
Algorithms I May 21, 2025

Lecture 26: Online Algorithms
Notes by Ola Svensson1

The first two sections are basically a verbatim copy of the notes [1]. The third section is based on
the notes [2].

In the study of algorithms, we often assume that the entire input is available at the outset. Online
algorithms, however, address a different paradigm where the input arrives sequentially, piece by piece.
The core challenge in this ”online” setting is the necessity of making irrevocable decisions at each step,
based only on the data observed thus far and without knowledge of future inputs. The objective remains
to optimize a specific goal, but this must be achieved by committing to decisions incrementally as the
input stream unfolds. A prominent real-world application illustrating this concept is ad allocation:
when a user performs a search query, an algorithm must instantaneously decide which advertisements
to display, without foreseeing subsequent search queries or user interactions. We will now explore a
foundational example to further illustrate these principles.

1 Rent or buy (ski rental) and competitive ratios

In the rent or buy problem sometimes also called the ski rental problem we need to figure out whether
to rent or buy skis. Suppose we go skiing every winter and thus need skis. We can either buy a pair for
some cost B and then use them forever, or we can rent them every winter for cost R but then we will
have to rent them again when we want to go skiing next year. If we know how many times we will go
skiing in our lifetime it is easy to choose whether to buy or rent just by comparing the total cost of each
option, but we do not actually know how many times we will go until it’s far too late. Thus we need to
come up with another solution.

An easy algorithm is to just rent every winter until we have payed B in rent and then buy the skis
once that point comes. While this algorithm doesn’t seem very smart the amount we pay is always
within a factor of 2 from the optimal solution. Since if we go skiing fewer times than B/R then we have
actually chosen the optimal course of action and if not then the optimal solution is to buy the skis in
the first place so the optimal cost is B and we have paid exactly 2B (assuming B/R is integer). Note
that the 2 here is not an approximation ratio it is something we call a competitive ratio. That is the
ratio of our cost to the best cost we can get given that we would actually know everything in advance.

Definition 1 Assume we have an online problem and some algorithm Alg such that given an instance
I of our minimization problem ALG(I) gives the cost of the solution Alg comes up with. Furthermore,
assume that OPT(I) is the cost of the best possible solution of the problem for instance I. Then

max
I

ALG(I)
OPT(I)

is called the competitive ratio of the algorithm Alg. (For a maximization problem, we are interested in
the ratio minI

ALG(I)
OPT(I) just as in approximation algorithms.)

There is also the following alternative definition where the constant c is so as to allow some initial
start up cost:

Definition 2 Assume the same as above, then we also call r the competitive ratio if

ALG(I) ≤ r ·OPT(I) + c

holds for all I and some constant c independent of the length of the sequence I. When c is 0, r is the
strong competitive ratio.

1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.

1



2 Caching

In today’s computers, we have to make tradeoffs between the amount of memory we have and the speed
at which we can access it. We solve the problem by having a larger but slower main memory. Whenever
we need data from some page of the main memory, we must bring it into a smaller section of fast memory
called the cache. It may happen that the memory page we request is already in the cache. If this is
the case, we say that we have a cache hit. Otherwise we have a cache miss, and we must go in the
main memory to bring the requested page. It may happen that the cache is full when we do that, so it
is necessary to evict some other page of memory from the cache and replace it with the page we read
from main memory, or we can choose not to place the page we brought from main memory in the cache.
Cache misses slow down programs because the program cannot continue executing until the requested
page is fetched from the main memory. Managing the cache in a good way is, therefore, necessary in
order for programs to run fast. The goal of a caching algorithm is to evict pages from the cache in a
way that minimizes the number of cache misses. A similar problem, called paging, arises when we bring
pages from a hard drive to the main memory. In this case, we can view main memory as a cache for the
hard drive.

For the rest of this lecture, assume that the cache has a capacity of k pages and that main memory
has a capacity of N pages. For example consider a cache with k = 3 pages and a main memory with
N = 5 pages. A program could request page 4 from main memory, then page 1, then 2 etc. We call
the sequence of memory pages requested by the program the request sequence. One request sequence
could be 4, 1, 2, 1, 5, 3, 4, 4, 1, 2, 3 in our case. Initially, the cache could contain pages 1, 2, and 3. When
we execute this program, we need access to page number 4. Since it’s not in the cache, we have a cache
miss. We could evict page 2 from the cache and replace it with page 4. Next, our program needs to
access page 1, which is in the cache. Hence, we have a cache hit. Now our program needs page 2, which
is not in the cache, so we have a miss. We could choose to evict page 1 from the cache and put page 2
in its place. Next, the program requests page 1, so we have another miss. This time we could decide to
just read page 1 and not place it in the cache at all. We continue this way until all the memory requests
are processed.

In general, we don’t know what the next terms in the request sequence are going to be. Thus,
caching is a place where we can try to apply an online algorithm. For a request sequence σ and a given
algorithm Alg, we call ALG(I) the cost of the algorithm Alg on request sequence σ, and define it to be
the number of cache misses that happen when Alg processes the memory requests and maintains the
cache. Similarly, we let OPT(I) denote the minimal number of cache misses possible for the sequence
σ. Our goal is to design an r-competitive algorithm for a small r. Recall that an online algorithm Alg
has a competitive ratio r if for all σ,

ALG(I) ≤ r ·OPT(I) + c ,

where c is a constant independent of σ (usually an unimportant startup cost).

2.1 Optimal Caching Algorithm

If we knew the entire request sequence before we started processing the memory requests, we could use
a greedy algorithm that minimizes the number of cache misses that occur. Whenever we have a cache
miss, we go to main memory to fetch the memory page p we need. Then we look at this memory page
and all the memory pages in the cache. We evict the page for which the next request occurs the latest
in the future from among all the pages currently in the cache, and replace that page with p in the cache.
If the next time p is requested comes after the next time all the pages in the cache are requested again,
we don’t put p in the cache. Once again, take our sample request sequence 4, 1, 2, 1, 5, 3, 4, 4, 1, 2, 3 and
assume that pages 1 through 3 are in the cache. The optimal algorithm has a cache miss when page 4 is
requested. Since page 4 is requested again later than pages 1 through 3 are, the algorithm doesn’t put
4 in the cache and doesn’t evict any page. The next miss occurs when page 5 is requested. Once again,

2



the next times pages 1 through 3 are requested occur before page 5 is requested the next time, so page
5 is not brought in the cache. The next cache miss happens when page 4 is requested. At that point,
page 3 gets evicted from the cache and is replaced with page 4 because pages 1, 2, and 4 get requested
again before page 3 does. Finally, the last cache miss occurs when page 3 is requested (last term in the
request sequence). At this point, the algorithm could choose to evict page 1 and put page 3 in the cache
instead. Thus, the optimal algorithm has 4 cache misses on this request sequence.

Notice that in the case of caching, we have an optimal algorithm assuming that we know the entire
input (in our case the input is the request sequence). This fact makes the analysis of online algorithms
for caching easier because we know what algorithm we compare the online algorithms against.

For the remainder of this lecture, we will assume that a caching algorithm always has to bring
the memory page in the cache on a cache miss, and doesn’t have the option of just looking at it
and not putting it in the cache, as it will make our proofs simpler. This version is also much closer to
what happens in hardware.

2.2 Deterministic Caching

There are many deterministic online algorithms for caching. We give some examples below. In each of
the cases, when a cache miss occurs, the new memory page is brought into the cache. The name of the
algorithm suggests which page should be evicted from the cache if the cache is full.

LRU (Least Recently Used) The page that has been in the cache for the longest time without being
used gets evicted.

FIFO (First In First Out) The cache works like a queue. We evict the page that’s at the head of
the queue and then enqueue the new page that was brought into the cache.

LFU (Least Frequently Used) The page that has been used the least from among all the pages in
the cache gets evicted.

LIFO (Last In First Out) The cache works like a stack. We evict the page that’s on the top of the
stack and then push the new page that was brought in the cache on the stack.

The first two algorithms, LRU and FIFO have a competitive ratio of k where k is the size of the cache.
The last two, LFU and LIFO have an unbounded competitive ratio. This means that the competitive
ratio is not bounded in terms of the parameters of the problem (in our case k and N), but rather by the
size of the input (in our case the length of the request sequence).

First we show that LFU and LIFO have unbounded competitive ratios. Suppose we have a cache
of size k. The cache initially contains pages 1 through k. Also suppose that the number of pages of
main memory is N > k. Suppose that the last page loaded in the cache was k, and consider the request
sequence σ = k + 1, k, k + 1, k, . . . , k + 1, k. Since k is the last page that was put in the cache, it will
be evicted and replaced with page k + 1. The next request is for page k (which is not in the cache), so
we have a cache miss. We bring k in the cache and evict k+ 1 because it was brought in the cache last.
This continues until the entire request sequence is processed. We have a cache miss for each request in
σ, whereas we have only one cache miss if we use the optimal algorithm. This cache miss occurs when
we bring page k + 1 at the beginning and evict page 1. There are no cache misses after that. Hence,
LIFO has an unbounded competitive ratio.

To demonstrate the unbounded competitive ratio of LFU, we again start with the cache filled with
pages 1 through k. First we request each of the pages 1 through k − 1 m times. After that we request
page k + 1, then k, and alternate them m times. This gives us 2m cache misses because each time k is
requested, k+1 will be the least frequently used page in the cache so it will get evicted, and vice versa.
Notice that on the same request sequence, the optimal algorithm makes only one cache miss. This miss
occurs during the first request for page k + 1. At that point, the optimum algorithm evicts page 1 and
doesn’t suffer any cache misses afterwards. Thus, if we make m large, we can get any competitive ratio

3



we want. This shows that LFU has an unbounded competitive ratio. We now show that no deterministic
algorithm can have a better competitive ratio than the size of the cache, k. After that, we demonstrate
that the LRU algorithm has this competitive ratio.

Lemma 3 No deterministic online algorithm for caching can achieve a better competitive ratio than k,
where k is the size of the cache.

Proof Let Alg be a deterministic online algorithm for caching. Suppose the cache has size k and that
it currently contains pages 1 through k. Suppose that N > k. Since we know the replacement policy of
Alg, we can construct an adversary that causes Alg to have a cache miss for every element of the request
sequence. To do that, we simply look at the contents of the cache at any time and make a request for
the page in {1, 2, ..., k + 1} that is currently not in the cache. The only page numbers requested by the
adversary are 1 through k+1. Thus when the optimal algorithm makes a cache miss, the page it evicts
will be requested no sooner than after at least k other requests. Those requests will be for pages in the
cache. Thus, another miss will occur after at least k memory requests. It follows that for every cache
miss the optimal algorithm makes, Alg makes at least k cache misses, which means that the competitive
ratio of Alg is at least k.

Lemma 4 LRU has a competitive ratio of k.

Proof First, we divide the request sequence σ into phases as follows:

• Phase 1 begins at the first page of σ;

• Phase i begins at the first time we see the k-th distinct page after phase i− 1 has begun.

As an example, suppose σ = 4, 1, 2, 1, 5, 3, 4, 4, 1, 2, 3 and k = 3. We divide σ into three phases as follows:

[4 1 2 1]︸ ︷︷ ︸
Phase 1

[5 3 4 4]︸ ︷︷ ︸
Phase 2

[1 2 3]︸ ︷︷ ︸
Phase 3

Phase 2 begins at page 5 since page 5 is the third distinct page after phase 1 began (pages 1 and 2
are the first and second distinct pages, respectively).

Next, we show that OPT(I) makes at least one cache miss each time a new phase begins. Denote
the j-th distinct page in phase i as pij . Consider pages pi2−pik and page pi+1

1 . These are k distinct pages
by the definition of a phase. Then if none of the pages pi2 − pik incur a cache miss, pi+1

1 must incur one.
This is because pi2− pik and pi+1

1 are k distinct pages, page pi1 is in the case, and only k pages can reside
in the cache. Let N be the number of phases. Then we have OPT(I) ≥ N − 1. On the other hand, LRU
makes at most k misses per phase. Thus LRU(σ) ≤ kN . As a result, LRU has a competitive ratio of k.

2.3 Randomized Caching

Consider the following randomized strategy (also known as the marking algorithm). The strategy as-
sociates each page in the cache with 1 bit. Similar to LRU: if a cache page is recently used, the
corresponding bit value is 1 (marked); otherwise, the bit value is 0 (unmarked). The algorithm works as
follows:

• Initially all pages are unmarked.

• Whenever a page is requested

4



– If the page is in the cache, mark the page;

– Otherwise:

∗ If there is an unmarked page in the cache, evict an unmarked page chosen uniformly at
random, bring the requested page in, and mark it;

∗ Otherwise, unmark all the pages and start a new phase.

One can prove the following lemma (see [1]):

Lemma 5 The above strategy achieves a competitive ratio of 2Hk = 2 ·
(
1
1 + 1

2 + . . .+ 1
k

)
= O(log k).

The above is almost tight:

Lemma 6 No randomized online algorithm has a competitive ratio better than Hk.

3 Secretary Problem

In the previous examples, we assumed that we had no information about the future when designing the
algorithms and we considered the worst case competitive ratio. In many settings this can be seen to be
overly pessimistic. A model that gives more power to the algorithm is to assume that the items arrive
in a random order the so-called random arrival model. In this setting, a classic problem is called the
secretary problem:

• n candidates arrive in a random order (each with a unique ranking).

• When a candidate arrives you need take an irrevocable decision to hire the candidate or not (and
at most one candidate can be hired).

The goal is to design a strategy to maximize the probability (over the random order of arrivals) of
hiring the best candidate.

3.1 Simple strategies

We consider two basic strategies (one bad and one good):

1. Selecting the first candidate. For this strategy

Pr[hiring best candidate] = 1/n .

2. Exploring the first n/2 candidates, then take the first candidate that is better than the first n/2.
For this strategy we have

Pr[hiring best candidate] ≥ Pr[second best among first n/2] · Pr[best candidate in 2nd half]

≥ (1/2)(1/2) = 1/4 .

5



3.2 Optimal strategy

The optimal strategy is in fact very similar to the second strategy above but instead of starting to select
after observing n/2 candidates we start selecting after r − 1 candidates. Then

Pr[hiring best candidate] =
n∑

i=1

Pr[selecting i
⋂
i is the best]

=

n∑
i=1

Pr[selecting i|i is the best] Pr[i is the best]

=

r−1∑
i=1

0 +
1

n

n∑
i=r

Pr[second best of the first i applicants is in the first r − 1|i is the best]

=
1

n

n∑
i=r

r − 1

i− 1

=
r − 1

n

n∑
i=r

1

i− 1
.

We now optimize the selection of r to maximize the above expression. In other words we need to select
r so as to maximize (r − 1)/n ·

∑n
i=r

1
i−1 . Between friends (for large enough r), we have

r − 1

n
·

n∑
i=r

1

i− 1
≈ r

n

∫ n

r

1

x
dx =

r

n
· ln(n/r) ,

whose maximum is attained when r = n/e. This gives a probability of selecting the best candidate to
be at least 1/e which turns out to be optimal!

References

[1] Shuchi Chawla, Yiying Zhang, Dan Rosendorf: Scribes of Lecture 19 in Advanced Algorithms, Uni-
versity of Wisconsin, 2007.
http://pages.cs.wisc.edu/˜shuchi/courses/787-F07/scribe-notes/lecture19.pdf

[2] Ashish Goel, Raghav Ramesh, Reza Zadeh: Scribes of Lecture 8 in Algorithms for Modern Data
Models, Stanford, 2014.
https://stanford.edu/˜rezab/amdm/notes/lecture8.pdf

6


	Rent or buy (ski rental) and competitive ratios
	Caching
	Optimal Caching Algorithm
	Deterministic Caching
	Randomized Caching

	Secretary Problem
	Simple strategies
	Optimal strategy


