem

r(n) =
{

0 if n = 0 ,

max1→i→n {pi + r(n → i)} otherwise if n ↓ 1 .

↭ Speed up the calculations by filling in a table either “top-down with
memoization” or with “bottom-up”.

↭ Recovered an optimal solution using an additional table.
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When Can Dynamic Programming Be Used?

1 Optimal Substructure.
↭ An optimal solution can be built by combining optimal

solutions for subproblems.

↭ Implies that the optimal value can be given by a
recursive formula.

2 Overlapping subproblems.
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Problem Solving: the Change-Making Problem

↭ How can a given amount of money be made with the least number
of coins of given denominations?

Formally:

Input: n distinct coin denominators (integers)
0 < w1 < w2 < . . . < wn and an amount W (the change)
which is also a positive integer.

Output: The minimum number of coins needed in order to make
the change:

min
{ n∑

j=1
xj :

n∑

j=1
wjxj = W and xj ’s are integers

}
.

Example: On input w1 = 1, w2 = 2, w3 = 5 and W = 8, the output
should be 3 since the best way of giving 8 is x1 = x2 = x3 = 1.
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Problem Solving: the Change-Making Problem
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MATRIX-CHAIN MULTIPLICATION
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Cost of Matrix Multiplication

Ap,q

(1, 1) (1, 2) · · · (1, q)
(2, 1) (2, 2) · · · (2, q)

...
...

. . .
...

(p, 1) (p, 2) · · · (p, q)









p

q

Bq,r

(1, 1) (1, 2) · · · (1, r)
(2, 1) (2, 2) · · · (2, r)

...
...

. . .
...

(q, 1) (q, 2) · · · (q, r)









q

r

↔

Cp,r

(1, 1) (1, 2) · · · (1, r)
(2, 1) (2, 2) · · · (2, r)

...
...

. . .
...

(p, 1) (p, 2) · · · (p, r)









p

r

↭ Each cell of C requires q

scalar multiplications.
↭ In total: pqr scalar

multiplications.
↭ The scalar multiplications

dominate the time complexity.
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Matrix Chain Multiplication

Definition
Input: A chain ↗A1, A2, . . . , An↘ of n matrices, where for

i = 1, 2, . . . , n, matrix Ai has dimension pi↑1 ≃ pi .

Output: A full parenthesization of the product A1A2 · · · An in a
way that minimizes the number of scalar multiplications.

↭ A product A1A2A3 with dimensions: 50 ≃ 5, 5 ≃ 100 and 100 ≃ 10.
↭ Calculating (A1A2)A3 requires: 50 · 5 · 100 + 50 · 100 · 10 = 75000

scalar multiplications.
↭ Calculating A1(A2A3) requires: 5 · 100 · 10 + 50 · 5 · 10 = 7500

scalar multiplications.
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Optimal Substructure

Theorem
If:

↭ the outermost parenthesization in an optimal solution is:

(A1A2 · · · Ai)(Ai+1Ai+2 · · · An).
↭ PL and PR are optimal parenthesizations for A1A2 · · · Ai and

Ai+1Ai+2 · · · An, respectively.

Then, ((PL) · (PR)) is an optimal parenthesizations for A1A2 · · · An.

Proof

M((OL) · (OR))

= p0 · pi · pn + M(OL) + M(OR)

↓ p0 · pi · pn + M(PL) + M(PR)

= M((PL) · (PR)) .

↭ Since PL and PR are optimal: M(PL) ⇐ M(OL) and
M(PR) ⇐ M(OR).
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Recursive Formula

↭ Let m[i , j] be the optimal number of scalar multiplications for
calculating AiAi+1 · · · , Aj .

↭ m[i , j] can be expressed recursively as follows:

m[i , j] =
{

0 if i = j ,

mini→k<j {m[i , k] + m[k + 1, j] + pi↑1pkpj} if i < j .

↭ Each m[i , j] depend only on subproblems with smaller j → i .

↭ A bottom-up algorithm should solve subproblems in increasing j → i

order.
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Example

Instance
matrix A1 A2 A3 A4 A5 A6

dimensions 30 ≃ 35 35 ≃ 15 15 ≃ 5 5 ≃ 10 10 ≃ 20 20 ≃ 25
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Bottom-Up Algorithm

Matrix-Chain-Order(p)
1 n = p.length → 1
2 let m[1 . . n, 1 . . n] and s[1 . . n, 1 . . n] be new tables
3 for i = 1 to n

4 m[i , i ] = 0
5 for ω = 2 to n // ω is the chain length
6 for i = 1 to n → ω + 1
7 j = i + ω → 1
8 m[i , j] = ⇒
9 for k = i to j → 1
10 q = m[i , k] + m[k + 1, j] + pi↑1pkpj
11 if q < m[i , j]
12 m[i , j] = q

13 s[i , j] = k

14 return m and s

↔ s stores the optimal choice
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Example

Instance
matrix A1 A2 A3 A4 A5 A6

dimensions 30 ≃ 35 35 ≃ 15 15 ≃ 5 5 ≃ 10 10 ≃ 20 20 ≃ 25

(A1 (A2 A3)) ((A4 A5) A6)
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Algorithm for Recovering an Optimal Solution

Print-Optimal-Parens(s, i , j)
1 if i == j

2 print “Ai”
3 else print “(”
4 Print-Optimal-Parens(s, i , s[i , j])
5 Print-Optimal-Parens(s, s[i , j] + 1, j)
6 print “)”
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Summary

Choice:

where to make the outermost parenthesis

(A1 · · · Ak)(Ak+1 · · · An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i , j] be the optimal value for chain multiplication of
matrices Ai , . . . , Aj , we can express m[i , j] recursively as follows

m[i , j] =
{

0 if i = j

mini→k<j {m[i , k] + m[k + 1, j] + pi↑1pkpj} otherwise if i < j

Overlapping subproblem: Solve recurrence using top-down with
memoization or bottom-up which yields an algorithm that runs in time
!(n3).
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