

Algorithms: Dynamic Programming (Rod Cutting, Matrix Chain Multi.)

Theophile Thiery

EPFL School of Computer and Communication Sciences

Lecture 10, 19.03.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

What is $2^5 + 3 - \sqrt{16}$?

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

What is $2^5 + 3 - \sqrt{16}$?

What is $2^5 + 3 - \sqrt{16}$?

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

Dynamic Programming (DP)

Main idea:

- ▶ Remember calculations already made
- ▶ Saves enormous amounts of computation

Dynamic Programming (DP)

Main idea:

- ▶ Remember calculations already made
- ▶ Saves enormous amounts of computation

Allows to solve many optimization problems

- ▶ Always at least one question in google code jam needs DP

Key elements in designing a DP-algorithm

Optimal substructure

- ▶ Show that a solution to a problem consists of **making a choice**, which leaves one or several subproblems to solve

Key elements in designing a DP-algorithm

Optimal substructure

- ▶ Show that a solution to a problem consists of **making a choice**, which leaves one or several subproblems to solve and the optimal solution solves the subproblems optimally

Key elements in designing a DP-algorithm

Optimal substructure

- ▶ Show that a solution to a problem consists of **making a choice**, which leaves one or several subproblems to solve and the optimal solution solves the subproblems optimally

Overlapping subproblems

- ▶ A naive recursive algorithm may revisit the same (sub)problem over and over.
- ▶ **Top-down with memoization**
Solve recursively but store each result in a table
- ▶ **Bottom-up**
Sort the subproblems and solve the smaller ones first; that way, when solving a subproblem, have already solved the smaller subproblems we need

ROD CUTTING

Rod cutting - Reminder

Instance:

- ▶ A length n of a metal rod.
- ▶ A table of prices p_i for rods of lengths $i = 1, \dots, n$.

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

Rod cutting - Reminder

Instance:

- ▶ A length n of a metal rod.
- ▶ A table of prices p_i for rods of lengths $i = 1, \dots, n$.

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

Objective: Decide how to cut the rod into pieces and maximize the price.

Rod cutting - Reminder

Instance:

- A length n of a metal rod.
- A table of prices p_i for rods of lengths $i = 1, \dots, n$.

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

Objective: Decide how to cut the rod into pieces and maximize the price.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Dynamic programming algorithm

Choice:

Dynamic programming algorithm

Choice: where to make the leftmost cut

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure:

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the remaining piece in an optimal way

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the remaining piece in an optimal way

Hence, if we let $r(n)$ be the optimal revenue from a rod of length n , we can express $r(n)$ recursively as follows

$$r(n) = \begin{cases} 0 & \text{if } n = 0 \\ \max_{1 \leq i \leq n} \{p_i + r(n - i)\} & \text{otherwise if } n \geq 1 \end{cases}$$

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the remaining piece in an optimal way

Hence, if we let $r(n)$ be the optimal revenue from a rod of length n , we can express $r(n)$ recursively as follows

$$r(n) = \begin{cases} 0 & \text{if } n = 0 \\ \max_{1 \leq i \leq n} \{p_i + r(n - i)\} & \text{otherwise if } n \geq 1 \end{cases}$$

Overlapping subproblems: Solve recurrence using top-down with memoization or bottom-up which yields an algorithm that runs in time $\Theta(n^2)$.

Reconstructing an Optimal Solution

- ▶ We saw algorithms that only return the optimal profit.
- ▶ Sometimes one needs also to find an optimal solution.

Reconstructing an Optimal Solution

- ▶ We saw algorithms that only return the optimal profit.
- ▶ Sometimes one needs also to find an optimal solution.

Approach

- ▶ Each cell of the memoization table corresponds to a decision: the location of the left most cut.

Reconstructing an Optimal Solution

- ▶ We saw algorithms that only return the optimal profit.
- ▶ Sometimes one needs also to find an optimal solution.

Approach

- ▶ Each cell of the memoization table corresponds to a decision: the location of the left most cut.
- ▶ Store the decision corresponding to every cell in a separate table.

Reconstructing an Optimal Solution (cont.)

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

let $r[0..n]$ and $s[0..n]$ be new arrays

$r[0] = 0$

for $j = 1$ **to** n

$q = -\infty$

for $i = 1$ **to** j

if $q < p[i] + r[j - i]$

$q = p[i] + r[j - i]$

$s[j] = i$

$r[j] = q$

return r and s

Reconstructing an Optimal Solution (cont.)

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

let $r[0..n]$ and $s[0..n]$ be new arrays

$r[0] = 0$

for $j = 1$ **to** n

$q = -\infty$

for $i = 1$ **to** j

if $q < p[i] + r[j - i]$

$q = p[i] + r[j - i]$

$s[j] = i$

$r[j] = q$

return r and s

Output

i	0	1	2	3	4	5	6	7	8
r[i]	0	1	5	8	10	13	17	18	22
s[i]	0	1	2	3	2	2	6	1	2

Reconstructing an Optimal Solution (cont.)

- ▶ The table s stores the choices that lead to an optimal solution.
- ▶ These decisions can be extracted from the table.

```
PRINT-CUT-ROD-SOLUTION( $p, n$ )
   $(r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)$ 
  while  $n > 0$ 
    print  $s[n]$ 
     $n = n - s[n]$ 
```

Reconstructing an Optimal Solution (cont.)

- ▶ The table s stores the choices that lead to an optimal solution.
- ▶ These decisions can be extracted from the table.

```
PRINT-CUT-ROD-SOLUTION( $p, n$ )
   $(r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)$ 
  while  $n > 0$ 
    print  $s[n]$ 
     $n = n - s[n]$ 
```

Output (for $n = 8$)

n	8
output	

Reconstructing an Optimal Solution (cont.)

- ▶ The table s stores the choices that lead to an optimal solution.
- ▶ These decisions can be extracted from the table.

```
PRINT-CUT-ROD-SOLUTION( $p, n$ )
   $(r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)$ 
  while  $n > 0$ 
    print  $s[n]$ 
     $n = n - s[n]$ 
```

Output (for $n = 8$)

n	8
output	2

Reconstructing an Optimal Solution (cont.)

- ▶ The table s stores the choices that lead to an optimal solution.
- ▶ These decisions can be extracted from the table.

```
PRINT-CUT-ROD-SOLUTION( $p, n$ )
   $(r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)$ 
  while  $n > 0$ 
    print  $s[n]$ 
     $n = n - s[n]$ 
```

Output (for $n = 8$)

n	8	6
output	2	

Reconstructing an Optimal Solution (cont.)

- ▶ The table s stores the choices that lead to an optimal solution.
- ▶ These decisions can be extracted from the table.

```
PRINT-CUT-ROD-SOLUTION( $p, n$ )
   $(r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)$ 
  while  $n > 0$ 
    print  $s[n]$ 
     $n = n - s[n]$ 
```

Output (for $n = 8$)

n	8	6
<hr/>		
output	2	6

Reconstructing an Optimal Solution (cont.)

- ▶ The table s stores the choices that lead to an optimal solution.
- ▶ These decisions can be extracted from the table.

```
PRINT-CUT-ROD-SOLUTION( $p, n$ )
   $(r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)$ 
  while  $n > 0$ 
    print  $s[n]$ 
     $n = n - s[n]$ 
```

Output (for $n = 8$)

n	8	6	0
output	2	6	

Summary

- We had a recursive formulation for the optimal value for our problem

$$r(n) = \begin{cases} 0 & \text{if } n = 0 , \\ \max_{1 \leq i \leq n} \{p_i + r(n - i)\} & \text{otherwise if } n \geq 1 . \end{cases}$$

- Speed up the calculations by filling in a table either “top-down with memoization” or with “bottom-up”.
- Recovered an optimal solution using an additional table.

When Can Dynamic Programming Be Used?

When Can Dynamic Programming Be Used?

1 Optimal Substructure.

- An optimal solution can be built by combining optimal solutions for subproblems.

When Can Dynamic Programming Be Used?

1 Optimal Substructure.

- ▶ An optimal solution can be built by combining optimal solutions for subproblems.
- ▶ Implies that the optimal value can be given by a recursive formula.

When Can Dynamic Programming Be Used?

1 Optimal Substructure.

- ▶ An optimal solution can be built by combining optimal solutions for subproblems.
- ▶ Implies that the optimal value can be given by a recursive formula.

2 Overlapping subproblems.

Problem Solving: the Change-Making Problem

- ▶ How can a given amount of money be made with the least number of coins of given denominations?

Problem Solving: the Change-Making Problem

- ▶ How can a given amount of money be made with the least number of coins of given denominations?

Formally:

Input: n distinct coin denominators (integers)

$0 < w_1 < w_2 < \dots < w_n$ and an amount W (the change) which is also a positive integer.

Output: The minimum number of coins needed in order to make the change:

$$\min \left\{ \sum_{j=1}^n x_j : \sum_{j=1}^n w_j x_j = W \text{ and } x_j \text{'s are integers} \right\}.$$

Problem Solving: the Change-Making Problem

- ▶ How can a given amount of money be made with the least number of coins of given denominations?

Formally:

Input: n distinct coin denominators (integers)

$0 < w_1 < w_2 < \dots < w_n$ and an amount W (the change) which is also a positive integer.

Output: The minimum number of coins needed in order to make the change:

$$\min \left\{ \sum_{j=1}^n x_j : \sum_{j=1}^n w_j x_j = W \text{ and } x_j \text{'s are integers} \right\}.$$

Example: On input $w_1 = 1, w_2 = 2, w_3 = 5$ and $W = 8$, the output should be 3 since the best way of giving 8 is $x_1 = x_2 = x_3 = 1$.

Problem Solving: the Change-Making Problem

Parenthesization	Cost computation	Cost
$A \times ((B \times C) \times D)$	$20 \cdot 1 \cdot 10 + 20 \cdot 10 \cdot 100 + 50 \cdot 20 \cdot 100$	120,200
$(A \times (B \times C)) \times D$	$20 \cdot 1 \cdot 10 + 50 \cdot 20 \cdot 10 + 50 \cdot 10 \cdot 100$	60,200
$(A \times B) \times (C \times D)$	$50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100$	7,000

MATRIX-CHAIN MULTIPLICATION

Cost of Matrix Multiplication

$$A_{p,q} \times B_{q,r}$$

Cost of Matrix Multiplication

$$A_{p,q} \times B_{q,r}$$
$$p \left\{ \left[\begin{array}{cccc} \overbrace{(1,1) & (1,2) & \cdots & (1,q)}^q \\ (2,1) & (2,2) & \cdots & (2,q) \\ \vdots & \vdots & \ddots & \vdots \\ (p,1) & (p,2) & \cdots & (p,q) \end{array} \right] \right\}$$
$$q \left\{ \left[\begin{array}{cccc} \overbrace{(1,1) & (1,2) & \cdots & (1,r)}^r \\ (2,1) & (2,2) & \cdots & (2,r) \\ \vdots & \vdots & \ddots & \vdots \\ (q,1) & (q,2) & \cdots & (q,r) \end{array} \right] \right\}$$

Cost of Matrix Multiplication

$$\begin{array}{ccc} A_{p,q} & \times & B_{q,r} \\ p \left\{ \begin{bmatrix} \overbrace{(1,1) \ (1,2) \ \cdots \ (1,q)}^q \\ (2,1) \ (2,2) \ \cdots \ (2,q) \\ \vdots \ \ \ \vdots \ \ \ddots \ \ \vdots \\ (p,1) \ (p,2) \ \cdots \ (p,q) \end{bmatrix} \right. & & q \left\{ \begin{bmatrix} \overbrace{(1,1) \ (1,2) \ \cdots \ (1,r)}^r \\ (2,1) \ (2,2) \ \cdots \ (2,r) \\ \vdots \ \ \ \vdots \ \ \ddots \ \ \vdots \\ (q,1) \ (q,2) \ \cdots \ (q,r) \end{bmatrix} \right. \\ & \downarrow & \\ & & C_{p,r} \\ & & p \left\{ \begin{bmatrix} \overbrace{(1,1) \ (1,2) \ \cdots \ (1,r)}^r \\ (2,1) \ (2,2) \ \cdots \ (2,r) \\ \vdots \ \ \ \vdots \ \ \ddots \ \ \vdots \\ (p,1) \ (p,2) \ \cdots \ (p,r) \end{bmatrix} \right. \end{array}$$

Cost of Matrix Multiplication

$$\begin{array}{ccc} A_{p,q} & \times & B_{q,r} \\ p \left\{ \begin{bmatrix} \overbrace{(1,1) \ (1,2) \ \cdots \ (1,q)}^q \\ (2,1) \ (2,2) \ \cdots \ (2,q) \\ \vdots \ \ \ \vdots \ \ \ddots \ \ \vdots \\ (p,1) \ (p,2) \ \cdots \ (p,q) \end{bmatrix} \right. & & q \left\{ \begin{bmatrix} \overbrace{(1,1) \ (1,2) \ \cdots \ (1,r)}^r \\ (2,1) \ (2,2) \ \cdots \ (2,r) \\ \vdots \ \ \ \vdots \ \ \ddots \ \ \vdots \\ (q,1) \ (q,2) \ \cdots \ (q,r) \end{bmatrix} \right. \\ & \downarrow & \\ & & C_{p,r} \\ & & r \\ p \left\{ \begin{bmatrix} \overbrace{(1,1) \ (1,2) \ \cdots \ (1,r)}^r \\ \boxed{(2,1)} \ (2,2) \ \cdots \ (2,r) \\ \vdots \ \ \ \vdots \ \ \ddots \ \ \vdots \\ (p,1) \ (p,2) \ \cdots \ (p,r) \end{bmatrix} \right. \end{array}$$

Cost of Matrix Multiplication

$$\begin{array}{ccc} A_{p,q} & \times & B_{q,r} \\ p \left\{ \begin{bmatrix} & \overbrace{\hspace{1cm}}^q & \\ \begin{matrix} (1,1) & (1,2) & \cdots & (1,q) \\ \boxed{(2,1)} & (2,2) & \cdots & (2,q) \end{matrix} \\ \vdots & \vdots & \ddots & \vdots \\ (p,1) & (p,2) & \cdots & (p,q) \end{bmatrix} & & q \left\{ \begin{bmatrix} & \overbrace{\hspace{1cm}}^r & \\ \begin{matrix} (1,1) & (1,2) & \cdots & (1,r) \\ (2,1) & (2,2) & \cdots & (2,r) \\ \vdots & \vdots & \ddots & \vdots \\ (q,1) & (q,2) & \cdots & (q,r) \end{matrix} \end{bmatrix} \end{array} \downarrow \\ C_{p,r} & & p \left\{ \begin{bmatrix} & \overbrace{\hspace{1cm}}^r & \\ \begin{matrix} (1,1) & (1,2) & \cdots & (1,r) \\ \boxed{(2,1)} & (2,2) & \cdots & (2,r) \\ \vdots & \vdots & \ddots & \vdots \\ (p,1) & (p,2) & \cdots & (p,r) \end{matrix} \end{bmatrix} \right. \end{array}$$

Cost of Matrix Multiplication

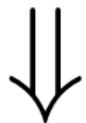
$$\begin{array}{ccc} A_{p,q} & \times & B_{q,r} \\ p \left\{ \begin{bmatrix} & \overbrace{\hspace{1cm}}^q & \\ \begin{matrix} (1,1) & (1,2) & \cdots & (1,q) \\ \boxed{(2,1)} & (2,2) & \cdots & (2,q) \end{matrix} \\ \vdots & \vdots & \ddots & \vdots \\ (p,1) & (p,2) & \cdots & (p,q) \end{bmatrix} & & q \left\{ \begin{bmatrix} & \overbrace{\hspace{1cm}}^r & \\ \begin{matrix} (1,1) & (1,2) & \cdots & (1,r) \\ (2,1) & (2,2) & \cdots & (2,r) \\ \vdots & \vdots & \ddots & \vdots \\ (q,1) & (q,2) & \cdots & (q,r) \end{matrix} \end{bmatrix} \end{array} \\ \downarrow \\ C_{p,r} \\ p \left\{ \begin{bmatrix} & \overbrace{\hspace{1cm}}^r & \\ \begin{matrix} (1,1) & (1,2) & \cdots & (1,r) \\ \boxed{(2,1)} & (2,2) & \cdots & (2,r) \\ \vdots & \vdots & \ddots & \vdots \\ (p,1) & (p,2) & \cdots & (p,r) \end{matrix} \end{bmatrix} \end{array}$$

Cost of Matrix Multiplication

$$A_{p,q} \times B_{q,r}$$

$A_{p,q}$ is a $p \times q$ matrix with columns labeled $(1, 1), (1, 2), \dots, (1, q)$, $(2, 1), (2, 2), \dots, (2, q)$, \vdots , and $(p, 1), (p, 2), \dots, (p, q)$. The $(2, 1)$ cell is highlighted.

$B_{q,r}$ is a $q \times r$ matrix with columns labeled $(1, 1), (1, 2), \dots, (1, r)$, $(2, 1), (2, 2), \dots, (2, r)$, \vdots , and $(q, 1), (q, 2), \dots, (q, r)$. The $(1, 1)$ cell is highlighted.



$$C_{p,r}$$

$C_{p,r}$ is a $p \times r$ matrix with columns labeled $(1, 1), (1, 2), \dots, (1, r)$, $(2, 1), (2, 2), \dots, (2, r)$, \vdots , and $(p, 1), (p, 2), \dots, (p, r)$. The $(2, 1)$ cell is highlighted.

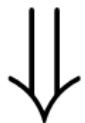
► Each cell of C requires q scalar multiplications.

Cost of Matrix Multiplication

$$A_{p,q} \times B_{q,r}$$

$A_{p,q}$ is a $p \times q$ matrix with columns labeled $(1, 1), (1, 2), \dots, (1, q)$, $(2, 1), (2, 2), \dots, (2, q)$, \vdots , and $(p, 1), (p, 2), \dots, (p, q)$. The $(2, 1)$ cell is highlighted.

$B_{q,r}$ is a $q \times r$ matrix with columns labeled $(1, 1), (1, 2), \dots, (1, r)$, $(2, 1), (2, 2), \dots, (2, r)$, \vdots , and $(q, 1), (q, 2), \dots, (q, r)$. The $(1, 1)$ cell is highlighted.



$$C_{p,r}$$

$C_{p,r}$ is a $p \times r$ matrix with columns labeled $(1, 1), (1, 2), \dots, (1, r)$, $(2, 1), (2, 2), \dots, (2, r)$, \vdots , and $(p, 1), (p, 2), \dots, (p, r)$. The $(2, 1)$ cell is highlighted.

- Each cell of C requires q scalar multiplications.
- In total: pqr scalar multiplications.

Cost of Matrix Multiplication

$$\begin{array}{ccc} A_{p,q} & \times & B_{q,r} \\ \left[\begin{array}{cccc} (1,1) & (1,2) & \cdots & (1,q) \\ (2,1) & (2,2) & \cdots & (2,q) \\ \vdots & \vdots & \ddots & \vdots \\ (p,1) & (p,2) & \cdots & (p,q) \end{array} \right] & & \left[\begin{array}{cccc} (1,1) & (1,2) & \cdots & (1,r) \\ (2,1) & (2,2) & \cdots & (2,r) \\ \vdots & \vdots & \ddots & \vdots \\ (q,1) & (q,2) & \cdots & (q,r) \end{array} \right] \\ \downarrow & & \\ C_{p,r} & & \left[\begin{array}{cccc} (1,1) & (1,2) & \cdots & (1,r) \\ (2,1) & (2,2) & \cdots & (2,r) \\ \vdots & \vdots & \ddots & \vdots \\ (p,1) & (p,2) & \cdots & (p,r) \end{array} \right] \end{array}$$

- Each cell of C requires q scalar multiplications.
- In total: pqr scalar multiplications.
- The scalar multiplications dominate the time complexity.

Matrix Chain Multiplication

Definition

Input: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$.

Output: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

Matrix Chain Multiplication

Definition

Input: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$.

Output: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

Remarks

Matrix Chain Multiplication

Definition

Input: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$.

Output: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

Remarks

- We are not asked to calculate the product, only find the best parenthesization.

Matrix Chain Multiplication

Definition

Input: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$.

Output: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

Remarks

- We are not asked to calculate the product, only find the best parenthesization.
- The parenthesization can significantly affect the number of multiplications.

Matrix Chain Multiplication

Definition

Input: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$.

Output: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

Example

Matrix Chain Multiplication

Definition

Input: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$.

Output: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

Example

- ▶ A product $A_1 A_2 A_3$ with dimensions: 50×5 , 5×100 and 100×10 .

Matrix Chain Multiplication

Definition

Input: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$.

Output: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

Example

- ▶ A product $A_1 A_2 A_3$ with dimensions: 50×5 , 5×100 and 100×10 .
- ▶ Calculating $(A_1 A_2) A_3$ requires: $50 \cdot 5 \cdot 100 + 50 \cdot 100 \cdot 10 = 75000$ scalar multiplications.

Matrix Chain Multiplication

Definition

Input: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$.

Output: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

Example

- ▶ A product $A_1 A_2 A_3$ with dimensions: 50×5 , 5×100 and 100×10 .
- ▶ Calculating $(A_1 A_2) A_3$ requires: $50 \cdot 5 \cdot 100 + 50 \cdot 100 \cdot 10 = 75000$ scalar multiplications.
- ▶ Calculating $A_1 (A_2 A_3)$ requires: $5 \cdot 100 \cdot 10 + 50 \cdot 5 \cdot 10 = 7500$ scalar multiplications.

Optimal Substructure

Theorem

If:

- ▶ the outermost parenthesization in an optimal solution is:
$$(A_1 A_2 \cdots A_i) (A_{i+1} A_{i+2} \cdots A_n).$$
- ▶ P_L and P_R are optimal parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} A_{i+2} \cdots A_n$, respectively.

Then, $((P_L) \cdot (P_R))$ is an optimal parenthesizations for $A_1 A_2 \cdots A_n$.

Optimal Substructure

Theorem

If:

- ▶ the outermost parenthesization in an optimal solution is:
 $(A_1 A_2 \cdots A_i)(A_{i+1} A_{i+2} \cdots A_n)$.
- ▶ P_L and P_R are optimal parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} A_{i+2} \cdots A_n$, respectively.

Then, $((P_L) \cdot (P_R))$ is an optimal parenthesizations for $A_1 A_2 \cdots A_n$.

Proof

- ▶ Let $((O_L) \cdot (O_R))$ be an optimal parenthesization, where O_L and O_R are parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} \cdots A_n$, respectively.

Optimal Substructure

Theorem

If:

- ▶ the outermost parenthesization in an optimal solution is:
$$(A_1 A_2 \cdots A_i) (A_{i+1} A_{i+2} \cdots A_n).$$
- ▶ P_L and P_R are optimal parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} A_{i+2} \cdots A_n$, respectively.

Then, $((P_L) \cdot (P_R))$ is an optimal parenthesizations for $A_1 A_2 \cdots A_n$.

Proof

- ▶ Let $((O_L) \cdot (O_R))$ be an optimal parenthesization, where O_L and O_R are parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} \cdots A_n$, respectively.
- ▶ Let $M(P)$ be the number of scalar multiplications required by a parenthesization.

Optimal Substructure

Theorem

If:

- ▶ the outermost parenthesization in an optimal solution is:
 $(A_1 A_2 \cdots A_i)(A_{i+1} A_{i+2} \cdots A_n)$.
- ▶ P_L and P_R are optimal parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} A_{i+2} \cdots A_n$, respectively.

Then, $((P_L) \cdot (P_R))$ is an optimal parenthesizations for $A_1 A_2 \cdots A_n$.

Proof

$$M((O_L) \cdot (O_R))$$

Optimal Substructure

Theorem

If:

- ▶ the outermost parenthesization in an optimal solution is:
 $(A_1 A_2 \cdots A_i) (A_{i+1} A_{i+2} \cdots A_n)$.
- ▶ P_L and P_R are optimal parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} A_{i+2} \cdots A_n$, respectively.

Then, $((P_L) \cdot (P_R))$ is an optimal parenthesizations for $A_1 A_2 \cdots A_n$.

Proof

$$M((O_L) \cdot (O_R)) = p_0 \cdot p_i \cdot p_n + M(O_L) + M(O_R)$$

Optimal Substructure

Theorem

If:

- ▶ the outermost parenthesization in an optimal solution is:
 $(A_1 A_2 \cdots A_i)(A_{i+1} A_{i+2} \cdots A_n)$.
- ▶ P_L and P_R are optimal parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} A_{i+2} \cdots A_n$, respectively.

Then, $((P_L) \cdot (P_R))$ is an optimal parenthesizations for $A_1 A_2 \cdots A_n$.

Proof

$$M((O_L) \cdot (O_R)) = p_0 \cdot p_i \cdot p_n + M(O_L) + M(O_R)$$

- ▶ Since P_L and P_R are optimal: $M(P_L) \leq M(O_L)$ and $M(P_R) \leq M(O_R)$.

Optimal Substructure

Theorem

If:

- ▶ the outermost parenthesization in an optimal solution is:
 $(A_1 A_2 \cdots A_i)(A_{i+1} A_{i+2} \cdots A_n)$.
- ▶ P_L and P_R are optimal parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} A_{i+2} \cdots A_n$, respectively.

Then, $((P_L) \cdot (P_R))$ is an optimal parenthesizations for $A_1 A_2 \cdots A_n$.

Proof

$$\begin{aligned} M((O_L) \cdot (O_R)) &= p_0 \cdot p_i \cdot p_n + M(O_L) + M(O_R) \\ &\geq p_0 \cdot p_i \cdot p_n + M(P_L) + M(P_R) \end{aligned}$$

- ▶ Since P_L and P_R are optimal: $M(P_L) \leq M(O_L)$ and $M(P_R) \leq M(O_R)$.

Optimal Substructure

Theorem

If:

- ▶ the outermost parenthesization in an optimal solution is:
 $(A_1 A_2 \cdots A_i)(A_{i+1} A_{i+2} \cdots A_n)$.
- ▶ P_L and P_R are optimal parenthesizations for $A_1 A_2 \cdots A_i$ and $A_{i+1} A_{i+2} \cdots A_n$, respectively.

Then, $((P_L) \cdot (P_R))$ is an optimal parenthesizations for $A_1 A_2 \cdots A_n$.

Proof

$$\begin{aligned} M((O_L) \cdot (O_R)) &= p_0 \cdot p_i \cdot p_n + M(O_L) + M(O_R) \\ &\geq p_0 \cdot p_i \cdot p_n + M(P_L) + M(P_R) = M((P_L) \cdot (P_R)) . \end{aligned}$$

- ▶ Since P_L and P_R are optimal: $M(P_L) \leq M(O_L)$ and $M(P_R) \leq M(O_R)$.

Recursive Formula

- ▶ Let $m[i, j]$ be the optimal number of scalar multiplications for calculating $A_i A_{i+1} \cdots A_j$.

Recursive Formula

- ▶ Let $m[i, j]$ be the optimal number of scalar multiplications for calculating $A_i A_{i+1} \cdots A_j$.
- ▶ $m[i, j]$ can be **expressed recursively** as follows:

$$m[i, j] = \begin{cases} 0 & \text{if } i = j , \\ \min_{i \leq k < j} \{m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j\} & \text{if } i < j . \end{cases}$$

Recursive Formula

- ▶ Let $m[i, j]$ be the optimal number of scalar multiplications for calculating $A_i A_{i+1} \cdots A_j$.
- ▶ $m[i, j]$ can be **expressed recursively** as follows:

$$m[i, j] = \begin{cases} 0 & \text{if } i = j , \\ \min_{i \leq k < j} \{m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j\} & \text{if } i < j . \end{cases}$$

- ▶ Each $m[i, j]$ depend only on subproblems with smaller $j - i$.

Recursive Formula

- ▶ Let $m[i, j]$ be the optimal number of scalar multiplications for calculating $A_i A_{i+1} \cdots A_j$.
- ▶ $m[i, j]$ can be **expressed recursively** as follows:

$$m[i, j] = \begin{cases} 0 & \text{if } i = j , \\ \min_{i \leq k < j} \{m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j\} & \text{if } i < j . \end{cases}$$

- ▶ Each $m[i, j]$ depend only on subproblems with smaller $j - i$.
- ▶ A bottom-up algorithm should solve subproblems in increasing $j - i$ order.

Example

<u>Instance</u>						
matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	30×35	35×15	15×5	5×10	10×20	20×25

Bottom-Up Algorithm

```
MATRIX-CHAIN-ORDER( $p$ )
1    $n = p.length - 1$ 
2   let  $m[1..n, 1..n]$  and  $s[1..n, 1..n]$  be new tables
3   for  $i = 1$  to  $n$ 
4      $m[i, i] = 0$ 
5   for  $\ell = 2$  to  $n$            //  $\ell$  is the chain length
6     for  $i = 1$  to  $n - \ell + 1$ 
7        $j = i + \ell - 1$ 
8        $m[i, j] = \infty$ 
9       for  $k = i$  to  $j - 1$ 
10       $q = m[i, k] + m[k + 1, j] + p_{i-1}p_k p_j$ 
11      if  $q < m[i, j]$ 
12         $m[i, j] = q$ 
13         $s[i, j] = k$ 
14   return  $m$  and  $s$ 
```

Bottom-Up Algorithm

```
MATRIX-CHAIN-ORDER( $p$ )
1    $n = p.length - 1$ 
2   let  $m[1..n, 1..n]$  and  $s[1..n, 1..n]$  be new tables
3   for  $i = 1$  to  $n$ 
4      $m[i, i] = 0$ 
5   for  $\ell = 2$  to  $n$            //  $\ell$  is the chain length
6     for  $i = 1$  to  $n - \ell + 1$ 
7        $j = i + \ell - 1$ 
8        $m[i, j] = \infty$ 
9       for  $k = i$  to  $j - 1$ 
10       $q = m[i, k] + m[k + 1, j] + p_{i-1}p_k p_j$ 
11      if  $q < m[i, j]$ 
12         $m[i, j] = q$ 
13         $s[i, j] = k$      $\Leftarrow s$  stores the optimal choice
14   return  $m$  and  $s$ 
```

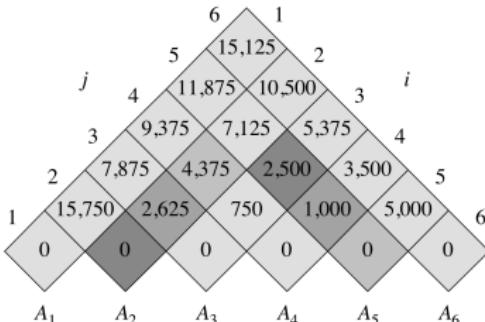
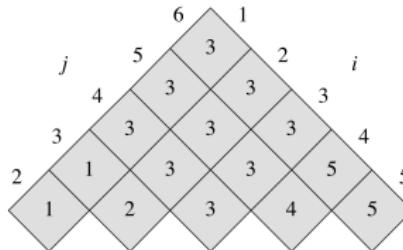
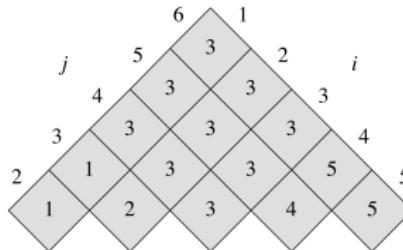
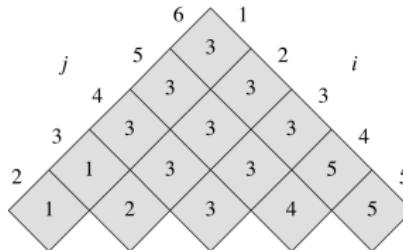
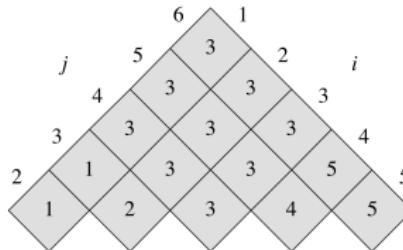
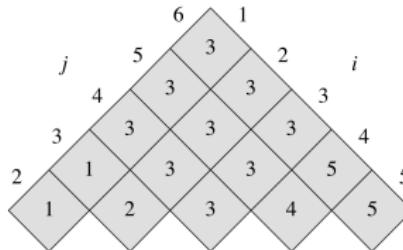
Example

Instance

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	30×35	35×15	15×5	5×10	10×20	20×25

Example

Instance

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	30×35 <i>m</i>	35×15	15×5	5×10 <i>s</i>	10×20	20×25
						

Example

Instance

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	30×35 <i>m</i>	35×15	15×5	5×10	10×20 <i>s</i>	20×25

$A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5 \quad A_6$

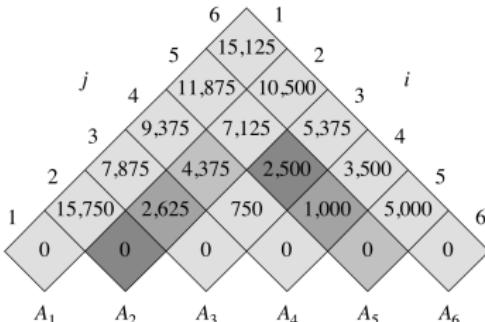
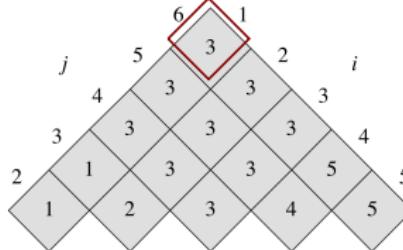
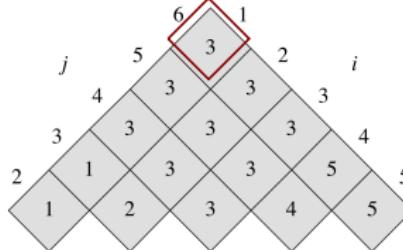
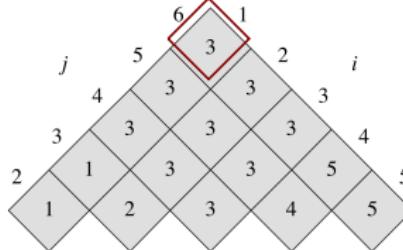
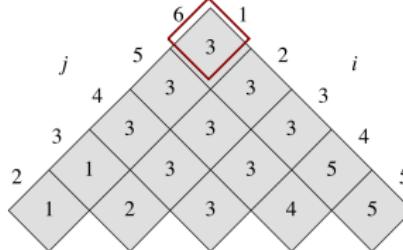
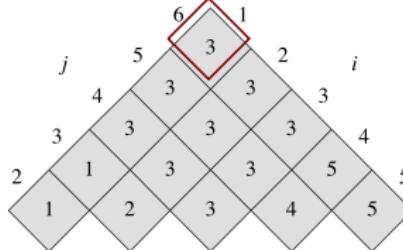
Example

Instance

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	30×35 <i>m</i>	35×15	15×5	5×10	10×20 <i>s</i>	20×25
		A_1 A_2 A_3 A_4 A_5 A_6				

Example

Instance

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	30×35 <i>m</i>	35×15	15×5	5×10	10×20 <i>s</i>	20×25
						

$$(A_1 \quad A_2 \quad A_3) (A_4 \quad A_5 \quad A_6)$$

Example

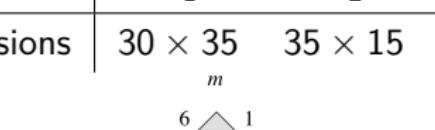
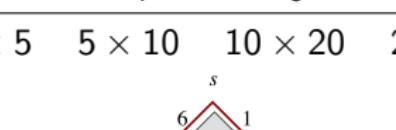
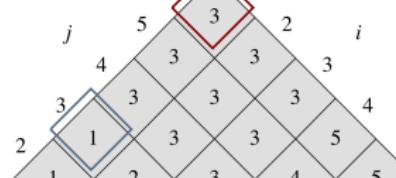
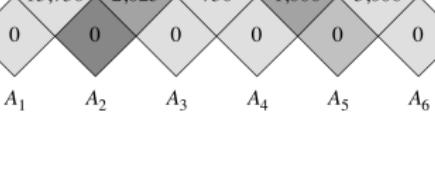
Instance

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	30×35 <i>m</i>	35×15	15×5	5×10	10×20 <i>s</i>	20×25

$$(A_1 \quad A_2 \quad A_3) (A_4 \quad A_5 \quad A_6)$$

Example

Instance

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	30×35 m	35×15	15×5	5×10	10×20 s	20×25
						

$$(A_1 \ A_2 \ A_3) (A_4 \ A_5 \ A_6)$$

Example

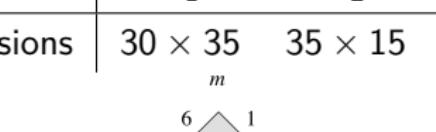
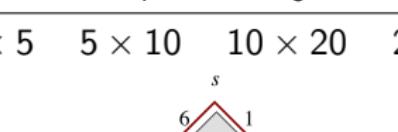
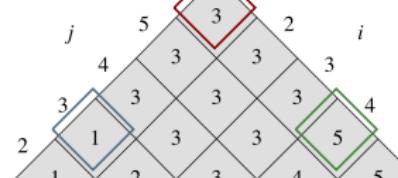
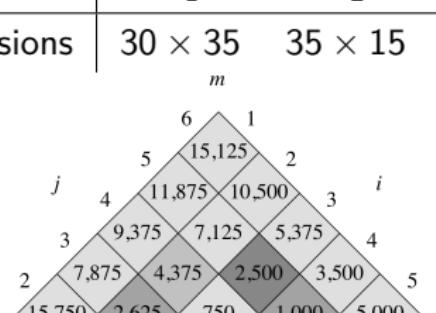
Instance

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	30×35 m	35×15	15×5	5×10	10×20 s	20×25

$$(A_1 \quad (A_2 \quad A_3)) \quad (A_4 \quad A_5 \quad A_6)$$

Example

Instance

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	30×35 m	35×15	15×5	5×10	10×20 s	20×25
						

$$(A_1 \quad (A_2 \quad A_3)) \ ((A_4 \quad A_5) \quad A_6)$$

Algorithm for Recovering an Optimal Solution

```
PRINT-OPTIMAL-PARENTS( $s, i, j$ )
```

```
1  if  $i == j$ 
2    print " $A_i$ "
3  else print "("
4    PRINT-OPTIMAL-PARENTS( $s, i, s[i, j]$ )
5    PRINT-OPTIMAL-PARENTS( $s, s[i, j] + 1, j$ )
6    print ")"
```

Summary

Choice:

Summary

Choice: where to make the outermost parenthesis

$$(A_1 \cdots A_k)(A_{k+1} \cdots A_n)$$

Summary

Choice: where to make the outermost parenthesis

$$(A_1 \cdots A_k)(A_{k+1} \cdots A_n)$$

Optimal substructure:

Summary

Choice: where to make the outermost parenthesis

$$(A_1 \cdots A_k)(A_{k+1} \cdots A_n)$$

Optimal substructure: to obtain an optimal solution, we need to parenthesize the two remaining expressions in an optimal way

Summary

Choice: where to make the outermost parenthesis

$$(A_1 \cdots A_k)(A_{k+1} \cdots A_n)$$

Optimal substructure: to obtain an optimal solution, we need to parenthesize the two remaining expressions in an optimal way

Hence, if we let $m[i, j]$ be the optimal value for chain multiplication of matrices A_i, \dots, A_j , we can express $m[i, j]$ recursively as follows

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \leq k < j} \{ m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j \} & \text{otherwise if } i < j \end{cases}$$

Summary

Choice: where to make the outermost parenthesis

$$(A_1 \cdots A_k)(A_{k+1} \cdots A_n)$$

Optimal substructure: to obtain an optimal solution, we need to parenthesize the two remaining expressions in an optimal way

Hence, if we let $m[i, j]$ be the optimal value for chain multiplication of matrices A_i, \dots, A_j , we can express $m[i, j]$ recursively as follows

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \leq k < j} \{ m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j \} & \text{otherwise if } i < j \end{cases}$$

Overlapping subproblem: Solve recurrence using top-down with memoization or bottom-up which yields an algorithm that runs in time $\Theta(n^3)$.