
Midterm Exam, Algorithms 2019-2020

• You are only allowed to have a handwritten A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• Your explanations should be clear enough and in sufficient detail that a fellow student

can understand them. In particular, do not only give pseudo-code without explanations.

A good guideline is that a description of an algorithm should be such that a fellow

student can easily implement the algorithm following the description.

• You are allowed to refer to algorithms covered in class without reproving their proper-

ties.

• Do not touch until the start of the exam.

Good luck!

Name: N

�
Sciper:

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

/ 10 points / 34 points / 26 points / 16 points / 14 points

Total / 100

Page 1 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2019

Michael Kapralov

1 (10 pts) Basic questions.

1a (4 pts) Answer whether the following statements are true or false.

The k-th largest element of an array A can be found in O(n+ k log n) time by running the
first k iterations of HeapSort. True or false? TRUE

n1+O(1/ logn)
= O(n log n). True or false? TRUE

The best case runtime of InsertionSort is ⌦(n2

). True or false? FALSE

If f(n) = O(g(n)), then 10

f(n)
= O(10

g(n)
) True or false? FALSE

1b (3 pts) Consider the queue Q below (assume the implementation shown in class):

Q.tailQ.head

b a

What is the resulting queue Q after the following operations: Enqueue(Q, c), Enqueue(Q, d),
Dequeue(Q), Enqueue(Q, e)? Specify the content of the array used to implement the
queue as well as the values of the head and tail pointers.

Solution:

Q.head Q.tail

a c d e

1c (3 pts) Consider the following stack S implemented in the same way as seen in class:

S.top

c d

What is the resulting stack S after the following operations: Push(S, e), Push(S, f),
Pop(S), Push(S, e), Push(S, g), Pop(S)?

Solution:

S.top

c d e e

Page 2 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2019

Michael Kapralov

2 (34 pts) Recurrences. Consider the following algorithms Xyz and Abc that take as input an
array A and two indices low and high in the array:

Xyz(A, low, high)
1. if low � high
2. return
3. else
4. for i = low to high
5. print A[i]
6. mid = b(low + high)/2c
7. Xyz(A, low,mid)
8. return

Abc(A, low, high)
1. Xyz(A, low, high)
2. if low � high
3. return
4. else
5. p = low + b(high� low)/4c
6. q = b(low + high)/2c
7. Abc(A, low, p)
8. Abc(A, p+ 1, high)
9. Abc(A, p+ 1, q)
10. Abc(A, low, p)
11. Abc(A, q + 1, high)
12. return

2a (10 pts) Let S(n) be the time it takes to execute Abc(A, low, high) with n = high�low+1,
and let T (n) denote the time it takes to execute Xyz(A, low, high) with n = high�low+1.
Give the recurrence relations for S(n) and T (n). To simplify notation, you may ignore
floors and ceilings in your recurrence.

Solution: For T (n) we have

T (n) =

(
⇥(1) if n  10,

T (n/2) +⇥(n) otherwise.

and for S(n) we have

S(n) =

(
⇥(1) if n  10,

S(3n/4) + S(n/2) + 3S(n/4) + T (n) +⇥(1) otherwise.

2b (24 pts) Prove tight asymptotic bounds on S(n) and T (n).

Solution: First, we have T (n) = ⇥(n), by the Master Theorem with a = 1, b = 2, and
f(n) = ⇥(n). This simplifies the recursion of S(n) to

S(n) = S(3n/4) + S(n/2) + 3S(n/4) +⇥(n).

Page 3 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2019

Michael Kapralov

To solve for S(n) we will guess that S(n) ⇡ n↵ for some constant ↵ > 0. To find ↵ we must
solve the equation

1 = (3/4)↵ + (1/2)↵ + 3 · (1/4)↵.

It turns out ↵ = 2 solves this exactly, so we will guess that S(n) = ⇥(n2

) (also note that the
non-recursive work done in Abc is o(n2

)).

Proof of lower bound: We will prove by induction that S(n) � an2 for some constant a.
Base case (n  10): We know that S(n) = ⇥(1), so S(1) � a for sufficiently small a.
Inductive step: We know by induction that

S(n) � S(3n/4) + S(n/2) + 3S(n/4)

� a(3n/4)2 + a(n/2)2 + 3a(n/4)2

= an2.

Proof of upper bound: We will prove by induction that S(n)  an2� bn for some constants
a and b. We may assume that the non-recursive part of the formula, denoted by ⇥(n) is at most
cn for some constant c.

Base case (n  10): We know that S(n) = ⇥(1), so S(1) � a� b for large enough difference
a� b.

Inductive step: We know by induction that

S(n)  S(3n/4) + S(n/2) + 3S(n/4) + cn

 a(3n/4)2 � b(3n/4) + a(n/2)2 � b(n/2) + 3a(n/4)2 � 3b(n/4) + cn

= an2 � 2bn+ cn.

This is indeed less than an2 � bn as long as b � c. Note that these too conditions, a � b large
enough and b � c can be satisfied at the same time. This completes the proof.

Page 4 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2019

Michael Kapralov

3 (26 pts) Can you find the palindrome? In this problem your task is to find the longest
palindromic subsequence of a given sequence of characters. Recall that a sequence is called a
palindrome if it does not change when reversed. For example, ABBA and ABDBA are palindromes,
whereas AABB is not.

Consider a sequence s = (s
1

, s
2

, . . . , sn) of n characters. We say that a sub-sequence s0 =
(s[i

1

], s[i
2

], . . . , s[ik]), where 1  i
1

< i
2

< · · · < ik  n, is a palindromic subsequence if the
subsequence does not change if we reverse it. Formally, s0 is palindromic if s[ij] = s[ik�j+1

] for
every j = 1, . . . , k. In this problem your task is to design a dynamic programming algorithm
that given a sequence s of n characters as input, finds a longest palindromic subsequence of s.
For example, if s = ACBDBA, the longest palindromic subsequence is ABDBA.

Input: Sequence s = (s
1

, . . . , sn) of n characters.

Output: A longest palindromic subsequence of s.

Design and analyze a dynamic programming solution for the problem. For full credit your
algorithm should run in time O(n2

).

3a For 1  i  j  n let d(i, j) denote the length of the largest palindromic subsequence in
the substring s[i], s[i+ 1], . . . , s[j]. Write a recursive formula for d(i, j).

Solution:

d(i, j) =

8
>>><

>>>:

0 if i > j

1 if i = j

2 + d(i+ 1, j � 1) if i < j and s[i] = s[j]

max (d(i, j � 1), d(i+ 1, j)) if i < j and s[i] 6= s[j]

3b Give a bottom up implementation of your recursion from 3a and analyze its running time.

Solution:

Initialize d(i, j) = 1 if i = j and 0 if i > j. Then for all i, j such that i < j, fill d(i, j)
according to the recursion in the increasing order of j � i. Since we have ⇥(n2

) entries
to fill and each entry can be found in ⇥(1) time given that we have already computed d
values of smaller j � i values, the total running time is ⇥(n2

).
To find the palindromic subsequence, maintain another 2-d array p to keep track of the start
and end indices of the longest palindromic subsequences of substrings of s: To elaborate,
p(i, j) = (a, b) if the longest palindromic subsequence in s[i], s[i+1], . . . , s[j] begins at s[a]
and ends at s[b]. We can update p whenever we update d, and finally use p to reconstruct
the longest palindromic subsequence of s. Note that we can still update each entry in p in
constant time if we update p(i, j) the same time we update d(i, j).

Page 5 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2019

Michael Kapralov

4 (16 pts) Merging Binary Search Trees. Suppose that you are given k (not necessarily
balanced) binary search trees T

1

, T
2

· · · , Tk each containing n/k integers. Give an O(n log k)
time algorithm for merging the trees T

1

, . . . , Tk into a single balanced binary search tree T ⇤: the
height of T ⇤ must be O(log n). See Fig. 1 for an example.

2

1 3

T
1

T
2

6

5

4

T ⇤ 4

2 5

1 3 6

Figure 1. Input instance with k = 2 and n = 6. The tree T ⇤
is the result of merging T1 and T2.

Input: Binary search trees Ti, i = 1, . . . , k containing n/k integers each. The Ti’s
are not necessarily balanced.

Output: A binary search tree T ⇤ containing all n integers. The height of T ⇤ must
be bounded by O(log n).

Solution:
The algorithm is as follows:

1. Perform an inorder traversal on each Ti to get arrays Ai for i 2 [k]. This step can be
performed in O(n/k) time for each tree and hence O(n) time in total.

2. Merge Ai for i 2 [k] into a single array A⇤. This step can be performed in O(n log k) time
using min-heaps (see solutions of the fourth problem of exercise set 4).

3. Output Balanced-BST(A⇤, 0, n)

Balanced-BST(A⇤, low, high)
1. if high  low return Null;
2. mid = bhigh�low

2

c
3. root = A⇤

[mid]
4. root.left =Balanced-BST(A⇤, low,mid)
5. root.right =Balanced-BST(A⇤,mid+ 1, high)
2. return root

The recurrence relation is given by T (n) = 2T (n/2) + O(1). Using the Master theorem,
T (n) = O(n). It’s also easy to see that the depth of the recursion tree and hence the height
of the tree outputted is O(log n).

Page 6 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2019

Michael Kapralov

(Solution to problem 4 continued)

Page 7 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2019

Michael Kapralov

5 (14 pts) Median of two sorted arrays. In this problem you are given two sorted arrays with n
distinct integers a

1

< a
2

< . . . < an and b
1

< b
2

< . . . < bn, and your task is to find the median
in the union of the arrays. Let c = {a

1

, a
2

, . . . , an, b1, . . . , bn} denote the union of the two arrays
and let c

1

 c
2

 . . .  c
2n�1

 c
2n denote the elements of c in sorted order. Recall that the

median of c is (cn+cn+1

)/2. For example, suppose that n = 4, a
1

= 1, a
2

= 3, a
3

= 5, a
4

= 7 and
b
1

= 2, b
2

= 4, b
3

= 6, b
4

= 8. Then ci = i for i = 1, . . . , 8, and the median is (c
4

+ c
5

)/2 = 4.5.

Input: Two sorted arrays a
1

< a
2

< . . . < an and b
1

< b
2

< . . . < bn of n distinct
elements each.

Output: The median of the union of a and b.

For simplicity you may assume that the two arrays do not share any elements, i.e. all elements
in c are distinct.

Design and analyze an algorithm for the problem. For full credit your solution should run
in O(log

2 n) time.

Solution:

Solution 1: For any index i 2 [n] let gi denote the number of elements in a that are smaller
than bi. More formally let

gi := |{j 2 [n] : aj < bi}| .
Since b is increasing, for any 1  i < n we have gi  gi+1

. Suppose that we would like to find
the k’th element of the union of two arrays. Then if this element is the i’th element of b, then

gi + i = k.

Since gi is increasing in i, gi + i also is, and thus, given k, we can find i using binary search in
time O(log n) times the time it takes to evaluate gj for a given j 2 [n]. We note, however, that
gj can be evaluated by a binary search over the array a in time O(log n). This gives total time
O(log

2 n), for finding the k-th element of the union of the two arrays, so we can find the n-th,
the (n+ 1)-th, and output their average.

Solution 2: Suppose that we want to solve a more general version of the problem. Given two
sorted arrays A

1

and A
2

each of size n and m respectively. We want to find the k’th smallest
element of the union of two arrays (in the recursive calls we have variables (s

1

, e
1

) and (s
2

, e
2

)

specifying the range of the two arrays that we are currently looking at; the outer call starts with
s
1

= 1, e
1

= n, s
2

= 1, e
2

= m). By using a divide and conquer approach, similar to the one
used in binary search, we can find the k-th element in a more efficient way. We compare the
middle elements of arrays A

1

and A
2

, let us call these indices mid
1

and mid
2

respectively. Let us
assume k  mid

1

+mid
2

and A
1

[mid
1

] < A
2

[mid
2

], then clearly the elements after mid
2

cannot
be the required element. We then set the last element of A

2

to be mid
2

. If k > mid
1

+ mid
2

and A
1

[mid
1

] > A
2

[mid
2

] then clearly the elements before mid
2

cannot be the required element,
so we set the first element of A

2

to be mid
2

+ 1, and we need to find k � (mid
2

� s
2

+ 1)’th
element in the subproblem (see algorithm below). In this way, we define a new subproblem with
the size of one of the arrays reduced by a factor of two. Thus, the number of recursive calls to
the subproblems is at most log n+ logm and in each call we run constant number of operations.
Hence, the runtime when m = n is O(log n).

Page 8 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2019

Michael Kapralov

Algorithm 1 Find(A1, s1, e1, A2, s2, e2, k)

1: if s1 == e1 then return A2[k]

2: if s2 == e2 then return A1[k]

3: mid1 = (s1 + e1)/2
4: mid2 = (s2 + e2)/2
5: if mid1 +mid2 � k then

6: if A1[mid1] < A2[mid2] then
7: return Find(A1, s1, e1, A2, s2,mid2, k)
8: else

9: return Find(A1, s1,mid1, A2, s2, e2, k)

10: else

11: if A1[mid1] < A2[mid2] then
12: return Find(A1,mid1 + 1, e1, A2, s2, e2, k � (mid1 � s1 + 1))
13: else

14: return Find(A1, s1,mid1, A2, s2, e2, k � (mid2 � s2 + 1))

