=Pi-L

Midterm Exam, Algorithms 2019-2020

e You are only allowed to have a handwritten A4 page written on both sides.
e Communication, calculators, cell phones, computers, etc... are not allowed.

e Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be such that a fellow
student can easily implement the algorithm following the description.

e You are allowed to refer to algorithms covered in class without reproving their proper-
ties.

e Do not touch until the start of the exam.
Good luck!

Name: N° Sciper:

Problem 1 | Problem 2 | Problem 3 | Problem 4 | Problem 5

/ 10 points | / 34 points | / 26 points | / 16 points | / 14 points

Total / 100

Page 1 (of 9)

CS-250 Algorithms, Midterm Exam e Autumn 2019
Michael Kapralov

1 (10 pts) Basic questions.

la (4 pts) Answer whether the following statements are true or false.
The k-th largest element of an array A can be found in O(n + klogn) time by running the
first k iterations of HEAPSORT. True or false? TRUE
n1+01/logn) — O(nlogn). True or false? TRUE

The best case runtime of INSERTIONSORT is Q(n?). True or false? FALSE

If f(n) = O(g(n)), then 107 = O(109)) True or false? FALSE

1b (3 pts) Consider the queue @ below (assume the implementation shown in class):

b a

Q.head Q.tail

What is the resulting queue @ after the following operations: ENQUEUE(Q, ¢), ENQUEUE(Q, d),
DEQUEUE(Q), ENQUEUE(Q, e)? Specify the content of the array used to implement the
queue as well as the values of the head and tail pointers.

Solution:

I |

Q.head Q.tail

lc (3 pts) Consider the following stack S implemented in the same way as seen in class:

c | d
T
S.top

What is the resulting stack S after the following operations: PusH(S,e), Pusu(S, f),
Popr(S), PusH(S,e), PusH(S, g), Por(S)?

Solution:

S.top

Page 2 (of 9)

CS-250 Algorithms, Midterm Exam e Autumn 2019
Michael Kapralov

2 (84 pts) Recurrences. Consider the following algorithms Xyz and ABC that take as input an
array A and two indices low and high in the array:

XYZz(A,low, high)
1. if low > high

2. return

3. else

4. for i = low to high

5. print A[i]

6. mid = | (low + high) /2|
7. XYZ(A, low, mid)

8. return

ABC(A, low, high)
1. Xvz(A, low, high)
2. if low > high

3. return

4. else

5. p = low + | (high — low) /4]
6. q = |[(low + high)/2]

7 ABC(A, low, p)

8. ABC(A,p+ 1, high)

9. ABC(A,p+1,q)

10. ABC(A, low, p)

11. ABC(A, q+ 1, high)

12. return

2a (10 pts) Let S(n) be the time it takes to execute ABC(A, low, high) with n = high—low+1,
and let T'(n) denote the time it takes to execute XYZ(A, low, high) with n = high—low+1.
Give the recurrence relations for S(n) and T'(n). To simplify notation, you may ignore
floors and ceilings in your recurrence.

Solution: For 7'(n) we have

o(1) if n < 10,
T(n)=
T(n/2)+©(n) otherwise.

and for S(n) we have

S@):{Gﬂ) if n < 10,

S(3n/4)+ S(n/2) +3S(n/4) + T(n) +O(1) otherwise.

2b (24 pts) Prove tight asymptotic bounds on S(n) and T'(n).

Solution: First, we have T'(n) = ©(n), by the Master Theorem with a = 1, b = 2, and
f(n) = ©(n). This simplifies the recursion of S(n) to

S(n) = S(3n/4) + S(n/2) +3S5(n/4) + O(n).

Page 3 (of 9)

CS-250 Algorithms, Midterm Exam e Autumn 2019
Michael Kapralov

To solve for S(n) we will guess that S(n) ~ n® for some constant a > 0. To find o we must
solve the equation

1= (3/4) + (1/2)% + 3 - (1/4)°.

It turns out o = 2 solves this exactly, so we will guess that S(n) = ©(n?) (also note that the
non-recursive work done in ABC is o(n?)).

Proof of lower bound: We will prove by induction that S(n) > an? for some constant a.
Base case (n < 10): We know that S(n) = ©(1), so S(1) > a for sufficiently small a.
Inductive step: We know by induction that

S(n) > S(3n/4) + S(n/2) +35(n/4)
> a(3n/4)? +a(n/2)* + 3a(n/4)?

= anQ.

Proof of upper bound: We will prove by induction that S(n) < an? — bn for some constants
a and b. We may assume that the non-recursive part of the formula, denoted by ©(n) is at most
cn for some constant c.

Base case (n < 10): We know that S(n) = ©(1), so S(1) > a — b for large enough difference
a—b.

Inductive step: We know by induction that

S(n) < SBn/4)+ S(n/2) +3S(n/4) + cn

< a(3n/4)* — b(3n/4) + a(n/2)* — b(n/2) + 3a(n/4)* — 3b(n/4) + cn
= an® — 2bn + cn.

This is indeed less than an? — bn as long as b > c¢. Note that these too conditions, a — b large
enough and b > ¢ can be satisfied at the same time. This completes the proof.

Page 4 (of 9)

CS-250 Algorithms, Midterm Exam e Autumn 2019
Michael Kapralov

3 (26 pts) Can you find the palindrome? In this problem your task is to find the longest
palindromic subsequence of a given sequence of characters. Recall that a sequence is called a
palindrome if it does not change when reversed. For example, ABBA and ABDBA are palindromes,
whereas AABB is not.

Consider a sequence s = (s1, S2,...,8,) of n characters. We say that a sub-sequence s’ =
(s[i1], s[i2], . .., s[ig]), where 1 < 43 < g < --- < i < n, is a palindromic subsequence if the
subsequence does not change if we reverse it. Formally, s’ is palindromic if s[i;] = s[ig_;41] for
every j = 1,..., k. In this problem your task is to design a dynamic programming algorithm
that given a sequence s of n characters as input, finds a longest palindromic subsequence of s.
For example, if s = ACBDBA, the longest palindromic subsequence is ABDBA.

Input: Sequence s = (si,...,Sy) of n characters.

Output: A longest palindromic subsequence of s.

Design and analyze a dynamic programming solution for the problem. For full credit your
algorithm should run in time O(n?).

3a For 1l <i<j<mnletd(,j) denote the length of the largest palindromic subsequence in

the substring s[i], s[i + 1],. .., s[j]. Write a recursive formula for d(i, 7).
Solution:
0 ifi>j
4. 9) = ;+ di+1,5 — 1) 1: ?ﬁ and s[i] = sj]

max (d(i,j7 — 1),d(i+1,j)) ifi < jand s[i] # sm

3b Give a bottom up implementation of your recursion from 3a and analyze its running time.

Solution:

Initialize d(i,j) = 1 if ¢ = j and 0 if ¢« > j. Then for all 7,5 such that i < j, fill d(i,)
according to the recursion in the increasing order of j —i. Since we have ©(n?) entries
to fill and each entry can be found in ©(1) time given that we have already computed d
values of smaller j — i values, the total running time is ©(n?).

To find the palindromic subsequence, maintain another 2-d array p to keep track of the start
and end indices of the longest palindromic subsequences of substrings of s: To elaborate,
p(i,7) = (a,b) if the longest palindromic subsequence in s[i], s[i + 1], ..., s[j] begins at s|a]
and ends at s[b]. We can update p whenever we update d, and finally use p to reconstruct
the longest palindromic subsequence of s. Note that we can still update each entry in p in
constant time if we update p(i, j) the same time we update d(i, j).

Page 5 (of 9)

CS-250 Algorithms, Midterm Exam e Autumn 2019
Michael Kapralov

4 (16 pts) Merging Binary Search Trees. Suppose that you are given k (not necessarily
balanced) binary search trees T7,Ts--- , T} each containing n/k integers. Give an O(nlogk)
time algorithm for merging the trees 171, ..., T} into a single balanced binary search tree T™: the
height of T must be O(logn). See Fig. 1 for an example.

n n (®

(1)

Figure 1. Input instance with k = 2 and n = 6. The tree T™ is the result of merging 71 and T5.

Input: Binary search trees Tj, i = 1,...,k containing n/k integers each. The T;’s
are not necessarily balanced.

Output: A binary search tree T* containing all n integers. The height of T must
be bounded by O(logn).

Solution:
The algorithm is as follows:
1. Perform an inorder traversal on each T; to get arrays A; for ¢ € [k]. This step can be
performed in O(n/k) time for each tree and hence O(n) time in total.

2. Merge A; for i € [k] into a single array A*. This step can be performed in O(nlogk) time
using min-heaps (see solutions of the fourth problem of exercise set 4).

3. Output Balanced-BST(A*,0,n)

BALANCED-BST(A*, low, high)

if high < low return Null;

mid = LWJ

root = A*[mid|

root.le ft =Balanced-BST(A*, low, mid)
root.right =Balanced-BST(A*, mid + 1, high)
return root

e

NS

The recurrence relation is given by T'(n) = 27'(n/2) + O(1). Using the Master theorem,
T(n) = O(n). It’s also easy to see that the depth of the recursion tree and hence the height
of the tree outputted is O(logn).

Page 6 (of 9)

CS-250 Algorithms, Midterm Exam e Autumn 2019
Michael Kapralov

(Solution to problem 4 continued)

Page 7 (of 9)

CS-250 Algorithms, Midterm Exam e Autumn 2019
Michael Kapralov

5 (14 pts) Median of two sorted arrays. In this problem you are given two sorted arrays with n
distinct integers a1 < ag < ... < a, and by < by < ... < by, and your task is to find the median
in the union of the arrays. Let ¢ = {a1,a2,...,an,b1,...,b,} denote the union of the two arrays
and let ¢; < ¢ < ... < cogpn—1 < 9, denote the elements of ¢ in sorted order. Recall that the
median of ¢ is (¢, +¢p41)/2. For example, suppose that n =4, a1 = 1,a2 = 3,a3 = 5,a4 = 7 and
by =2,bp =4,b3 =6,by =8. Then ¢; =i for i =1,...,8, and the median is (¢4 + ¢5)/2 = 4.5.

Input: Two sorted arrays a1 < as < ... < ap and by < by < ... < b, of n distinct
elements each.

Output: The median of the union of a and b.

For simplicity you may assume that the two arrays do not share any elements, i.e. all elements
in ¢ are distinct.

Design and analyze an algorithm for the problem. For full credit your solution should run
in O(log?n) time.

Solution:

Solution 1: For any index i € [n] let g; denote the number of elements in a that are smaller
than b;. More formally let

gi=|jen|:a; <bi}.
Since b is increasing, for any 1 < ¢ < n we have g; < g;+1. Suppose that we would like to find
the k’th element of the union of two arrays. Then if this element is the i’th element of b, then

gi +1==F.

Since g; is increasing in 4, g; + 4 also is, and thus, given k, we can find ¢ using binary search in
time O(logn) times the time it takes to evaluate g; for a given j € [n]. We note, however, that
gj can be evaluated by a binary search over the array a in time O(logn). This gives total time
O(log? n), for finding the k-th element of the union of the two arrays, so we can find the n-th,
the (n 4 1)-th, and output their average.

Solution 2: Suppose that we want to solve a more general version of the problem. Given two
sorted arrays A; and Ag each of size n and m respectively. We want to find the k’th smallest
element of the union of two arrays (in the recursive calls we have variables (s1,e1) and (s2,e2)
specifying the range of the two arrays that we are currently looking at; the outer call starts with
s1 = 1,e;1 = n,so = 1,ea = m). By using a divide and conquer approach, similar to the one
used in binary search, we can find the k-th element in a more efficient way. We compare the
middle elements of arrays A; and Ao, let us call these indices midy, and mids respectively. Let us
assume k < midy +midy and Aj[midy] < Az[mids], then clearly the elements after mids cannot
be the required element. We then set the last element of A to be mids. If kK > midy + mids
and Aj[mid;] > Aa[mids] then clearly the elements before midy cannot be the required element,
so we set the first element of Ay to be midy + 1, and we need to find k — (mida — s2 + 1)’th
element in the subproblem (see algorithm below). In this way, we define a new subproblem with
the size of one of the arrays reduced by a factor of two. Thus, the number of recursive calls to
the subproblems is at most logn +logm and in each call we run constant number of operations.
Hence, the runtime when m = n is O(logn).

Page 8 (of 9)

CS-250 Algorithms, Midterm Exam e Autumn 2019
Michael Kapralov

Algorithm 1 FIND(A44, s1, 1, Ag, 52, €2, k)

10:
11:
12:
13:
14:

1: if s; == e; then return A,[k]
2: if s9 == es then return A, [k]
3: mid, = (51 -+ 61)/2

4: midy = (82 -+ 62)/2

5:
6
7
8
9

if mid; + midy > k then
if Ay [mzdl] < As [mldg] then
return FIND(Aq, s1, €1, As, s2, mids, k)
else
return FIND(Aq, s1,midy, As, so, €2, k)
else
if Ay [mzdl] < Ay [mldg] then
return FIND(Ay, midy + 1, e1, Ag, $9, €9,k — (mid; — 51 + 1))
else
return FIND(Al, s1,midy, Ao, 8o, €9,k — (mzd2 — 89 + 1))

