

Midterm Exam, Algorithms 2019-2020

- You are only allowed to have a handwritten A4 page written on both sides.
- Communication, calculators, cell phones, computers, etc... are not allowed.
- Your explanations should be clear enough and in sufficient detail that a fellow student can understand them. In particular, do not only give pseudo-code without explanations. A good guideline is that a description of an algorithm should be such that a fellow student can easily implement the algorithm following the description.
- You are allowed to refer to algorithms covered in class without reproving their properties.
- **Do not touch until the start of the exam.**

Good luck!

Name: _____ N° Sciper: _____

Problem 1 / 10 points	Problem 2 / 34 points	Problem 3 / 26 points	Problem 4 / 16 points	Problem 5 / 14 points

Total / 100

1 (10 pts) Basic questions.

1a (4 pts) Answer whether the following statements are **true** or **false**.

The k -th largest element of an array A can be found in $O(n + k \log n)$ time by running the first k iterations of HEAPSORT. True or false?

$n^{1+O(1/\log n)} = O(n \log n)$. True or false?

The best case runtime of INSERTIONSORT is $\Omega(n^2)$. True or false?

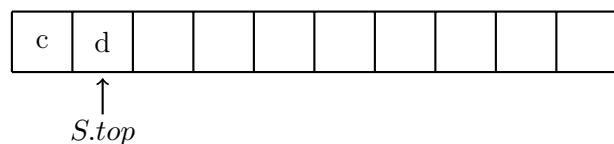
If $f(n) = O(g(n))$, then $10^{f(n)} = O(10^{g(n)})$ True or false?

1b (3 pts) Consider the queue Q below (assume the implementation shown in class):

What is the resulting queue Q after the following operations: ENQUEUE(Q, c), ENQUEUE(Q, d), DEQUEUE(Q), ENQUEUE(Q, e)? Specify the content of the array used to implement the queue as well as the values of the head and tail pointers.

Solution:

1c (3 pts) Consider the following stack S implemented in the same way as seen in class:



What is the resulting stack S after the following operations: PUSH(S, e), PUSH(S, f), POP(S), PUSH(S, e), PUSH(S, g), POP(S)?

Solution:

2 (34 pts) **Recurrences.** Consider the following algorithms XYZ and ABC that take as input an array A and two indices low and $high$ in the array:

```
XYZ( $A, low, high$ )
1. if  $low \geq high$ 
2.   return
3. else
4.   for  $i = low$  to  $high$ 
5.     print  $A[i]$ 
6.    $mid = \lfloor (low + high)/2 \rfloor$ 
7.   XYZ( $A, low, mid$ )
8. return

ABC( $A, low, high$ )
1. XYZ( $A, low, high$ )
2. if  $low \geq high$ 
3.   return
4. else
5.    $p = low + \lfloor (high - low)/4 \rfloor$ 
6.    $q = \lfloor (low + high)/2 \rfloor$ 
7.   ABC( $A, low, p$ )
8.   ABC( $A, p + 1, high$ )
9.   ABC( $A, p + 1, q$ )
10.  ABC( $A, low, p$ )
11.  ABC( $A, q + 1, high$ )
12. return
```

2a (10 pts) Let $S(n)$ be the time it takes to execute $ABC(A, low, high)$ with $n = high - low + 1$, and let $T(n)$ denote the time it takes to execute $XYZ(A, low, high)$ with $n = high - low + 1$. Give the recurrence relations for $S(n)$ and $T(n)$. To simplify notation, you may ignore floors and ceilings in your recurrence.

Solution:

2b (24 pts) Prove tight asymptotic bounds on $S(n)$ and $T(n)$.

Solution:

3 (26 pts) Can you find the palindrome? In this problem your task is to find the longest palindromic subsequence of a given sequence of characters. Recall that a sequence is called a palindrome if it does not change when reversed. For example, ABBA and ABDBA are palindromes, whereas AABB is not.

Consider a sequence $s = (s_1, s_2, \dots, s_n)$ of n characters. We say that a sub-sequence $s' = (s[i_1], s[i_2], \dots, s[i_k])$, where $1 \leq i_1 < i_2 < \dots < i_k \leq n$, is a palindromic subsequence if the subsequence does not change if we reverse it. Formally, s' is palindromic if $s[i_j] = s[i_{k-j+1}]$ for every $j = 1, \dots, k$. In this problem your task is to design a dynamic programming algorithm that given a sequence s of n characters as input, finds a longest palindromic subsequence of s . For example, if $s = \text{ACBDBA}$, the longest palindromic subsequence is ABDBA.

Input: Sequence $s = (s_1, \dots, s_n)$ of n characters.

Output: A longest palindromic subsequence of s .

Design and analyze a dynamic programming solution for the problem. For full credit your algorithm should run in time $O(n^2)$.

3a For $1 \leq i \leq j \leq n$ let $d(i, j)$ denote the length of the largest palindromic subsequence in the substring $s[i], s[i+1], \dots, s[j]$. Write a recursive formula for $d(i, j)$.

Solution:

3b Give a bottom up implementation of your recursion from **3a** and analyze its running time.

Solution:

(Solution to problem 3 continued)

4 (16 pts) **Merging Binary Search Trees.** Suppose that you are given k (not necessarily balanced) binary search trees T_1, T_2, \dots, T_k each containing n/k integers. Give an $O(n \log k)$ time algorithm for merging the trees T_1, \dots, T_k into a single *balanced* binary search tree T^* : the height of T^* must be $O(\log n)$. See Fig. 1 for an example.

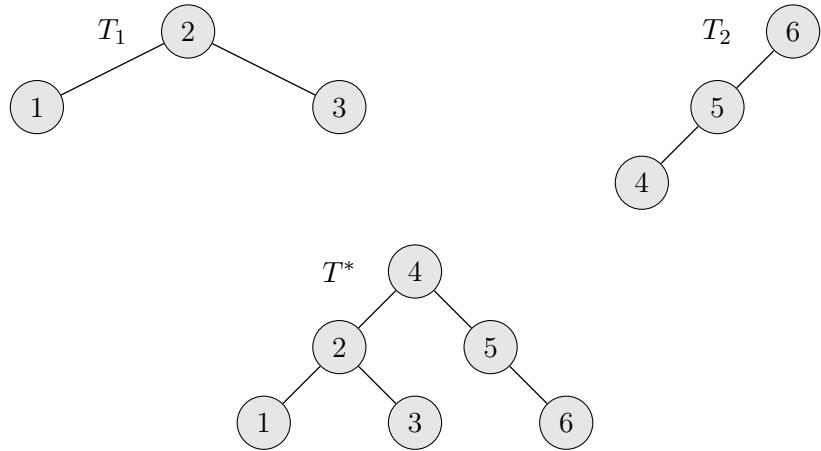


Figure 1. Input instance with $k = 2$ and $n = 6$. The tree T^* is the result of merging T_1 and T_2 .

Input: Binary search trees T_i , $i = 1, \dots, k$ containing n/k integers each. The T_i 's are not necessarily balanced.

Output: A binary search tree T^* containing all n integers. The height of T^* must be bounded by $O(\log n)$.

Solution:

(Solution to problem 4 continued)

5 (14 pts) **Median of two sorted arrays.** In this problem you are given two sorted arrays with n distinct integers $a_1 < a_2 < \dots < a_n$ and $b_1 < b_2 < \dots < b_n$, and your task is to find the median in the union of the arrays. Let $c = \{a_1, a_2, \dots, a_n, b_1, \dots, b_n\}$ denote the union of the two arrays and let $c_1 \leq c_2 \leq \dots \leq c_{2n-1} \leq c_{2n}$ denote the elements of c in sorted order. Recall that the median of c is $(c_n + c_{n+1})/2$. For example, suppose that $n = 4$, $a_1 = 1, a_2 = 3, a_3 = 5, a_4 = 7$ and $b_1 = 2, b_2 = 4, b_3 = 6, b_4 = 8$. Then $c_i = i$ for $i = 1, \dots, 8$, and the median is $(c_4 + c_5)/2 = 4.5$.

Input: Two sorted arrays $a_1 < a_2 < \dots < a_n$ and $b_1 < b_2 < \dots < b_n$ of n distinct elements each.

Output: The median of the union of a and b .

For simplicity you may assume that the two arrays do not share any elements, i.e. all elements in c are distinct.

Design and analyze an algorithm for the problem. For full credit your solution should run in $O(\log^2 n)$ time.

Solution: