
Problem 1 (10 points)

1. Give a formal specification of the following problem: given an array of
integers, and another integer x, determine whether there are two elements
in the array that sum up to x.

2. Design an algorithm that solves the problem of the previous part in
O(n log n) steps, where n is the length of the array, and a step is either
an addition or a comparison of integers.

Problem 2 (15 points) Suppose that you are given a sorted sequence of n
distinct integers {a1, . . . , an}. Give an algorithm to determine whether there
exists an index i such that ai = i, outputting one i if such an i exists, and
which uses O(log(n)) steps. For example, in {−10,−3, 3, 5, 7}, a3 = 3, whereas
{2, 3, 4, 5, 6, 7} has no such i.

Problem 3 (15 points) Given an O(n log(k))-algorithm that merges k sorted
list of integers with a total of n elements into one sorted list.

Hint: Use a heap of size at most k.

Problem 4 (20 points) Show the successive node values computed in the
execution of the Moore-Bellman-Ford algorithm on this graph, assuming that
node 0 is the starting node s. Moreover, for every node v, determine a shortest
path from s to v.

0

1

2

3

4

5

6

7

8

3 3

5

2

2

2

2

12

2

13

3

2

4

5 1

52

1



Your output should look like this:

0 1 2 3 4 5 6 7 8

Step 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Step 1 0
Step 2 0
· · · 0 · · · · · · · · · · · · · · · · · · · · · · · ·

Problem 5 (20 points) A max-min algorithm finds both the largest and the
smallest elements in an array of n integers. Design and analyze a divide-and-
conquer max-min algorithm that uses d3n/2e−2 comparisons for any integer n.
(You will receive 10 points if you can show this for the case when n is a power
of 2, and an additional 10 points if you can prove it for general n.)

Hint: If T (n) denotes the number of comparisons of your algorithm, try to
find a recursion relating T (n+m) to T (n) and T (m). Then study first the case
where n is a power of 2.

Problem 6 (20 points) Calculate a maximal flow and a minimal cut on the
following network1 using the Ford-Fulkerson algorithm. At every step, draw the
residual graph corresponding to the current flow.

s

a

b

c

d

e

t

5

8

4

3

2

4

4
6

5

1 1

10

6

1

Bonus Problem (20 points) Consider a binary heap containing n numbers
where the root stores the largest number. Let k < n be a positive integer, and
x be another integer. Design an algorithm that determines whether the kth
largest element of the heap is greater than x or not. The algorithm should take
O(k) time and may use O(k) additional storage.

Hint: don’t try to find the kth largest element.

1In the 2011 version of the course we did not assume that the graph was free from anti-
parallel edges. You can obtain a graph without the anti-parallel edges by using the standard
gadget trick that we explained in class and that is explained in the book.

2


