Algorithms: Dynamic Programming
(Rod Cutting, Matrix Chain Multi.)

Theophile Thiery

=PFL School of Computer and Communication Sciences

Lecture 10, 19.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

Lecture 10, 19.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167

Lecture 10, 19.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° + 3 — /167

Lecture 10, 19.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° 4+ 3 — /167
What is 2° 4+ 3 — /167

Lecture 10, 19.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° 4+ 3 — /167
What is 2° 4+ 3 — /167

What is 25 + 3 — /167

Lecture 10, 19.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167

What is 2° +3 — /167

Lecture 10, 19.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 25 + 3 — /167

What is 25 + 3 — /167

Lecture 10, 19.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2% 4+ 3 — /167
What is 25 +3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 25 + 3 — /167
What is 2° + 3 — /167

What is 2° +3 — /167

Lecture 10, 19.03.2025

Dynamic Programming (DP)

Main idea:
» Remember calculations already made

> Saves enormous amounts of computation

Lecture 10, 19.03.2025

Dynamic Programming (DP)

Main idea:
» Remember calculations already made

> Saves enormous amounts of computation

Allows to solve many optimization problems
> Always at least one question in google code jam needs DP

Lecture 10, 19.03.2025

Key elements in designing a DP-algorithm

Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve

Lecture 10, 19.03.2025

Key elements in designing a DP-algorithm

Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Lecture 10, 19.03.2025

Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Overlapping subproblems

> A naive recursive algorithm may revisit the same (sub)problem over
and over.

» Top-down with memoization
Solve recursively but store each result in a table

» Bottom-up
Sort the subproblems and solve the smaller ones first; that way, when solving a

subproblem, have already solved the smaller subproblems we need

ROD CUTTING

Lecture 10, 19.03.2025

Rod cutting - Reminder

Instance: > A length n of a metal rod.
> A table of prices p; for rods of lengths i =1,... n.

lengthi |1 2 3 4 5 6 7 8 9 10
pricep; [1 5 8 9 10 17 17 20 24 30

Lecture 10, 19.03.2025

Rod cutting - Reminder

Instance: > A length n of a metal rod.
> A table of prices p; for rods of lengths i =1,... n.

lengthi |1 2 3 4 5 6 7 8 9 10
pricep; [1 5 8 9 10 17 17 20 24 30

Objective: Decide how to cut the rod into pieces and maximize the
price.

Lecture 10, 19.03.2025

Rod cutting - Reminder

Instance: > A length n of a metal rod.
> A table of prices p; for rods of lengths i =1,... n.

lengthi |1 2 3 4 5 6 7 8 9 10
pricep; [1 5 8 9 10 17 17 20 24 30

Objective: Decide how to cut the rod into pieces and maximize the
price.

1 1 5 1 5 1 5 1 1 1 1 1 1
OO OO oo oooo
(e) ® @ (h)

Lecture 10, 19.03.2025

Dynamic programming algorithm

Choice:

Lecture 10, 19.03.2025

Dynamic programming algorithm

Choice: where to make the leftmost cut

Lecture 10, 19.03.2025

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure:

Lecture 10, 19.03.2025

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the
remaining piece in an optimal way

Lecture 10, 19.03.2025

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the
remaining piece in an optimal way

Hence, if we let r(n) be the optimal revenue from a rod of length n, we
can express r(n) recursively as follows

r(n):{o ifn=0

maxi<i<p {pi + r(n—1i)} otherwise if n>1

Lecture 10, 19.03.2025

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the
remaining piece in an optimal way

Hence, if we let r(n) be the optimal revenue from a rod of length n, we
can express r(n) recursively as follows

r(n)z{o ifn=0

maxi<i<p {pi + r(n—1i)} otherwise if n>1

Overlapping subproblems: Solve recurrence using top-down with
memoization or bottom-up which yields an algorithm that runs in time

o(n?).

Lecture 10, 19.03.2025

Reconstructing an Optimal Solution

> We saw algorithms that only return the optimal profit.

> Sometimes one needs also to find an optimal solution.

Lecture 10, 19.03.2025

Reconstructing an Optimal Solution

> We saw algorithms that only return the optimal profit.

> Sometimes one needs also to find an optimal solution.

Approach

> Each cell of the memoization table corresponds to a decision: the
location of the left most cut.

Lecture 10, 19.03.2025

Reconstructing an Optimal Solution

> We saw algorithms that only return the optimal profit.

> Sometimes one needs also to find an optimal solution.

Approach

> Each cell of the memoization table corresponds to a decision: the
location of the left most cut.

> Store the decision corresponding to every cell in a separate table.

Lecture 10, 19.03.2025

Reconstructing an Optimal Solution (cont.)

EXTENDED-BOTTOM-UP-CUT-ROD(p, 1)

let r[0..n] and s[0. . n] be new arrays
r[0] =0
for j = 1ton
g = —©
fori =1toj
ifg < pli]+r[j —i]
q = plil+rlj—i]
s[il =i
rlil=4q
return r and s

Lecture 10, 19.03.2025

Reconstructing an Optimal Solution (cont.)

EXTENDED-BOTTOM-UP-CUT-ROD(p, 1)

let r[0..n] and s[0. . n] be new arrays
r[0] =0
for j = 1ton
g = —©
fori =1toj
ifg < pli]+r[j —i]
q = plil+rlj —i]
s[il =i
rlil=4q
return r and s

Output

i | 01 2 3 4 5 6 7 8
fijlo 1 5 8 10 13 17 18 22
sf]|o 1 2 3 2 2 6 1 2

Lecture 10, 19.03.2025

Reconstructing an Optimal Solution (cont.)

> The table s stores the choices that lead to an optimal solution.

> These decisions can be extracted from the table.

PRINT-CUT-ROD-SOLUTION (p, 1)
(r,s) = EXTENDED-BOTTOM-UP-CUT-ROD (p, 1)
while n > 0
print s[n]
n =n—sn

Lecture 10, 19.03.2025

Reconstructing an Optimal Solution (cont.)

> The table s stores the choices that lead to an optimal solution.

> These decisions can be extracted from the table.

PRINT-CUT-ROD-SOLUTION (p, 1)
(r,s) = EXTENDED-BOTTOM-UP-CUT-ROD (p, 1)
while n > 0
print s[n]
n =n—sn

Output(for n = 8)

n | 8
output |

Lecture 10, 19.03.2025

Reconstructing an Optimal Solution (cont.)

> The table s stores the choices that lead to an optimal solution.

> These decisions can be extracted from the table.

PRINT-CUT-ROD-SOLUTION (p, 1)
(r,s) = EXTENDED-BOTTOM-UP-CUT-ROD (p, 1)
while n > 0
print s[n]
n =n—sln]

Output(for n = 8)

n | 8
output | 2

Lecture 10, 19.03.2025

Reconstructing an Optimal Solution (cont.)

> The table s stores the choices that lead to an optimal solution.

> These decisions can be extracted from the table.

PRINT-CUT-ROD-SOLUTION (p, 1)
(r,s) = EXTENDED-BOTTOM-UP-CUT-ROD (p, 1)
while n > 0
print s[n]
n =n—sln]

Output(for n = 8)

Lecture 10, 19.03.2025

Reconstructing an Optimal Solution (cont.)

> The table s stores the choices that lead to an optimal solution.

> These decisions can be extracted from the table.

PRINT-CUT-ROD-SOLUTION (p, 1)
(r,s) = EXTENDED-BOTTOM-UP-CUT-ROD (p, 1)
while n > 0
print s[n]
n =n—sln]

Output(for n = 8)

n | 8
output | 2 6

Lecture 10, 19.03.2025

Reconstructing an Optimal Solution (cont.)

> The table s stores the choices that lead to an optimal solution.

> These decisions can be extracted from the table.

PRINT-CUT-ROD-SOLUTION (p, 1)
(r,s) = EXTENDED-BOTTOM-UP-CUT-ROD (p, 1)
while n > 0
print s[n]
n =n—sln]

Output(for n = 8)

Lecture 10, 19.03.2025

> We had a recursive formulation for the optimal value for our
problem

r(n):{o ifn=0,

maxi<ij<n{pi + r(n—i)} otherwiseif n>1 .

> Speed up the calculations by filling in a table either "top-down with
memoization” or with “bottom-up”.

> Recovered an optimal solution using an additional table.

Lecture 10, 19.03.2025

When Can Dynamic Programming Be Used?

Lecture 10, 19.03.2025

When Can Dynamic Programming Be Used?

Optimal Substructure.

> An optimal solution can be built by combining optimal
solutions for subproblems.

Lecture 10, 19.03.2025

When Can Dynamic Programming Be Used?

Optimal Substructure.

> An optimal solution can be built by combining optimal
solutions for subproblems.

> Implies that the optimal value can be given by a
recursive formula.

Lecture 10, 19.03.2025

When Can Dynamic Programming Be Used?

Optimal Substructure.

> An optimal solution can be built by combining optimal
solutions for subproblems.

> Implies that the optimal value can be given by a
recursive formula.

Overlapping subproblems.

Lecture 10, 19.03.2025

Problem Solving: the Change-Making Problem

» How can a given amount of money be made with the least number
of coins of given denominations?

Lecture 10, 19.03.2025

Problem Solving: the Change-Making Problem

» How can a given amount of money be made with the least number
of coins of given denominations?

Formally:

Input: n distinct coin denominators (integers)
0<w; <wy<...<w,and an amount W (the change)
which is also a positive integer.

Output: The minimum number of coins needed in order to make
the change:

n n
m|n{ E Xj E wjx; = W and x;'s are |ntegers} .
=1 =1

Lecture 10, 19.03.2025

» How can a given amount of money be made with the least number
of coins of given denominations?
Formally:

Input: n distinct coin denominators (integers)
0<w; <wy<...<w,and an amount W (the change)
which is also a positive integer.

Output: The minimum number of coins needed in order to make
the change:

n n
min { E Xj E wix; = W and x;'s are mtegers} .
j=1 Jj=1

Example: On input wy = 1,wp =2, w3 =5 and W = 8, the output
should be 3 since the best way of giving 8 is x; = xo = x3 = 1.

Problem Solving: the Change-Making Problem

Lecture 10, 19.03.2025

Parenthesization | Cost computation | Cost

Ax((BxC)xD)[20-1-10+20-10-100 + 50 - 20 - 100 | 120, 200
(Ax(BxC)xD|20-1-104+50-20-10+50-10-100 | 60,200
(AxB)x (CxD)| 50-20-1+1-10-100+50-1-100 | 7,000

MATRIX-CHAIN MULTIPLICATION

Lecture 10, 19.03.2025

Cost of Matrix Multiplication

AP,q X Bq,r

Lecture 10, 19.03.2025

Cost of Matrix Multiplication

AP,q X Bq,r
q r
(171) (1’2) (Lq) (171) (172) (1,!‘)
(271) (272) (27‘7) q (27 1) (27 2) (2,!)
(1) (02) - (p.0) (@1) (a2 = (@)

Lecture 10, 19.03.2025

Cost of Matrix Multiplication

AP,q X Bq,r
q r
(171) (1’2) (Lq) (171) (172) (1,!‘)
(271) (272) (27‘7) q (27 1) (27 2) (2,!)
(1) (02) - (p.0) (@1) (a2 = (@)

Y

Co.r
r

(1,1) (1,2) --- (1,r)
(2,1) (2,2) -+ (2,r)

(0.1) (0.2) - (p.7)

Lecture 10, 19.03.2025

Cost of Matrix Multiplication

AP,q X Bq,r
q r
(171) (1’2) (Lq) (171) (172) (1,!‘)
(271) (272) (27‘7) q (27 1) (27 2) (2,!)
(1) (02) - (p.0) (@1) (a2 = (@)

Y

Cp,r

r

(1,1) (1,2) --- (1,r)
2,1){(2,2) -~ (2,r)

(0.1) (0.2) - (p.7)

Lecture 10, 19.03.2025

Cost of Matrix Multiplication

AP,q X Bq,r
q r
(171) (1’2) (Lq) (171) (172) (1,!‘)
[(2.1) (2.2) - (2,9) @D e e
(0.1) (0.2) - (p.) (@1) (@2) - (@0

Y

Cp,r

r

(1,1) (1,2) --- (1,r)
2,1){(2,2) -~ (2,r)

(0.1) (0.2) - (p.7)

Lecture 10, 19.03.2025

Cost of Matrix Multiplication

AP,q X Bq,r
q r
(171) (1’2) (Lq) (171) (172) (1,!‘)
[(2.1) (2.2) - (2,9) JAlenje - en
(0.1) (0.2) - (p.) (@1)|(@2) - (@0

Y

Cp,r

r

(1,1) (1,2) --- (1,r)
2,1){(2,2) -~ (2,r)

(0.1) (0.2) - (p.7)

Lecture 10, 19.03.2025

Cost of Matrix Multiplication

Aqu X Bq,r
q r
(171) (1’2) (Lq) (171) (172) (1,)’)
[(2.1) (2.2) - (2,9) @1)]@2) - @0
p q
(.1 (0.2 - (.9) (@1)]@2) - (@)
\CU/ > Each cell of C requires g
p,r

scalar multiplications.

(1,1) (1,2) --- (1,r)

(2n]@2) - @n
(0.1 (0.2) - (p.r)

Lecture 10, 19.03.2025

Cost of Matrix Multiplication

Aqu X Bq,r
q r
(171) (1’2) (1yq) (171) (172) (1,)’)
[(2.1) (2.2) - (2,9) @1)]@2) - @0
p q
(.1) (02) - (p.9) @D](@2) - (@0
\CU/ > Each cell of C requires g
p,r scalar multiplications.

(L1) (L2) - (1) | ” Intotal: pgr scalar

[@n]e2 - @n multiplications.
(p.1) (p.2) - (p,r)

Lecture 10, 19.03.2025

Cost of Matrix Multiplication

AP7q X Bq,r
q r
(171) (132) (13‘7) (171) (172) (17")
[(2.1) (2.2) - (2,9) @1)]@2) - @0
p q ' ‘
(b)) (3.2) - (.9) @1)(@2) - (@)
\CU/ > Each cell of C requires g
p,r scalar multiplications.

(L1) (L2) - (1) | ” Intotal: pgr scalar

(2)2) @ multiplications.
: o » The scalar multiplications
(p:1) (p,2) - (p1) dominate the time complexity.

Lecture 10, 19.03.2025

Matrix Chain Multiplication

Definition
Input: A chain (Aq, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;.

Output: A full parenthesization of the product AjAy--- A, in a
way that minimizes the number of scalar multiplications.

Lecture 10, 19.03.2025

Matrix Chain Multiplication

Definition
Input: A chain (Aq, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;.

Output: A full parenthesization of the product AjAy--- A, in a
way that minimizes the number of scalar multiplications.

Remarks

Lecture 10, 19.03.2025

Matrix Chain Multiplication

Definition

Input: A chain (Aq, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;.

Output: A full parenthesization of the product AjAy--- A, in a
way that minimizes the number of scalar multiplications.

Remarks

> We are not asked to calculate the product, only find the best
parenthesization.

Lecture 10, 19.03.2025

Matrix Chain Multiplication

Definition

Input: A chain (Aq, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;.

Output: A full parenthesization of the product AjAy--- A, in a
way that minimizes the number of scalar multiplications.

Remarks

> We are not asked to calculate the product, only find the best
parenthesization.

> The parenthesization can significantly affect the number of
multiplications.

Lecture 10, 19.03.2025

Matrix Chain Multiplication

Definition
Input: A chain (Aq, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;.

Output: A full parenthesization of the product AjAy--- A, in a
way that minimizes the number of scalar multiplications.

Example

Lecture 10, 19.03.2025

Matrix Chain Multiplication

Definition

Input: A chain (Aq, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;.

Output: A full parenthesization of the product AjAy--- A, in a
way that minimizes the number of scalar multiplications.

Example

> A product A;A;Asz with dimensions: 50 x 5, 5 x 100 and 100 x 10.

Lecture 10, 19.03.2025

Matrix Chain Multiplication

Definition

Input: A chain (Aq, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;.

Output: A full parenthesization of the product AjAy--- A, in a
way that minimizes the number of scalar multiplications.

Example
> A product A;A;Asz with dimensions: 50 x 5, 5 x 100 and 100 x 10.

> Calculating (A1A2)A3 requires: 50 -5 100 4 50 - 100 - 10 = 75000
scalar multiplications.

Lecture 10, 19.03.2025

Matrix Chain Multiplication

Definition

Input: A chain (Aq, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;.

Output: A full parenthesization of the product AjAy--- A, in a
way that minimizes the number of scalar multiplications.

Example
> A product A;A;Asz with dimensions: 50 x 5, 5 x 100 and 100 x 10.

> Calculating (A1A2)A3 requires: 50 -5 100 4 50 - 100 - 10 = 75000
scalar multiplications.

> Calculating A;(A2As) requires: 5-100-10+50-5-10 = 7500
scalar multiplications.

Lecture 10, 19.03.2025

Optimal Substructure

If:

> the outermost parenthesization in an optimal solution is:
(A1Az - - Ai)(Aif1Aiz2 - - - Ap).

> P, and Pgr are optimal parenthesizations for A1A, - - - A; and
Ait1Aiio - - - Ay, respectively.

Then, ((PL) - (Pr)) is an optimal parenthesizations for A1A; - - - Ap.

Lecture 10, 19.03.2025

Optimal Substructure

If:

> the outermost parenthesization in an optimal solution is:
(A1Az - - Ai)(Aif1Aiz2 - - - Ap).

> P, and Pgr are optimal parenthesizations for A1A, - - - A; and
Ait1Aiio - - - Ay, respectively.

Then, ((PL) - (Pr)) is an optimal parenthesizations for A1A; - - - Ap.

Proof

> Let ((OL) - (Or)) be an optimal parenthesization, where O; and Og
are parenthesizations for Aj Ay --- A; and Aj;1 - A, respectively.

Lecture 10, 19.03.2025

Optimal Substructure

If:

> the outermost parenthesization in an optimal solution is:
(A1Az - - Ai)(Aif1Aiz2 - - - Ap).

> P, and Pgr are optimal parenthesizations for A1A, - - - A; and
A,'+1A,'+2 - A, respectively.

Then, ((PL) - (Pr)) is an optimal parenthesizations for A1A; - - - Ap.

Proof

> Let ((OL) - (Or)) be an optimal parenthesization, where O; and Og
are parenthesizations for Aj Ay --- A; and Aj;1 - A, respectively.

> Let M(P) be the number of scalar multiplications required by a
parenthesization.

Lecture 10, 19.03.2025

Optimal Substructure

If:

> the outermost parenthesization in an optimal solution is:
(A1Az - - Ai)(Aif1Aiz2 - - - Ap).

> P, and Pgr are optimal parenthesizations for A1A, - - - A; and
Ait1Aiio - - - Ay, respectively.

Then, ((PL) - (Pr)) is an optimal parenthesizations for A1A; - - - Ap.

Proof

M((OL) - (Or))

Lecture 10, 19.03.2025

Optimal Substructure

If:

> the outermost parenthesization in an optimal solution is:
(A1Az - - Ai)(Aif1Aiz2 - - - Ap).

> P, and Pgr are optimal parenthesizations for A1A, - - - A; and
Ait1Aiio - - - Ay, respectively.

Then, ((PL) - (Pr)) is an optimal parenthesizations for A1A; - - - Ap.

Proof

M((OL) - (Or)) = po - pi - Pn + M(OL) + M(Or)

Lecture 10, 19.03.2025

Optimal Substructure

If:

> the outermost parenthesization in an optimal solution is:
(A1Az - - Ai)(Aif1Aiz2 - - - Ap).

> P, and Pgr are optimal parenthesizations for A1A, - - - A; and
Ait1Aiio - - - Ay, respectively.

Then, ((PL) - (Pr)) is an optimal parenthesizations for A1A; - - - Ap.

Proof

M((OL) - (Or)) = po - pi - Pn + M(OL) + M(Or)

» Since P, and Pg are optimal: M(P.) < M(O,) and
M(Pr) < M(OR).

Lecture 10, 19.03.2025

Optimal Substructure

If:

> the outermost parenthesization in an optimal solution is:
(A1Az - - Ai)(Aif1Aiz2 - - - Ap).

> P, and Pgr are optimal parenthesizations for A1A, - - - A; and
Ait1Aiio - - - Ay, respectively.

Then, ((PL) - (Pr)) is an optimal parenthesizations for A1A; - - - Ap.

Proof

M((OL) - (Or)) = po - pi - Pn + M(OL) + M(Or)
> po-pi-pPn+ M(PL)+ M(Pg)

» Since P, and Pg are optimal: M(P.) < M(O,) and
M(Pr) < M(OR).

Lecture 10, 19.03.2025

Optimal Substructure

If:

> the outermost parenthesization in an optimal solution is:
(A1Az - - Ai)(Aif1Aiz2 - - - Ap).

> P, and Pgr are optimal parenthesizations for A1A, - - - A; and
Ait1Aiio - - - Ay, respectively.

Then, ((PL) - (Pr)) is an optimal parenthesizations for A1A; - - - Ap.

Proof

M((Or) - (Or)) = po - pi - pn + M(Or) + M(OR)
> po - pi- po+ M(PL) + M(Pgr) = M((PL) - (PRr)) .

» Since P, and Pg are optimal: M(P.) < M(O,) and
M(Pr) < M(OR).

Lecture 10, 19.03.2025

Recursive Formula

> Let m[i,j] be the optimal number of scalar multiplications for
calculating AjAii1--- , A;

Lecture 10, 19.03.2025

Recursive Formula

> Let m[i,j] be the optimal number of scalar multiplications for
calculating AjAit1---, A).

> m[i,j] can be expressed recursively as follows:

i ifi=j,
,’ =
/ minj<i<j {mli, k] + mlk + 1,j] + pi—1ipp;} ifi<j .

Lecture 10, 19.03.2025

Recursive Formula

> Let m[i,j] be the optimal number of scalar multiplications for
calculating AjAit1---, A).

> m[i,j] can be expressed recursively as follows:

. ifi=j,
mlijl =4 , . S
minj<i<j {mli, k] + mlk + 1,j] + pi—1ipp;} ifi<j .

» Each mli, j] depend only on subproblems with smaller j — /.

Lecture 10, 19.03.2025

Recursive Formula

> Let m[i,j] be the optimal number of scalar multiplications for
calculating AjAit1---, A).

> m[i,j] can be expressed recursively as follows:

i ifi=j,
,7 =
/ minj<i<j {mli, k] + mlk + 1,j] + pi—1ipp;} ifi<j .

» Each mli, j] depend only on subproblems with smaller j — /.

> A bottom-up algorithm should solve subproblems in increasing j — i
order.

Lecture 10, 19.03.2025

Instance
matrix | A A, As A, As A
dimensions | 30x35 35x15 15x5 5x10 10x20 20x25

Lecture 10, 19.03.2025

Bottom-Up Algorithm

MATRIX-CHAIN-ORDER(p)
n = p.length —1
let m[1..n,1..n] and s[1..n,1..n] be new tables
fori=1ton
mi,i] =0
for{=2ton // € is the chain length
fori=lton—/¢+1
j=i+l-1
mli,j] = oo
fork=itoj—1
10 q = mli, k] + mlk + 1, j] + pi—1pxp;
11 if g < m[i,]]
12 mli,jl =q
13 sli,jl =k
14 return mand s

O~NO O~ WN -

©

Lecture 10, 19.03.2025

Bottom-Up Algorithm

MATRIX-CHAIN-ORDER(p)
n = p.length —1
let m[1..n,1..n] and s[1..n,1..n] be new tables
fori=1ton
mi,i] =0
for{=2ton // € is the chain length
fori=lton—/¢+1
j=i+l-1
mli,j] = oo
fork=itoj—1
10 q = mli, k] + mlk + 1, j] + pi—1pxp;
11 if g < m[i,j]
12 mli,jl =q
13 s[i,j] = k < s stores the optimal choice |

O~NO O~ WN -

©

14 return m and s I

Lecture 10, 19.03.2025

Instance
matrix | A A, As A, As A
dimensions | 30x35 35x15 15x5 5x10 10x20 20x25

Lecture 10, 19.03.2025

Instance
matrix | A Az As Ay As As

dimensions|30><35 35x15 15x5 5x10 10x20 20x25

s

Lecture 10, 19.03.2025

Instance
matrix | A Az As Ay As As

dimensions|30x35 35x15 15x5 5x10 10x20 20x25

s

Lecture 10, 19.03.2025

Instance
matrix | A A, As A, As A
dimensions | 30x35 35x15 15x5 5x10 10x20 20x25

Lecture 10, 19.03.2025

Instance
matrix | A A, As A, As A
dimensions | 30x35 35x15 15x5 5x10 10x20 20x25

Lecture 10, 19.03.2025

Instance
matrix | A A, As A, As A
dimensions | 30x35 35x15 15x5 5x10 10x20 20x25

Lecture 10, 19.03.2025

Instance
matrix | A A, As A, As A
dimensions | 30x35 35x15 15x5 5x10 10x20 20x25

Lecture 10, 19.03.2025

Instance
matrix | A A, As A, As A
dimensions | 30x35 35x15 15x5 5x10 10x20 20x25

(A1 (A2 A3))(As As Ag)

Instance
matrix | A A, As A, As A
dimensions | 30x35 35x15 15x5 5x10 10x20 20x25

(A1 (A2 A3))((As As) As)

Algorithm for Recovering an Optimal Solution

PRINT-OPTIMAL-PARENS(S, 7, j)

1 ifi==]

2 print “A;"

3 else print “(”

4 PRINT-OPTIMAL-PARENS(S, i, 5[/, j])

5 PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, /)
6 print “)"

Lecture 10, 19.03.2025

Choice:

Lecture 10, 19.03.2025

Choice: where to make the outermost parenthesis

(Ar- - A)(Akgr - An)

Lecture 10, 19.03.2025

Choice: where to make the outermost parenthesis

(Ar- - A)(Akgr - An)

Optimal substructure:

Lecture 10, 19.03.2025

Choice: where to make the outermost parenthesis

(Ar- - A)(Akgr - An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Lecture 10, 19.03.2025

Choice: where to make the outermost parenthesis

(Ar- - A)(Akgr - An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i, j] be the optimal value for chain multiplication of
matrices A;, ..., Aj, we can express mli, /] recursively as follows

i j] = {0 ifi=j

minj<k<j {mli, k] + mlk + 1,1 + pi—1pxp;} otherwise if i < j

Lecture 10, 19.03.2025

Choice: where to make the outermost parenthesis

(Ar--- A)(Akgr - An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i, j] be the optimal value for chain multiplication of
matrices A;, ..., A;, we can express mli, j] recursively as follows

mlij] = {0 ifi=

minj<k<j {mli, k] + mlk +1,j] + pi—1pxp;} otherwise if i < j

Overlapping subproblem: Solve recurrence using top-down with
memoization or bottom-up which yields an algorithm that runs in time

o(n?).

