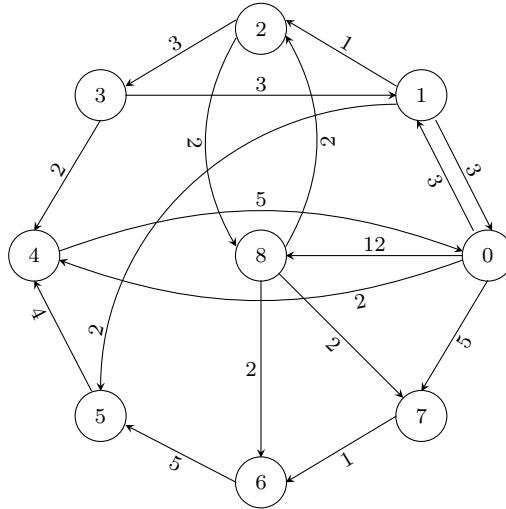

Problem 1 (10 points)

1. Give a formal specification of the following problem: given an array of integers, and another integer x , determine whether there are two elements in the array that sum up to x .
2. Design an algorithm that solves the problem of the previous part in $O(n \log n)$ steps, where n is the length of the array, and a step is either an addition or a comparison of integers.

Problem 2 (15 points) Suppose that you are given a sorted sequence of n distinct integers $\{a_1, \dots, a_n\}$. Give an algorithm to determine whether there exists an index i such that $a_i = i$, outputting one i if such an i exists, and which uses $O(\log(n))$ steps. For example, in $\{-10, -3, 3, 5, 7\}$, $a_3 = 3$, whereas $\{2, 3, 4, 5, 6, 7\}$ has no such i .

Problem 3 (15 points) Given an $O(n \log(k))$ -algorithm that merges k sorted list of integers with a total of n elements into one sorted list.

Hint: Use a heap of size at most k .

Problem 4 (20 points) Show the successive node values computed in the execution of the Moore-Bellman-Ford algorithm on this graph, assuming that node 0 is the starting node s . Moreover, for every node v , determine a shortest path from s to v .

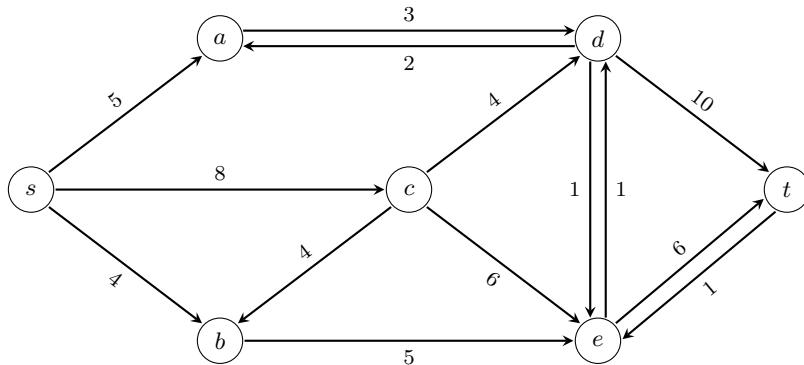
Your output should look like this:

	0	1	2	3	4	5	6	7	8
Step 0	0	∞							
Step 1	0								
Step 2	0								
...	0

Problem 5 (20 points) A max-min algorithm finds both the largest and the smallest elements in an array of n integers. Design and analyze a divide-and-conquer max-min algorithm that uses $\lceil 3n/2 \rceil - 2$ comparisons for any integer n . (You will receive 10 points if you can show this for the case when n is a power of 2, and an additional 10 points if you can prove it for general n .)

Hint: If $T(n)$ denotes the number of comparisons of your algorithm, try to find a recursion relating $T(n+m)$ to $T(n)$ and $T(m)$. Then study first the case where n is a power of 2.

Problem 6 (20 points) Calculate a maximal flow and a minimal cut on the following network¹ using the Ford-Fulkerson algorithm. At every step, draw the residual graph corresponding to the current flow.



Bonus Problem (20 points) Consider a binary heap containing n numbers where the root stores the largest number. Let $k < n$ be a positive integer, and x be another integer. Design an algorithm that determines whether the k th largest element of the heap is greater than x or not. The algorithm should take $O(k)$ time and may use $O(k)$ additional storage.

Hint: don't try to *find* the k th largest element.

¹In the 2011 version of the course we did not assume that the graph was free from anti-parallel edges. You can obtain a graph without the anti-parallel edges by using the standard gadget trick that we explained in class and that is explained in the book.